
Explore Image Deblurring via Encoded Blur Kernel Space

Phong Tran1 Anh Tuan Tran1,2 Quynh Phung 1 Minh Hoai1,3

1VinAI Research, Hanoi, Vietnam, 2VinUniversity, Hanoi, Vietnam,
3Stony Brook University, Stony Brook, NY 11790, USA

{v.phongtt15,v.anhtt152,v.quynhpt29,v.hoainm}@vinai.io

Abstract

This paper introduces a method to encode the blur op-

erators of an arbitrary dataset of sharp-blur image pairs

into a blur kernel space. Assuming the encoded kernel

space is close enough to in-the-wild blur operators, we pro-

pose an alternating optimization algorithm for blind im-

age deblurring. It approximates an unseen blur opera-

tor by a kernel in the encoded space and searches for the

corresponding sharp image. Unlike recent deep-learning-

based methods, our system can handle unseen blur ker-

nel, while avoiding using complicated handcrafted priors

on the blur operator often found in classical methods. Due

to the method’s design, the encoded kernel space is fully

differentiable, thus can be easily adopted in deep neu-

ral network models. Moreover, our method can be used

for blur synthesis by transferring existing blur operators

from a given dataset into a new domain. Finally, we pro-

vide experimental results to confirm the effectiveness of

the proposed method. The code is available at https:

//github.com/VinAIResearch/blur-kernel-

space-exploring.

1. Introduction

Motion blur occurs due to camera shake or rapid move-

ment of objects in a scene. Image deblurring is the task

of removing the blur artifacts to improve the quality of the

captured image. Image deblurring is an important task with

many applications, especially during the current age of mo-

bile devices and handheld cameras. Image deblurring, how-

ever, is still an unsolved problem, despite much research

effort over the past decades.

Mathematically, the task of image deblurring is to re-

cover the sharp image x given a blurry image y. One can

assume the below mathematical model that relates x and y:

y = F̂(x, k) + ⌘ ≈ F̂(x, k), (1)

where F̂(·, k) is the blur operator with the blur kernel k,

and ⌘ is noise. In the simplest form, F̂(·, k) is assumed to

?

Blurry face

Sharp face

blur kernel
space

Figure 1. The space of blur kernels is the missing element for

successful blur removal and synthesis. Previous image debluring

methods either overlooked the importance of this kernel space or

made inadequate assumption about it. In this paper, we propose to

learn this blur kernel space from a dataset of sharp-blurry image

pairs (orange arrows) and leverage this encoded space for image

deblurring (blue arrows).

be a convolution function with k being a convolution kernel

and ⌘ being white Gaussian noise. Given a blurry image

y, the deblurring task is to recover the sharp image x and

optionally the blur operator F̂(·, k).
A popular approach to recover the sharp image is to use

the Maximum A Posterior (MAP) estimate. That is to find

x and k to maximize the posterior propbability P(x, k|y)
assuming F̂ is known. This is equivalent to optimizing:

x, k = argmax
x,k

P(y|x, k)P(x)P(k). (2)

However, this is an ill-posed problem and there are in-

finitely many pairs of (k, x) that lead to the same probabil-

ity P(y|x, k), so the key aspect of the above MAP approach

is to define proper models for the prior distributions P(x)
and P(k). In fact, many deblurring methods focus on either

designing handcrafted priors for x and k [2, 12, 20, 27] or

learning the deep image prior [29, 37]. However, all of these

works assume the blur operator is a convolutional operator,

11956

and this assumption does not hold in practice. These MAP-

based methods cannot handle complex in-the-wild blur op-

erators and usually produce undesirable artifacts when test-

ing on real-world blurry images.

An alternative approach is to directly learn a function

that maps from a blurry image to the corresponding non-

blurry image. This function can be a deep convolutional

network and the parameters of the network can be learned

using paired training data of blurry and non-blurry im-

ages [14, 15, 25, 36]. Unlike the MAP-based approach,

this approach learns the inverse function of the blur oper-

ator directly without explicitly reasoning about the blur op-

erator and the distribution of the blur kernel. Given the lack

of an explicit representation for the space of the blur ker-

nels, this approach does not generalize well beyond the set

of individual blur kernels seen during training. This ap-

proach [14, 15, 25, 36] produces poor results when testing

on blur operators that are not present in the training set. In

our experiments, these deep-learning models degenerate to

an identity map when testing on an out-of-domain blur oper-

ator; the recovered image is nearly identical to the input im-

age. This is a known issue, and it is referred to as “the triv-

ial solution” by traditional deblurring methods. The MAP-

based methods tackle this problem by putting prior distri-

butions on the sharp image and the blur kernel. However,

those priors cannot be readily applied to the existing deep-

learning models due to the lack of an explicit representation

for the blur kernels.

