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Abstract

Generative Adversarial Networks (GANs) have shown

satisfactory performance in synthetic image generation by

devising complex network structure and adversarial train-

ing scheme. Even though GANs are able to synthesize re-

alistic images, there exists a number of generated images

with defective visual patterns which are known as artifacts.

While most of the recent work tries to fix artifact gener-

ations by perturbing latent code, few investigate internal

units of a generator to fix them. In this work, we devise a

method that automatically identifies the internal units gen-

erating various types of artifact images. We further pro-

pose the sequential correction algorithm which adjusts the

generation flow by modifying the detected artifact units to

improve the quality of generation while preserving the orig-

inal outline. Our method outperforms the baseline method

in terms of FID-score and shows satisfactory results with

human evaluation.

1. Introduction

In recent years, GANs have become more powerful in

terms of producing photo-realistic images [13, 12] which

are often hard to distinguish from real samples. In addi-

tion, they have become increasingly better at producing di-

verse sets of generated samples. These outstanding abili-

ties pave way for GANs to be employed in various real-life

domains [9, 18]. The main focus of existing work in the

GAN domain has been on improving the quality of synthe-

sis by changing the training scheme or devising more com-

plex models. Despite considerable successes, GANs still

suffer from producing outputs that contain unrealistic re-

gions, so-called artifacts, which make them unsuitable for

being employed in mission-critical applications. As a re-

sult, examining the root cause of such phenomena and pos-
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sible solutions to enhance the overall quality has proved to

be important.

Recent work removes artifact areas by perturbing the

latent codes [22]. Defective units are removed based on

understanding the representation of internal units and hu-

man annotation [3]. Unlike the previous methods, we iden-

tify defective units by learning a classifier from annotated

samples. Furthermore, by utilizing an obtained explanation

map, we devise our own global multi-layer artifact unit ab-

lation scheme which enhances the quality of defective gen-

erations while preserving plausible generations.

In our approach, we first annotate randomly sampled

generations into two categories, Normal and Artifact, based

on predefined criteria. Then we train a classifier on all the

annotated generations and some randomly sampled real im-

ages to classify images into their corresponding categories.

Our trained classifier can generate an estimated mask for de-

fective regions by employing an explanation method [21].

By measuring the alignment between an individual inter-

nal unit’s activation and the defective regions’ segmentation

mask, we identify units inducing artifacts. In order to cor-

rect the artifact areas in the generations, we ablate units with

the highest overlap score.

In summary, the contribution of our work is three-fold:

• We compile a large dataset of curated flawed genera-

tions and provide a comprehensive analysis on artifact

generations.

• We identify defective units in a generative model by

measuring the intersection-over-union (IoU) of the

unit’s activation map and pseudo artifact region masks

obtained by training a simple classifier on our dataset.

• We propose an artifact removal method by globally

ablating defective units which enhances the quality

of artifact samples while maintaining normal samples

from drastic change. We further improve the approach

by sequentially ablating the defective units throughout

consequent layers.
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Figure 1: Identification of the artifact units for each layer (top) and the generation flow for two correction methods (bottom).

Identification measures the IoU between defective regions (GradCAM mask) and a unit u for artifact generations. The average

of IoUs over samples is used as the defective scores in the layer. The sequential correction method adjusts the generation

flow of defective units and improves GANs without retraining.

2. Related Work

Generative Adversarial Networks. Since the introduc-

tion of GAN [6], the realism and diversity of outputs of the

generator have increased steadily [1, 12, 13, 7]. Generally,

GAN models take a sampled latent vector and output a syn-

thesized image. While the samples from the original GAN

model could be easily identified, recent models produce in-

distinguishable samples from real data. Despite recent ad-

vances, little research has been conducted in order to under-

stand the inner mechanism of a GAN model.

Characterizing Deep Networks’ Units. Various tech-

niques have been proposed to examine and understand the

internal representation of deep networks [23, 11]. Explana-

tory heatmaps can be used to explain individual network

decisions [16, 21]. The heatmaps visualize which input re-

gions contribute the most to the categorical prediction given

by the networks. Recently, [2] introduces the Network Dis-

section framework for identifying the role of internal units

of CNN models by gathering a dataset with semantic con-

cepts and label each hidden unit based on the alignment of

its activation map and the concept annotation.

