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Abstract

Recent years have seen flourishing research on both semi-

supervised learning and 3D room layout reconstruction. In

this work, we explore the intersection of these two fields

to advance the research objective of enabling more accu-

rate 3D indoor scene modeling with less labeled data. We

propose the first approach to learn representations of room

corners and boundaries by using a combination of labeled

and unlabeled data for improved layout estimation in a 360◦

panoramic scene. Through extensive comparative experi-

ments, we demonstrate that our approach can advance lay-

out estimation of complex indoor scenes using as few as 20

labeled examples. When coupled with a layout predictor

pre-trained on synthetic data, our semi-supervised method

matches the fully supervised counterpart using only 12% of

the labels. Our work takes an important first step towards ro-

bust semi-supervised layout estimation that can enable many

applications in 3D perception with limited labeled data.

1. Introduction

The task of inferring room layout from a single view 360◦

panoramic image has been gaining much attention from the

computer vision community in the past several years. The

problem addresses an important step towards holistic indoor

scene understanding that can enable structured 3D modeling

of the physical environment. Recent state-of-the-art methods

[33, 36, 40] have made substantial progress towards accurate

3D room layout reconstruction by adopting large and power-

ful neural network architectures for representation learning.

However, there are several challenges associated with acquir-

ing vast quantities of high-quality room layout annotations

to supervise deep neural networks. For one, it is difficult to

consistently annotate cluttered scenes with ambiguous wall

boundaries, especially in rooms with complex layouts that

contain many corners. The lack of large-scale labeled data

with precise layout annotations for panoramic scenes further

hinders the progress of this important problem that has many

pertinent applications in 3D computer vision.

At the same time, recent years have seen flourishing re-

Figure 1. The effective use of unlabeled data improves complex

3D layout estimation with limited labels. We compare predicted

layout boundary lines from a state-of-the-art supervised model [33]

trained on 1,650 labels (cyan) with our proposed semi-supervised

model (magenta) and show that our model’s predictions follow

more closely to the ground truth (green lines) using just 100 labels.

search on deep semi-supervised learning (SSL) [3, 34, 37]

that can leverage abundant unlabeled data for enhanced learn-

ing and generalization in the limited labeled data setting. The

success of deep SSL has been mostly demonstrated on the

relatively simple task of image classification, where the la-

beling procedure is the binary indication for the presence or

absence of an object class. To our knowledge, the principles

of SSL have not been studied in conjunction with room lay-

out estimation, a complex and challenging task that depends

on fine-grained human annotations, which presents an effec-

tive and efficient opportunity to improve learning with few

annotated examples, as illustrated in Figure 1. In this work,

we propose to explore and evaluate the potential contribution

of unlabeled data for 3D room layout estimation, with the
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goal of promoting directed research towards the intersection

of semi-supervised learning and 3D perception.

Summary of Contributions We present SSLayout360, a

neural architecture capable of learning representations of

floor-wall, ceiling-wall, and wall-wall boundaries from a

combination of labeled and unlabeled data for improved

room layout estimation in a 360◦ panoramic scene. Our

work is the first substantive attempt at semi-supervised 3D

layout reconstruction of complex indoor scenes using as few

as 20 labeled examples.

Through extensive comparative experiments, we show SS-

Layout360 achieves new state-of-the-art results on a number

of benchmarks for both simple and complex room layouts.

Coupled with a layout predictor pre-trained on synthetic

data, SSLayout360 matches the best-in-class fully super-

vised baseline using only 12% of the required labels.

We establish the first comprehensive set of semi-

supervised benchmarks to measure the contribution of un-

labeled data for indoor layout estimation. As part of this

contribution, we propose a rigorous evaluation protocol to

encourage the use of error bounds as standard practice and

demonstrate the utility of unlabeled data across many experi-

mental settings. We hope that our results serve as a strong

baseline to inspire future research towards even more robust

semi-supervised 3D layout reconstruction.

2. Related Work

Deep Semi-Supervised Learning The overarching goal

of SSL is to make effective use of unlabeled data, without

relying on any human supervision, to augment conventional

supervised learning where labeled training data is scarce [7].

One set of approaches involves pre-training neural models on

large-scale unlabeled data, by way of unsupervised [15, 19]

or self-supervised [12, 17] representation learning, followed

by supervised fine-tuning on downstream tasks with limited

ground truth information (e.g., detection, segmentation).

Another set of methods produces proxy targets for unla-

beled data to be jointly trained end-to-end with ground truth

labels. The training protocol for this class of SSL algorithms

imposes an additional loss term to regularize the objective

function of the supervised algorithm. Recent examples of

self-supervised regularization [35, 37] improve supervised

image classification performance by jointly training with

an auxiliary self-supervised loss component based on the

pretext task of image rotation recognition.