In this paper, we propose to address the limitations of

both aforementioned approaches as follows. First, we de-

vise a deep-learning formulation with an explicit represen-

tation for the blur kernel and the blur operator. Second, we

use a data-driven approach to learn the family of blur op-

erators and the latent manifold of the blur kernels, instead

of assuming that the blur operator is a convolutional oper-

ator as used in existing MAP-based methods. Specifically,

we simultaneously learn a blur operator family F and a blur

kernel extractor G such that:

y = F(x, k) and k = G(x, y). (3)

Note in this paper, F is referred to as the blur operator fam-

ily. For a specific blur kernel k, F(·, k) is a specific blur

operator from the family of blur operators. We call k the

blur kernel of the blur operator F(·, k). When the func-

tional form of F is fixed, we will refer to a blur operator

F(·, k) by its blur kernel k if there is no confusion.

Once the blur operator family F has been learned, we

can use it to deblur an input image y by finding x and k to

satisfy the above equations using alternating optimization.

Moreover, we can incorporate additional constraints on the

solution space of x to generate more realistic results. For

example, we can use a deep generative model to learn the

manifold of natural images and constraint the solution space

to this manifold. The conceptual idea is illustrated in Fig. 1.

Our method can also be used for blur synthesis. This can

be done by transferring the blur kernel of a sharp-blurry im-

age pair to another image. Blur synthesis is useful in many

ways. For example, we can transfer the real-world motion

blur of an existing dataset [8] to another domain where it

might be difficult to collect paired data. Blur synthesis can

also be used for training data augmentation, improving the

robustness of a downstream task such as face recognition or

eye gaze estimation.

In short, the contributions of our paper are: (1) we pro-

pose a novel method to encode the blur kernel space for

a dataset of blur-sharp image pairs, which can be used to

deblur images that contain unseen blur operators; (2) we

propose a novel blur synthesis method and demonstrate its

utilities; and (3) we obtain state-of-the-art deblurring results

on several datasets.

2. Related Work

2.1. Image deblurring

Image deblurring algorithms can be divided into two

main categories: MAP-based and learning-based methods.

MAP-based blind image deblurring. In MAP-based

methods, finding good priors for the sharp images and

blur kernels (P(x) and P(k) in Eq. (2)) are two main fo-

cuses. For the sharp images, gradient-based prior is usu-

ally adopted since the gradient of natural images is highly

sparse. In particular, Chan and Wong [2] proposed a total-

variation (TV) penalty that encouraged the sparsity of the

image gradient. Krishnan and Fergus [12] suggested that

the image gradient followed Hyper-laplacian distribution.

However, Levin et al. [17] showed that these gradient-based

priors could favor blurry images over sharp ones and lead to

the trivial solution, i.e., x = y and k is the identity opera-

tor. Krishnan et al. [13] used `1/`2 regularization that gave

sharp image the lowest penalty. Pan et al. [27] showed that

the dark channel of a sharp image was usually sparser than

the dark channel of the corresponding blurry image. Over-

all, these priors only model low-level statistics of images,

which are neither adequate nor domain-invariant.

Recently, Ulyanov et al. [37] introduced Deep Image

Prior (DIP) for image restoration tasks. A network G was

learned so that each image I was represented by a fixed vec-

tor z such that I = Gθ(z). Ren et al. [29] proposed SelfDe-

blur method using two DIPs for x and k. Instead of using al-

ternating optimization like other MAP-based methods, they

jointly sought x and k using a gradient-based optimizer.

All aforementioned methods assumed the blur kernel

was linear and uniform, i.e., it can be represented as a

convolution kernel. However, this assumption is not true

for real-world blur. Non-linear camera response func-

tions can cause non-linear blur kernels while non-uniform

11957

blur kernels appear when only a small part of the image

moves. There were some attempts for non-uniform deblur-

ring [3, 24, 32, 39], but they still assumed the blur was lo-

cally uniform, and they were not very practical given the

high computational cost.

Learning-based deblurring. Many deep deblurring mod-

els have been proposed over the past few years. Nah et al.

[25] proposed a multi-scale network for end-to-end image

deblurring. It deblurred an image in three scale levels; the

result from the lower level was used as an input of its upper

level. Similarly, Tao et al. [36] employed a scale-recurrent

structure for image deblurring. GAN [5] was first used for

image deblurring in [14], whereas a high-quality image was

generated conditioned on the blurry input image. Kupyn

et al. [15] introduced DeblurGANv2, which used Feature

Dynamic Networks [19] to extract image features and two

discriminators for global and patch levels. DeblurGANv2

achieved impressive run-time while maintaining reasonable

results on common benchmarks. There were also works on

multi-frame deblurring [35, 38, 43] and domain-specific de-

blurring [7, 18, 29, 33, 34, 40, 41].