Artifacts in Generative Models. Defective regions can

be observed in synthesized images by deep neural networks

[19, 24, 3, 22]. [19] finds the cause of checkerboard ar-

tifacts to be in the deconvolution operation and suggests

a simple resize-convolution upsampling to resolve this is-

sue. [17] exploits the distinctive inherent artifacts that ap-

pear in the warping process of generating deep fake videos

to be used for detection. [22] tries to first divide the latent

space into normal and artifact regions by training a linear

SVM model on manually labeled generations. By moving

the latent codes toward the good quality direction obtained

from the learned hyperplane, they gradually correct syn-

thesized artifacts images. [3] finds artifact-inducing units

with/without human supervision. They visualized the high-

est activation images for each unit and label them as normal

or artifact units. Then, they ablate defective units in order

to fix the generation.

3. Ablation of Artifact Units in GAN

The term artifact has been used in the previous work

[3, 19] to describe the synthesized images which have un-

natural (or undesired) visual patterns. Figure 2 shows illus-

trative examples of artifacts, where the church is distorted

or some parts of the image are transparent. When we la-

bel the generations into artifact or normal generations, we

observe one could get non-negligible amount of artifacts as

listed in Table 1.

One may suggest using the output of the discriminator,

which we call ‘D-value’ for the rest of this paper, as it is
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Figure 2: Examples of artifact generations of PGGAN with

LSUN-church (top), CelebA-HQ (middle), and LSUN-

bedroom (bottom) datasets.

CelebA-

HQ

LSUN-

church

LSUN-

bedroom

Artifact ratio 38.71 % 16.79 % 40.91 %

Table 1: The ratio of artifact generations in PGGAN with

CelebA-HQ, LSUN-church, and LSUN-bedroom datasets.

a natural metric to distinguish real images and generations.

It is common to think the normal generations which look

real would have D-values following the distribution of real

training images, while artifact generations will be thought

to have a distant distribution. However, it was not the case

from our observations. Figure 3 shows the histogram of D-

values for the normal and artifact generations.

It is non-trivial to classify the type of input (normal or

artifacts) based on the D-value, because two histograms are

overlapped. Also, the level of defectiveness is not propor-

tional to the D-value. These observations show that we need

to dig deeper into the network to detect and correct artifacts.

Normal

Artifacts

Figure 3: The D-value for each type of input in PGGAN

with CelebA-HQ. The black line indicates the correspond-

ing D-value for each generation. The second and the last

generations have similar background problems, however,

the corresponding D-values are different.

3.1. FID-Based Artifact Unit Identification

In the paper [3], artifacts are also studied as one type

of object. To get the artifact units in an unsupervised man-

ner, the authors use Fréchet Inception Distance (FID) which

is a commonly used metric for measuring performance for

generative models [8]. For each featuremap unit, they com-

pute the FID score on 10K images which have the highest

activation of the given featuremap unit among 200K gener-

ated images. Featuremap units which are highly activated

for high-FID image sets are considered artifact units. The

authors show that the FID score improves when the top 20

artifact units are ablated. While this automatic correction

method has shown overall improvement, our observation

shows there is still a possibility to improve the identifica-

tion of artifact units. Figure 4 shows the unit with the 5th

highest FID score among 512 units.
U

n
it

 1
3

4

Top 20 generationsRep. Generation

Figure 4: The representative generation and highly acti-

vated generations for unit 134 in layer 6 of PGGAN-LSUN

church.

Although unit 134 has a high FID score, the related gen-

eration concepts seem to be natural. This example illus-

trates the reason why we need a more elaborate approach

for the identification of artifact units.

3.2. Classifier-Based Artifact Unit Identification

In order to identify the internal units which cause high-

level semantic artifacts, we hand-label 2k generated images

to normal or artifact generations. Then, we build a model to

classify our dataset into three categories, namely: artifact,

normal, and randomly selected real samples. We employ an

image classifier (e.g. ResNet-18) as our feature extraction

module and introduce one fully connected layer on top of it

for classification. During the training, we keep the parame-

ters of the feature extraction module fixed and only optimize

the classifier weights. In order to obtain a finer-level anno-

tation compared to the image label, we apply GradCAM

[21] to provide us with a mask for the defective regions.