Unfortunately, deep-learning models do not perform

well for cross-domain tasks. For example, models trained

on the REDS dataset [26] perform poorly on GOPRO [25],

despite the visual similarity between the two datasets. As a

result, deep deblurring models have not been used in real-

world applications. This kernel overfitting phenomenon has

not been explained in prior works.

2.2. GAN-inversion image restoration

Image manifolds generated by GANs [5] were used to

approximate the solution space for image restoration prob-

lem in recent works [23, 28]. They sought an image in the

manifold such that its degradation version was the closest to

the provided low-quality image. The benefits of this method

are twofold. First, this method guarantees a sharp and real-

istic outcome. Meanwhile, image restoration is ill-posed

with multiple solutions, and the common image restoration

methods often yield a blurry result towards the average of

all possible solutions [23]. Second, in the case of blind de-

blurring, this method bypasses the kernel overfitting issue

in deep image restoration models.

Existing works in this direction, however, just cover sim-

ple known degradations such as bicubic downsampling. To

handle the challenging in-the-wild motion-blur degradation,

we first need to model the family of blur operators.

2.3. Blur synthesis

To train deep deblurring models, large-scale and high-

quality datasets are needed. But it is hard to capture pairs

of corresponding sharp and blurry images in real life, so

blur synthesis has been widely used. Assuming uniform

blur (i.e., a convolutional blur kernel), a common approach

is to synthesize the trajectory of the blur kernel and apply

this synthetic kernel on the sharp image set. Chakrabarti [1]

generated blur trajectories by randomly sampling six points

on a grid and connected those points by a spline. Schuler

et al. [31] sampled blur trajectories by a Gaussian process.

These methods could only synthesize uniform blur and they

did not take the scene structure into account. Therefore,

synthesized blurry images are unrealistic.

More sophisticated blur synthesis algorithms rely on the

blur generation process in the camera model. In partic-

ular, an image in color space can be modeled as: I =

g
⇣

1

T

R T

0
S(t)dt

⌘

, where S(t) is the sensor signal at time

t, T is the exposure time, and g the camera response func-

tion. Nah et al. [25] approximated g by the gamma function

g(x) = x
1

γ . They converted a frame I to its corresponding

signal sensor g−1(I), averaged consucutive frames in that

signal domain, then converted it back to the color space.

The REDS dataset [26] was synthesized similarly but with

an increased video temporal resolution and a more sophis-

ticated camera response function.

To reduce the gap between synthetic and real-world blur,

Jaesung Rim and Cho [8] proposed a real-world blur dataset

that was captured by two identical cameras with differ-

ent shutter speeds. However, the data collection process

was complicated, requiring elaborate setup with customized

hardware.

3. Methodology

In this section, we first describe a method to learn the

blur operator family F that explains the blurs between

paired data of sharp-blurry images. We will then explain

how the blur operator family can be used for removing or

synthesizing blur.

3.1. Learning the blur operator family

Given a training set of n data pairs {(xi, yi)}
n
i=1

, our

goal is to learn a blur operator family that models the blur

between the sharp image xi and the corresponding blurry

image yi for all i’s. Each pair is associated with a latent

blur kernel ki; and the blurry image yi is obtained by ap-

plying the blur operator family on the sharp image xi with

the blur kernel ki as parameters, i.e., yi = F(xi, ki). Tradi-

tional MAP-based methods often assume F(·, ki) to be the

convolutional operator and ki a convolutional kernel, but

this assumption does not hold for real blurs in the wild.

Learning F is challenging because {ki} are latent vari-

ables. Fortunately, each ki is specific to a sharp-blurry im-

age pair, so we can assume ki can be recovered by a kernel

extractor function G, i.e., ki = G(xi, yi). We can learn

both the blur operator family F and the kernel extractor G
by minizing the differences between the synthesized blurry

image F(xi,G(xi, yi)) and the actual blurry image yi. In

11958

𝑥
𝓕(𝑥,

𝑘)Encoder Decoder

Skip connections

𝓖
𝑦

𝑘

⍴(𝑦, 𝓕(𝑥, 𝑘))C

Figure 2. Roles of the blur operator family F and the blur ker-

nel extractor G and their architectures. G can be used to extract

the blur kernel k, while F can be used to generate a blurry image

given the blur kernel k. F is an encoder-decoder network with

skip connection, while G is a residual network.

this paper, we implement them by two neural networks,

an encoder-decoder with skip connection [30] for F and a

residual network [6] for G. Both F and G are fully differen-

tiable, and they can be jointly optimized by minimizing the

following loss function:

n
X

i=1

⇢(yi,F(xi,G(xi, yi))), (4)

where ⇢(·) is the Charbonnier loss [16] measuring the dis-

tance between the “fake” blurry image F(xi,G(xi, yi)) and

the corresponding real blurry image yi.

This procedure is illustrated in Fig. 2. First, we sam-

ple (x, y) from a dataset of image pairs. Second, we fit the

concatenation of these images into G to generate the corre-

sponding encoded blur kernel vector k. Third, with x and

k as the input, we use F to create the synthesized blurry

image. F encodes x into a bottle-neck embedding vector,

concatenates that embedding vector with k, and decodes it

to get the synthesized blurry image. Details of the architec-

ture choices and hyper-parameters tuning are given in the

supplementary materials.

3.2. Blind image deblurring

Once the blur operator family F has been learned, we

can use it for image deblurring. Given a blurry image y, our

task is to recover the sharp image x. We pose it as the opti-

mization problem, where we seek to recover both the sharp

image x and the blur kernel k to minimize ⇢(y,F(x, k)). To

optimize ⇢(y,F(x, k)), we propose an iterative optimiza-

tion procedure that alternates between the following two

steps: (A) fix the blur kernel k and optimize the latent sharp

image x, and (B) fix x and optimize for k.

Algorithm 1 Blind image deblurring

Input: blurry image y
Output: sharp image x

1: Sample zx ∼ N (0, I)
2: Randomly initialize ✓x of Gx

θx

3: while ✓x has not converged do

4: Sample zk ∼ N (0, I)
5: Randomly initialize ✓k of Gk

θk

6: while ✓k has not converged do

7: gk ← @L(✓x, ✓k)/@✓k
8: ✓k ← ✓k + ↵ ∗ADAM(✓k, gk)
9: end while

10: gx ← @L(✓x, ✓k)/@✓x
11: ✓x ← ✓x + ↵ ∗ADAM(✓x, gx)
12: end while

13: x = Gθx
(zx)

To stablize the optimization process and to obtain better

deblurring results, we propose to add a couple of regular-

ization terms into the objective function and reparameterize

both x and k with Deep Image Prior (DIP) [37] as follows.

First, we propose to add a regularization term on the L2

norm of the kernel k to stablize the optimization process

and avoid the trivial solution. Second, we propose to use the

Hyper-Laplacian prior [12] on the image gradients of x to

encourage the sparsity of the gradients, reducing noise and

creating more natural looking image x. This corresponds

to adding the regularization term: (g2u(x) + g2v(x))
α/2 into

the objective function, where gu and gv are the horizontal

and vertical derivative operators respectively. Adding the

regularization terms leads to the updated objective:

⇢(y,F(x, k)) + �||k||2 + �(g2u(x) + g2v(x))
α/2, (5)

where �, �,↵ are tunable hyper-parameters.

Finally, inspired by the success of Deep Image Prior [37]

for zero-shot image restoration [4, 21, 29, 37], we propose

to reparameterize both x and k by neural networks. In par-

ticular, instead of optimizing x directly, we take x as the

stochastic output of a neural network Gx
θx

and we optimize

the parameters ✓x of the network instead. Specifically, we

define x = Gx
θx
(zx), where zx is standard normal random

vector, i.e., zx ∼ N (0, I). Similarly, we reparameterize

k = Gk
θk
(zk). The final objective function for deblurring is:

L(✓x, ✓k) = ⇢(y,F(x, k)) + �||k||2 + �(g2u(x) + g2v(x))
α/2

where x = Gx
θx
(zx), zx ∼ N (0, I), (6)

k = Gk
θk
(zk), zk ∼ N (0, I). (7)

This objective function can be optimized using Algorithm 1.

11959

3.3. Approximated manifold of natural images

In Sec. 3.2, we propose a general solution for image de-

blurring, where little assumption is made about the space

of the sharp image x. We use DIP to reparameterize x as

the output of a neural network with schotastic input, and we

optimize the parameter of the network instead. However, in

many situations, the domain of the sharp image x is simpler,

e.g., being a face or a car. In this situation, we can have bet-

ter reparameterization for x, taking into account the learned

manifold for the specific domain of x.

In this paper, we also consider the image manifold pro-

posed by Menon et al. [23]. We reparameterize x by

Gstyle(z) in which Gstyle is the pretrained StyleGAN [11],

z is optimized along the sphere
√
dSd−1 using spherical

projected gradient descent [23].

3.4. Blur synthesis using blur transferring

There exist datasets of paired images with “close-to-

real” blurs, such as REDS [26], GOPRO [25], or real-world

blur [8]. But the collection of these datasets required elab-

orate setups, expensive hardware (e.g., high-speed camera),

and enormous effort. Unfortunately, similar datasets do not

exist for many application domains (e.g., faces and scene

text), and it is difficult or even impossible to replicate these

laboratory setups to collect data for in-the-wild environ-

ments (e.g., street scenes).