Such a mask highlights the regions that are effective for the

model’s decision. This operation is more efficient than hand

labeling defective regions as the latter takes a lot of time.

Now that we have a pseudo segmentation ground truth

mask for artifact areas, comparing feature activation maps

with the mask can reveal the artifact-inducing units. For

this purpose, we follow the principles in the prior work

[2, 5]. For every unit u in the l-th layer of the generator,

we compute Au(zx) ∈ R
Hl×Wl which is the activation for
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Figure 5: The explanation masks from the GradCAM with

artifact class score. The masks focus on the defective re-

gions which the normal generations are hard to contain.

a given generation x and the corresponding latent code zx.

We threshold the activation with the quantile Tu such that

P (Au(zx) > Tu) = τ 1. This is computed with regard to the

feature map distribution of each unit for all images. After

applying the threshold, we bilinearly upsample the result to

the size of the pseudo artifact segmentation mask La(x) and

compute IoU with Au(zx). To make the identification pro-

cess global, we define the defective score which averages

each IoU over artifact generations.

Definition 1 (Defective Score (DS)) Let the set of artifact

generations Xa and artifact segmentation mask La(x) and

activation Au(zx) of unit u in the l-th layer for x ∈ Xa.

The defective score of unit u is defined as,

DSl,u,a =
1

|Xa|

∑

x∈Xa

|Au(zx) ∩ La(x)|

|Au(zx) ∪ La(x)|
.

The defective scores for all units in the l-th layer are de-

fined as DSl,a = {DSl,1,a, DSl,2,a, ...DSl,Dl,a} where Dl

is the number of the units in the l-th layer. Finally, we can

sort the scores and choose units with higher scores as can-

didates for ablation.

Figure 6 denotes the results of ablation with the top 20

units in layer 6 comparing with the FID-based ablation. In

the first row, we can identify that both methods barely harm

the plausible regions in the generation. It implies that the

selected units are related to the defective area and less cor-

related with the normal generations. In the second row with

the shadow artifact, DS-based correction shows more rea-

sonable performance than FID-based correction. However,

both methods fail to correct in some cases as in the last row:

(1) the hole on the church and (2) the texture error case.

3.3. Generation Concepts of Unit in GANs

From the previous observations, we can identify that a

simple unit ablation cannot correct all types of artifacts. To

1We empirically set τ = 0.005 in the experiments.

Original FID DS Original FID DS

(a)

(b)

(c)

Figure 6: The single-layer ablation results (top 20) for the

baseline method (FID) [3] and our method (DS). (a) Correc-

tion results on normal generations. The ablations from both

methods do not affect plausible regions. (b) Our method

can remove the shadow effect while maintaining the origi-

nal outline. (c) Both methods fail to correct the hole on the

wall (left) or the texture error (right).

analyze and explain this phenomenon, we investigate and

reveal the generation concept of each featuremap unit. We

generate 20k images and select the top 20 images which

maximize the magnitude of activation for each unit u. Some

featuremap units seem to have concrete concepts because

the selected images share concrete semantic information

(see more examples in Appendix 5). However, for some

featuremap units, it is hard to define one clear generation

concept. To better identify such concepts, we compute the

mean featuremap amongst highly activated images to gener-

ate the representative image for each featuremap unit. Fig-

ure 7 denotes the examples of units with concrete/mixed

generation concepts.

U
n

it
 1

5
5

Top 20 generationsRep. Generation

(a) Unit for concrete generation concepts
Top 20 generationsRep. Generation

U
n

it
 2

7
8

(b) Unit for mixed generation concepts

Figure 7: The examples of the representative image and

highly activated generations for the given unit in layer 6

of PGGAN on LSUN-church. (a) A unit related to concrete

generation concepts. (b) A unit that does not have concrete

generation concepts. The representative image in this case

seems to be blurred.