To this end, a benefit of our approach is the ability to

transfer the motion blurs from an existing dataset to a new

set of images. In particular, given a dataset with pairs of

sharp-blurry images, we can first train F and G as described

in Sec. 3.1. To transfer the motion blur between the image

pair (x, y) to a new image x̂, we can simply compute: ŷ :=
F(x̂,G(x, y)).

4. Experiments

We perform extensive experiments to verify the effec-

tiveness of our blur kernel encoding method. We also pro-

vide results for image deblurring and blur synthesis. All

the experiments are conducted on a single NVidia V100

GPU. Image deblurring experiments are cross-domain. In

particular, all data-driven methods are trained on the REDS

dataset [26] and tested on the GOPRO dataset [25].

REDS dataset [26] comprises 300 high-quality videos with

various scenes. The videos are captured at 120fps. The

corresponding blurry videos are synthesized by upsampling

the frame rate and averaging the neighboring frames. We

use this dataset to train our kernel extractor as well as deep

deblurring models.

GOPRO dataset [25] consists 3142 sharp-blur pair of

frames. Those frames are captured at 240fps. The synthesis

process is similar to REDS dataset, except for the choice of

the camera response function. We use this dataset to test the

deblurring methods.

Levin dataset [17] is generated using eight convolution ker-

nels with different sizes. Here we use its kernels to synthe-

size uniform blur on other datasets.

FFHQ dataset [11] is a human face dataset. This dataset

consists of 70,000 high-quality 1024×1024 images with

various genders, ethics, background, and accessories. This

dataset was used to train the StyleGAN model.

CelebA-HQ dataset [10] is a human face dataset that con-

sists of 30,000 images at 1024×1024 resolution. Its images

were selected from the CelebA dataset [22], but the qual-

ity was improved using some preprocessing steps such as

JPEG removal and 4× super-resolution.

4.1. Blur kernel extractor

This section verifies if our blur kernel extractor can ac-

curately extract and transfer blur from a sharp-blurry image

pair to another image. We use the known explicit kernels

from the Levin dataset to synthesize blurry images in train-

ing and testing for experiments with ground-truth labels. As

for experiments on datasets without explicit blur kernels,

such as REDs and GOPRO, we check the stability of the

deblurring networks trained on internal blur-swapped data.

4.1.1 Testing blur kernel encoding on Levin dataset

Suppose we have a ground-truth blur operator family F̂ . We

train F and G using a sharp-blur pair dataset generated by

F̂ . Then we can measure the performance of the blur kernel

extractor by calculating the distance between F(x,G(x, y))
and F̂(x, h) for arbitrary pair (x, h) and y = F̂(x, h).

In this experiment, we let F̂(·, h) be a convolutional op-

erator whose kernel is one of the eight used in the Levin

dataset [17]. To generate training data, we randomly se-

lect 5000 sharp images from the REDS dataset [26] and

generate 5000 corresponding blurry images using the men-

tioned kernels. Then we use these 5000 pairs to learn F
and G. To create testing data, we randomly sample two

other disjointed image sets S and T for the source and tar-

get sharp images in blur transfer. Each set consists of 500

sharp images from GOPRO dataset [25]. Then for each test-

ing kernel k, we generate the blur images in the source set

yk = F̂(x, k) = k ∗ x, apply blur from (x, yk) to each

x̂ ∈ T via the trained F and G, and compute the average

PSNR score.

P

x∈S,x̂∈T PSNR(F(x̂,G(x, yk)), F̂(x̂, k))

|S|× |T |
. (8)

We report the test results in Table 1. Our method

achieves very high PSNR scores, demonstrating its ability

to extract and transfer the blur kernels.

11960

Blur SelfDeblur [29] DeblurGANv2 [15] SRN-Deblur [36] Ours Sharp

0.489 0.630 0.442 0.448 0.348

0.630 0.857 0.663 0.633 0.601

0.717 0.780 0.707 0.694 0.664
Figure 3. Results of deblurring methods trained on REDS and tested on GOPRO, and their LPIPS score [42] (lower is better).

Blur SelfDeblur [29] [15] REDS [15] imgaug [36] REDS [36] imgaug Ours

Figure 4. Qualitative results of deblurring methods. Here DeblurGANv2 REDS is the model trained with face dataset using REDS kernel,

while DeblurGANv2 imgaug is the model trained with face dataset using imgaug. The blurry image in the first and second rows are

synthesized using blur transferring technique in Sec. 7 and imgaug [9] respectively. The last two rows are in-the-wild blurry images that

we randomly collect on the Internet.

4.1.2 Training on synthetic datasets

For a sharp-blur dataset without explicit blur kernels, we

can randomly swap the blur operator between its pairs using

our method. To be more specific, for each sharp-blur pair

(x, y) and a random sharp image x̂ from this dataset, we

generate the blurry image ŷ using the blur kernel extracted

from (x, y). Then we use this synthetic dataset to train a

deep deblurring model and compare its performance to the

one trained on the original dataset. In this experiment, we

11961

choose SRN-Deblur [36], a typical deep image deblurring

method. The testing datasets are REDS and GOPRO.

The performance of deblurring networks, measured by

the average PSNR score on test sets, is reported in Table 2.

PSNR scores when training on blur-swapped datasets are

comparable to the ones obtained when training on the orig-

inal dataset.

4.2. General blind image deblurring

4.2.1 Qualitative results

We now evaluate our blind image deblurring method, de-

scribed in Sec. 3.2, and compare it to other methods in

a cross domain setting. We use the state-of-the-art deep-

learning-based methods, including DeblurGANv2 [15],

SRN-Deblur [36], and a recent kernel-based algorithm

called SelfDeblur [29]. We train all the methods using

REDS dataset [26] and test them on GOPRO dataset [25].

Some visualization results and their corresponding

LPIPS scores [42] are shown in Fig. 3. The methods based

on deep neural networks [15, 36] produce results that are

very similar to the input. On the other hand, the predicted

images of SelfDeblur [29] are noisy with many artifacts.

Our method consistently generates sharp and visually pleas-

ing results.

4.2.2 Retrieving unseen kernel

Our algorithm is based on the assumption that an unseen

blur operator can be well approximated using the encoded

blur kernel space. Here we conduct an experiment to ver-

ify this assumption. We use F and G that are trained on

one dataset, either REDS or GOPRO, to retrieve unseen blur

operator of each sharp-blur image pair in the testing subset

of the same or different dataset using step (B) in Sec. 3.2.

To evaluate the accuracy of that extracted blur, we compute

PSNR score between the reconstructed and original blurry

images. The average PSNR score for each configuration is

reported in Table 3. As can be seen, the quality of kernels

extracted in cross-domain setting is similar to the ones in

same-domain configuration. It shows that our method is ef-

fective in handling unseen blur.

Fig. 5 visualizes some results when training on REDS

and testing on GOPRO. Our reconstructed blurry images

are close to the original ones, indicating the high quality of

the extracted kernels.

kernel 1 kernel 2 kernel 3 kernel 4

PSNR (db) 49.48 51.93 52.06 53.74

kernel 5 kernel 6 kernel 7 kernel 8

PSNR (db) 49.91 49.49 51.43 50.38

Table 1. Results of our blur kernel extraction on Levin dataset

Dataset

Training data REDS GOPRO

Original 30.70 30.20

Blur-swapped 29.43 28.49

Table 2. Results of SRN-Deblur trained [36] on the original and

blur-swapped datasets.

sharp original blur retrieved blur

Figure 5. Retrieving unseen kernel. The first column shows the

sharp images from the GOPRO dataset, the second column shows

their corresponding blurry images. In the last row, we approximate

the blur operators using the kernels from REDS dataset and apply

it to the sharp images.

Test set

Tranining set REDS4 GOPRO

REDS 34.35 30.67

GOPRO 31.38 35.13

Table 3. Results of our method in retrieving unseen blur kernel

with same and cross-domain configs.

4.3. Using an approximated natural image manifold

4.3.1 Qualitative results

As discussed in Sec. 3.3, we can incorporate a GAN-based

image manifold as the sharp image prior to attain realis-

tic deblurring results. Following [23], we conduct face de-

blurring experiments using the StyleGAN model pretrained

on the FFHQ dataset to approximate the natural facial im-

age manifold. We use both synthesized and in-the-wild

blurry images for testing. As for synthetic data, we use im-

ages from CelebHQ dataset [10]. The blur synthesis tech-

niques include motion-blur augmentation from the imgaug

(the second row in Fig. 4) tool [9] and the blur transferred

from the GOPRO dataset (the first row in Fig. 4). As for in-

the-wild images, we search for blurry faces from the Inter-

net (the last two rows in Fig. 4). Each deep model is trained

using FFHQ dataset [11] with blur operators are synthesized

by imgaug or blur kernels transferred from GOPRO dataset

[25]. As for our method, we use the blur extractor trained

11962

on REDS dataset in Sec. 4.2.2. All the test blurs, therefore,

are unseen to our method.

We compare our deblurring results and different base-

line methods in Fig. 4. As can be seen, the deep deblur-

ring models [15, 36] fail to produce sharp outcomes, par-

ticularly on unseen blur. The state-of-the-art MAP-based

algorithm [29] generates unrealistic and noisy images. In

contrast, our method can successfully approximate realistic

sharp face outputs in all test cases.