Figure 8 denotes the examples which are clustered by the
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type of artifacts with the corresponding unit indices. We can

clearly identify that each artifact concept is related to multi-

ple units in a hidden layer. It suggests that we need to ablate

a set of units which includes most units sharing the defec-

tive concepts to ensure the correction performance. Fig-

ure 9 denotes the correction results comparing with manual

unit selection. Because the top 20 units did not include all

the texture error units in FID and DS-based correction, they

cannot remove the texture error in the generation. However,

when we manually ablate 15 units related to the texture er-

ror, the correction can be performed efficiently.

Figure 8: The clusters of the representative generations in

layer 6 of PGGAN with LSUN-church. There are multiple

units which share the same artifact concept.

Original FID DS Manual

Figure 9: An example of correction results for texture error.

In the Manual case, we select and ablate the 15 units related

to the texture error.

Although we can cover various types of artifacts by sim-

ply increasing the number of units for ablation, there exists a

trade-off between removing artifacts and preserving the nor-

mal information in generations. Figure 10 illustrates such a

trade-off. When we increase the number of units, it grad-

ually removes the defective spot on the top-right corner in

the generation, but heavy degradation also appears (e.g. the

quality of trees and the building). In addition, we plot the

FID scores according to the number of units ablated at layer

6 for the PGGAN model across various datasets in Figure

11. We can identify that the FID score increases exponen-

tially when we increase the number of units for ablation.

4. Sequential Correction of Artifacts

We propose the sequential correction to improve the

quality of generation performance by suppressing the side-

Figure 10: The change in generation over the number of

ablation units. Although the size of the stain (top-right) is

reduced when increasing the number of ablation units, the

quality of trees and the church is degraded at the same time.

LSUN-church

LSUN-bedroom

CelebA-HQ

Figure 11: The FID scores on various numbers of ablated

units on layer 6 of PGGAN with a various dataset.

effect of one layer ablations. Given generator with L lay-

ers, the function of generator G is decomposed into G(z) =
fL(fL−1(· · · (f1(z)))) = fL:1(z), where z is a vector in the

latent space Z ⊂ R
Dz . hl,u = fl:1,u(·) denotes the values

of the u-th unit in the l-th layer with fl:1(z) ∈ R
Dl×Hl×Wl .

In general, the operation fl(·) includes linear transforma-

tions and a non-linear activation function. For the given

query z, we sequentially adjust the activation of units in the

consequent layers. The detailed procedure is stated in Al-

gorithm 1.

From the previous research [10] that shallow layers han-

dle the abstract generation concepts and deeper layers han-

dle localized information in GANs, we ablate the shallow

layers from the first layer to the stopping layer l < L. To

prevent the loss of semantic characteristics of a generation

as pointed in Section 3.3, we adjust the magnitude of the

original featuremaps instead of the simple zero ablation.

Line 5 of Algorithm 1 states this soft ablation as,

hk+1,j = λ(1−DSk+1,j,a)hk+1,j

where λ ∈ [0, 1] is the scaling factor and DSk+1,j,a ∈ [0, 1]
is normalized. λ(1 −DSk+1,j,a) controls the relative gen-

eration flow of selected featuremap units. Note that if the

scaling factor λ = 0, the algorithm performs simple zero

ablations in consequent layers.

4.1. Analysis of Sequential Correction

To demonstrate the relation between the hyperparame-

ters and correction performance, we first measure the FID

after correction varying the stopping layers l and the portion

of ablated units n in PGGAN with CelebA-HQ. In Figure

12a, ablating 20% of units in each layer shows the best per-

formance in the FID comparison. The FID sharply increases
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Algorithm 1 Sequential Correction

Input: z0: a query, G(.) = fL:1(.): a generator,

l: a stopping layer, DSl:1,a: normalized defective scores

for each layer, λ: a scaling factor, n: the number of ablated

units

Output: X: the corrected generation

1: h0 = z0
2: for k ← 0 to l do

3: hk+1 = fk+1:k(hk)
4: for j ← Top 1 to Top n do

5: hk+1,j = λ(1−DSk+1,j,a)hk+1,j

6: end for

7: end for

8: X = fL:l+1(hl+1)
9: return X

in layers 9 and 12 whereas the differences are minimal for

the lower layers. We also provide another metric called Re-

alism Score (R) [15] which can measure the quality of gen-

eration for individual samples for various stopping layers

with the fixed n = 20%. Figure 12b indicates the average

of R over the 1k artifact generations. We find that the stop-

ping layer 6 shows the best R for the sequential correction.