4.3.2 Loss convergence

One may think that the good deblurring results in the pre-

vious experiment are purely due to restricting the sharp im-

age solution space to a GAN manifold. Yes, but the blur

kernel prior is equally important; without a good blur ker-

nel prior, the method would fail to converge to desirable

results. To prove it, we analyze the optimization processes

on a specific deblurring example with different blur kernel

manifolds: (1) the traditional convolution kernels with DIP

used in SelfDeblur [29], (2) the bicubic downsampling ker-

nel used in PULSE [23], and (3) our encoded kernel. The

results are shown in Fig. 6. The first two methods failed

to converge since the real blur operator is neither linear nor

uniform. In contrast, the method using our kernel method

quickly converges to a realistic face.

Original blur

ours blurPULSE blur

PULSE
prediction

uniform blur

Uniform
prediction

Ours
prediction

Figure 6. Loss convergence of the method in Sec. 3.3 when using

different kernel priors.

4.4. Blur synthesis

Our blur transfer method is effective in synthesizing new

blurry images. In Fig. 7, we transfer the blur operator from

the source sharp-blur pair (x, y) (the two middle columns)

to the target sharp image x̂ (the first column) to synthesize

its corresponding blurry image ŷ. We see that the content

x̂ x y ŷ

Figure 7. Transfering blur kernel from the source pair x, y to the

target sharp x̂ to generate the target blurry image ŷ.

of x̂ is fully preserved in ŷ, and the blur in ŷ looks simi-

lar to the blur in y. Our method can also work with any

type of images, such as grayscale images (the first row) or

animation images (the second row).

One application of this blur synthesis is data augmenta-

tion. We experiment with the use of this augmentation tech-

nique to improve image deblurring. In particular, we use

FFHQ dataset [11] to synthesize three sharp-blur datasets

with different types of blur kernels: (1) common motion-

blur kernels generated by imgaug tool [9], (2) our encoded

REDS kernels, and (3) our encoded GOPRO kernels. The

first dataset is the traditional deblurring dataset. The sec-

ond dataset can be considered as data augmentation, and the

last dataset is used for unseen blur testing. We train SRN-

Deblur models [36] in two scenarios: using only the first

dataset or using the combination of the first two datasets.

Testing results are reported in Table 4. The network trained

on the combined data is more stable and performs better in

the unseen blur scenario.

Test kernels

Tranining kernels imgaug REDS GOPRO

imgaug 28.64 24.22 22.96

comb. 28.30 28.37 23.92

Table 4. Effect of blur augmentation in improving SRN-Deblur

[36] model, tested on the synthetic FFHQ datasets.

5. Conclusion

In this paper, we have proposed a method to encode the

blur kernel space of an arbitrary dataset of sharp-blur image

pairs and leverage this encoded space to solve some spe-

cific tasks such as image deblurring and blur synthesis. For

image deblurring, we have shown that our method can han-

dle unseen blur operators. For blur synthesis, our method

can transfer blurs from a given dataset of sharp-blur image

pairs into any domain of interest, including domains of fa-

cial, grayscale, and animated images.

11963

References

[1] Ayan Chakrabarti. A neural approach to blind motion deblur-

ring. In Proceedings of the European Conference on Com-

puter Vision, 2016.

[2] Tony F Chan and Chiu-Kwong Wong. Total variation blind

deconvolution. IEEE transactions on Image Processing, 7

(3):370–375, 1998.

[3] Sunghyun Cho, Yasuyuki Matsushita, and Seungyong Lee.

Removing non-uniform motion blur from images. In Pro-

ceedings of the International Conference on Computer Vi-

sion, 2007.

[4] Yossi Gandelsman, Assaf Shocher, and Michal Irani. double-

dip”: Unsupervised image decomposition via coupled deep-

image-priors. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances in

Neural Information Processing Systems, 2014.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016.

[7] Michal Hradivs, Jan Kotera, Pavel Zemcik, and Filip

vSroubek. Convolutional neural networks for direct text de-

blurring. In Proceedings of the British Machine Vision Con-

ference, 2015.

[8] Jucheol Won Jaesung Rim, Haeyun Lee and Sunghyun Cho.

Real-world blur dataset for learning and benchmarking de-

blurring algorithms. In Proceedings of the European Con-

ference on Computer Vision, 2020.

[9] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi

Tanaka, Jake Graving, Christoph Reinders, Sarthak Ya-

dav, Joy Banerjee, Gábor Vecsei, Adam Kraft, Zheng Rui,

Jirka Borovec, Christian Vallentin, Semen Zhydenko, Kil-

ian Pfeiffer, Ben Cook, Ismael Fernández, Franccois-Michel

De Rainville, Chi-Hung Weng, Abner Ayala-Acevedo,

Raphael Meudec, Matias Laporte, et al. Imgaug. https:

//github.com/aleju/imgaug, 2020. Online; ac-

cessed 01-Feb-2020.

[10] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. arXiv preprint arXiv:1710.10196, 2017.

[11] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019.

[12] Dilip Krishnan and Rob Fergus. Fast image deconvolution

using hyper-laplacian priors. In Advances in Neural Infor-

mation Processing Systems, 2009.

[13] Dilip Krishnan, Terence Tay, and Rob Fergus. Blind decon-

volution using a normalized sparsity measure. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2011.

[14] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,

Dmytro Mishkin, and Jivr´i Matas. Deblurgan: Blind motion

deblurring using conditional adversarial networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018.

[15] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang

Wang. Deblurgan-v2: Deblurring (orders-of-magnitude)

faster and better. In Proceedings of the International Con-

ference on Computer Vision, 2019.

[16] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-

Hsuan Yang. Deep laplacian pyramid networks for fast and

accurate super-resolution. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2017.

[17] Anat Levin, Yair Weiss, Fredo Durand, and William T Free-

man. Understanding and evaluating blind deconvolution al-

gorithms. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2009.

[18] Songnan Lin, Jiawei Zhang, Jinshan Pan, Yicun Liu, Yong-

tian Wang, Jing SJ Chen, and Jimmy Ren. Learning to deblur

face images via sketch synthesis. In Proceedings of AAAI

Conference on Artificial Intelligence, 2020.

[19] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2017.

[20] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind image de-

blurring using spectral properties of convolution operators.

IEEE Transactions on image processing, 23(12):5047–5056,

2014.

[21] Jiaming Liu, Yu Sun, Xiaojian Xu, and Ulugbek S Kamilov.

Image restoration using total variation regularized deep im-

age prior. In Proceedings of IEEE International Conference

on Acoustics, Speech and Signal Processing, 2019.

[22] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In Proceedings

of the International Conference on Computer Vision, 2015.

[23] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi,

and Cynthia Rudin. Pulse: Self-supervised photo upsam-

pling via latent space exploration of generative models. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2020.

[24] James G Nagy and Dianne P O’Leary. Restoring images de-

graded by spatially variant blur. SIAM Journal on Scientific

Computing, 19(4):1063–1082, 1998.

[25] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep

multi-scale convolutional neural network for dynamic scene

deblurring. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017.

[26] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik

Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu Lee.

Ntire 2019 challenge on video deblurring and super-

resolution: Dataset and study. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, 2019.

[27] Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-

Hsuan Yang. Blind image deblurring using dark channel

prior. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016.

[28] Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin,

Chen Change Loy, and Ping Luo. Exploiting deep genera-

11964

tive prior for versatile image restoration and manipulation.

arXiv preprint arXiv:2003.13659, 2020.

[29] Dongwei Ren, Kai Zhang, Qilong Wang, Qinghua Hu, and

Wangmeng Zuo. Neural blind deconvolution using deep pri-

ors. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2020.

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, 2015.

[31] Christian J Schuler, Michael Hirsch, Stefan Harmeling, and

Bernhard Schölkopf. Learning to deblur. IEEE transactions

on pattern analysis and machine intelligence, 38(7):1439–

1451, 2015.

[32] Qi Shan, Wei Xiong, and Jiaya Jia. Rotational motion deblur-

ring of a rigid object from a single image. In Proceedings of

the International Conference on Computer Vision, 2007.

[33] Ziyi Shen, Wei-Sheng Lai, Tingfa Xu, Jan Kautz, and Ming-

Hsuan Yang. Deep semantic face deblurring. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018.

[34] Yibing Song, Jiawei Zhang, Lijun Gong, Shengfeng He, Lin-

chao Bao, Jinshan Pan, Qingxiong Yang, and Ming-Hsuan

Yang. Joint face hallucination and deblurring via structure

generation and detail enhancement. International Journal of

Computer Vision, 127(6-7):785–800, 2019.

[35] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo

Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video

deblurring for hand-held cameras. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, 2017.

[36] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018.

[37] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2018.

[38] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and

Chen Change Loy. Edvr: Video restoration with enhanced

deformable convolutional networks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, 2019.

[39] Oliver Whyte, Josef Sivic, Andrew Zisserman, and Jean

Ponce. Non-uniform deblurring for shaken images. Inter-

national journal of computer vision, 98(2):168–186, 2012.

[40] Xiangyu Xu, Deqing Sun, Jinshan Pan, Yujin Zhang,

Hanspeter Pfister, and Ming-Hsuan Yang. Learning to super-

resolve blurry face and text images. In Proceedings of the

International Conference on Computer Vision, 2017.

[41] Rajeev Yasarla, Federico Perazzi, and Vishal M Patel. De-

blurring face images using uncertainty guided multi-stream

semantic networks. IEEE Transactions on Image Processing,

29:6251–6263, 2020.

[42] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2018.

[43] Shangchen Zhou, Jiawei Zhang, Jinshan Pan, Haozhe Xie,

Wangmeng Zuo, and Jimmy Ren. Spatio-temporal filter

adaptive network for video deblurring. In Proceedings of

the International Conference on Computer Vision, 2019.

11965