The portion of ablated units per layer

F
ID

(a) FID for various condition

R
ea

li
sm

 S
co

re

Org. 1 3 6 9 12

0.18

0.16

0.14

0.12

Stopping Layer

(b) Realism score with n=20%

Query Layer 1:12Layer 1 Layer 1:3 Layer 1:6 Layer 1:9

(c) Qualitative comparison for stopping layers

Figure 12: Quantitative and qualitative results over various

hyper parameters (stopping layer l and the portion of ab-

lated units n.). We can identify that when the stoppling

layer l is set deeper layer, the quality of generation is de-

graded.

4.2. Local Region Correction

Although the proposed method defines the artifact units

in a global sense, we can apply local region correction

additionally, since we have the mask of defective regions

for individual samples. We change the reducing weight

λ(1−DSk+1,j,a) to (1−La(x)) where La(x) is the down-

sampled GradCAM mask. In this scheme, we can perform

the sample-specified sequential correction and the correc-

tion result can be local. As shown in Figure 13, the lo-

cal region correction can minimize the change of unmasked

contents per individual samples.

Query Mask SeqC SeqC w\ Mask

FID Realism Score

Quantitative Result

F
ID

R
ealism

 S
co

re

Figure 13: The effect of local region correction for the se-

quential correction (SeqC) in PGGAN-celebAHQ. We can

identify that the area which was not focused on by the mask

cannot be changed.

5. Experimental Evaluations

This section presents the analytical results of our al-

gorithm and empirical comparisons of various correc-

tion methods. We perform correction on three PGGANs

trained on LSUN-church, CelebA-HQ, and LSUN-bedroom

datasets, respectively. We manually label generations from

PGGANs and collect 1k artifact generations and its latent

codes for each model. We obtain the featuremaps through

the model and ablate the chosen featuremap units. Through-

out the experiments in this paper, we use the stopping layer

l = 6, the number of ablation units n = 20%, and the

scaling factor λ = 0.9. All the correction experiments are

conducted on the same 1k latent codes of the original arti-

fact generations. The qualitative and quantitative results are

presented in the following subsections.

5.1. Qualitative Result

We first demonstrate how the generations can be cor-

rected for each correction method. As shown in Figure 14,

we can identify that the sequential correction can remove

the defective region effectively. Especially, ablations in the

shallow layer are helpful to correct for the regions in which

the generation information is not clear (e.g. the constant

green regions in row-5-LHS CelebA-HQ generation) and

most information related to the normal characteristics can

be maintained. It means that the proposed method mini-

mizes the change of plausible regions and mainly focuses

on the defective regions.

5.2. Quantitative Result

We use the FID score to quantitatively measure the im-

provements of artifacts for each approach. In FID calcula-

tion, 1k of real training samples are used. For better com-

parison, we report the FID scores on 1k original artifact

generations and 1k normal generations in Table 2. As a
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Figure 14: The correction results for each ablation method of the PGGAN with the various dataset (LSUN-Church Outdoor,

LSUN-Bedroom, and CelebA-HQ.). We confirm that the sequential correction removes the defection regions effectively.

baseline, we choose random ablation and FID based correc-

tion method [3] and summarize it under random and FID

row in Table 2. Then we ablate the global artifact units ob-

tained by classifier-based approach and summarize it under

DS row. The results on the sequential correction approach

are summarized under Sequential row. The results on each

model are summarized under the LSUN-church, CelebA-

HQ, and LSUN-bedroom columns, respectively. The pro-

posed method shows the best performance in all three mod-

els.

5.3. Human Evaluation

To support the quality of the corrected results, we pro-

vide human evaluation results. The experiments are con-

structed by two evaluation procedures: (1) re-labeling the

corrected generations from the sequential correction, and

(2) assessing the improvement (improved/not improved) for

each pre-defined artifact type. We set the criteria for each

Correction
LSUN-

church

CelebA-

HQ

LSUN-

bedroom

Random 53.43 42.10 67.46

FID 40.66 44.37 48.48

DS 32.82 35.40 44.93

Sequential 23.96 34.71 40.71

Artifacts 46.95 36.16 61.17

Normals 22.37 29.80 29.15

Table 2: FID scores of corrected artifact generations for

LSUN-church, CelebA-HQ, and LSUN-bedroom datasets.

artifact type to make consistent evaluations. A detailed de-

scription for each criterion can be found in Appendix 1.2.

The results on 500 artifact corrections for each dataset

are summarized in Table 3. For CelebA-HQ dataset, we

could find 53% out of 500 correction samples obtained by

applying our method for artifact-labeled generations are re-

labeled as normal. While 47% are still containing artifacts,
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Dataset Corrected (%) Improved (%)

CelebA-HQ 53.00 (4.20) 96.00 (2.00)

LSUN-church 54.50 (0.90) 86.10 (6.30)

LSUN-bedroom 46.80 (8.60) 95.50 (1.10)

Table 3: Human evaluation results on the corrected artifact

generations. The number in the parentheses indicates the

standard deviation over raters.

97 % of the total artifact generations have significant im-

provements in the artifact regions or in the quality of gener-

ation. The results on the other two datasets show the similar

pattern that almost half of the artifact generations are cor-

rected and the visual quality is mostly improved.

5.4. Generalization

Although the proposed method is performed on the gen-

erator with a conventional structure, the same approach

with minor modification can be generalized for the recent

state-of-the-art generators such as StyleGAN2 [14] or U-

net GAN [20] which is a variation of BigGAN [4]. Because

of the distinct structure of each generator (e.g. each genera-

tion uses a different convolution kernel in the StyleGAN2),

it is non-trivial to align the proposed framework to identify

the defective units in the global sense. However, we can ob-

tain the relative defective score for each unit by individually

comparing it with the GradCAM mask for implementing

the sequential correction. Figure 15b indicates the sequen-

tial correction results in the StyleGAN2. More correction

examples for StyleGAN2 and U-net GAN are in Appendix

3-4.

Model Artifact Corrected

StyleGAN2 117.91 113.08

U-net GAN 145.15 143.85

Table 4: FID scores of 100 artifact generations and the

corrected generations for StyleGAN2 and U-net GAN on

FFHQ.

6. Discussion

In this paper, we propose the sequential correction

method to improve the quality of generation without addi-

tional training of the generator. Especially, we define defec-

tive score which quantifies relations between each unit and

artifact generations with a supervised approach. The se-

quential correction uses selected units by the DS-based unit

identification and adjusts the generation flow in the conse-

quent layers. We show proposed method achieves plausible

correction performance and suggest the opportunity of gen-

eralization for the various structures of the generator.

While our method has shown to improve the artifact im-

ages in terms of both human evaluation and FID-score, there

exist some cases that the model improves the image by sim-

n = 5%, = 0.9

F
ID R

(a) The quantitative results for various stopping layers.

Query Layer 1:5Layer 1 Layer 1:2 Layer 1:3 Layer 1:4Q y yy y y y

(b) The qualitative results for various stopping layers.

Figure 15: Correction results on StyleGAN v2 with FFHQ.

We select 100 artifact generations and calculate the FID and

R for the sequential correction with various stopping layers

l. We can identify that the scores are improved when the

stopping layer l increases up to the middle layer (l = 6).

Original SeqC Original SeqC

Figure 16: Examples of correction images with glasses or

sunglasses. Although the artifact regions are expected back-

ground, the sequential correction removes the glasses or

sunglasses at the same time.

plifying the generation. As shown in Figure 16, we can ob-

serve that glasses/sunglasses are removed instead of com-

pleting defective regions. We suspect this is caused by the

undesirable features that are trained in the classifier which

can be further explored in future work.

In addition, while the plausible regions are hardly chang-

ing dramatically, we could observe some cases which fail to

maintain the original outline of generation. For example,

the LSUN-church generation on row-2-RHS in Figure 14

shows that the original structure of the church is changed,

although the unclear pattern on the door is repaired. In row-

6-RHS celebA-HQ generation case, the stains are removed

and the blond hair appears, while the angle of the face is

changed. We consider this side-effect as a limitation of se-

quential correction since the identification of artifact units

includes average over samples. For this purpose, the fu-

sion of global and individual sample-based correction can

be considered for future work.
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