A third set of SSL methods based on consistency regular-

ization [2, 30] largely follows the student-teacher framework

[14]. As the student, the model learns from labeled data

in the conventional supervised manner. As the teacher, it

generates soft unsupervised targets by enforcing consistent

ensembles of predictions on unlabeled training samples un-

der random perturbations. The consistency constraint en-

courages the student to learn representations from unlabeled

data for enhanced SSL. Existing research on student-teacher

SSL formulates clever ways to generate good unsupervised

targets. Rasmus et al. [28] showed the effectiveness of ran-

dom noise in regularizing the targets. Miyato et al. [21, 22]

further explored this idea and adopted adversarial noise as an

implicit teacher to improve the quality of the targets. Laine

and Aila [18] reduced teacher prediction variance by using

an exponential moving average (EMA) to accumulate the

predictions over training epochs. Tarvainen and Valpola [34]

used an EMA of model weights to obtain an explicit “mean

teacher”, a simple but effective approach that was shown to

achieve among the best SSL performances for image classi-

fication [24]. More recent extensions of the student-teacher

framework have been demonstrated to surpass state-of-the-

art fully supervised baselines using a fraction of the required

labeled examples [3, 4].

3D Room Layout Estimation Room layout reconstruction

has been an active research topic for over a decade [27], dat-

ing back to Delage et al. [9] fitting floor-wall boundaries in

a perspective image under “Manhattan world” assumptions

[8]. In this paper, we focus our review on modern, state-of-

the-art approaches that recover room layout from a single

RGB panorama represented in equirectangular projection

covering a 360◦ horizontal and 180◦ vertical field-of-view.

Existing methods for layout estimation include PanoCon-

text [38], LayoutNet [40], DuLa-Net [36], CFL [11], and

HorizonNet [33]. These methods were tested on datasets

with strong Manhattan assumptions, i.e., the wall-wall

boundaries form right angles and are orthogonal to the hor-

izontal floor plane. The recent work of AtlantaNet [26] is

not constrained to Manhattan scenes, and can recover room

layout with walls that do not form right angles or are curved.

All of these methods utilize a deep encoder-decoder neural

network to predict layout elements, such as floor-wall and

ceiling-wall boundaries and corner positions (LayoutNet,

CFL, HorizonNet) or a semantic 2D floor plan in the ceiling

view (DuLa-Net and AtlantaNet), and then fit the predicted

elements to a 3D layout via a post-processing step [41].

Although the aforementioned methods have made sub-

stantial contributions towards accurate layout estimation,

these models have all been trained in a fully supervised man-

ner, on relatively small sets of annotated layout examples,

while leaving an abundant amount of unlabeled panoramic

indoor images completely untapped. While effective data

augmentation strategies, such as panoramic horizontal rota-

tion, horizontal flipping, and the recently introduced Pano

Stretch [33], have been used to improve supervised learning,

their utilization in conventional supervised training cannot

exploit unlabeled data in a principled way.

Recent work in [20, 39] proposed the use of well-crafted,

photo-realistic synthetic data with detailed ground truth

structure annotations as a measure to alleviate costly hand-
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Figure 2. An illustration of the SSLayout360 architecture for semi-

supervised indoor layout estimation from a 360◦ panoramic scene.

labeling efforts. The physically-based rendering process

requires data modeling with extensive domain expertise, but

generating synthetic data at scale is cheaper than the tra-

ditional approach of collecting, curating, and annotating

panoramas from the real world. While synthetic data offers

many advantages, there is still a challenge to learn transfer-

able representations between real and synthetic domains in

order to overcome the dataset bias [29].

In this work, we bridge the gap by combining unlabeled

data with available labeled data from both real and synthetic

contexts in a semi-supervised setting to further push the

performance envelope of 3D room layout reconstruction.

3. Approach

The goal of this work is to learn 3D room layout from a

single view 360◦ RGB panorama in the semi-supervised set-

ting. The design and algorithmic overview of SSLayout360

are depicted in Figure 2 and Algorithm 1, with more details

given in Sections A and B.4 of the supplementary material.

The input is a set of labeled input-target pairs (xl, yl) ∈ DL

and a set of unlabeled examples xu ∈ DU . As is common

in prior work, we assume DL and DU are sampled from the

same underlying data distribution (e.g., indoor scenes), in

which caseDL is a labeled subset ofDU . In real-world appli-

cations, however, DL andDU often come from different, but

somewhat related, data distributions (e.g., indoor + outdoor

panoramic scenes), and it is desirable for the SSL algorithm

to appropriately learn from such distribution mismatch.

We train a neural network fθ(x), a stochastic prediction

function parametrized by θ, to learn room layout boundaries

by using a combination of DL and DU . Our work builds on

a successful, state-of-the-art variant of the student-teacher

model, Mean Teacher [34], originally formulated for image

classification and extends it to the more challenging task of

layout estimation from complex panoramic indoor scenes.

We consider the following compound objective for SSL:

min
θ
Ll(DL, θ) + λLu(DU , θ), (1)

where Ll is the supervised loss over labeled examples and

Lu is the unsupervised loss defined for unlabeled data. The

learning objective treats Lu as a regularizer, and λ > 0 is a

hyper-parameter controlling the strength of regularization.

Algorithm 1: SSLayout360 training procedure.

1 Input: Training set of labeled inputs (xl, yl) ∈ DL.

2 Training set of unlabeled inputs xu ∈ DU .

3 Data augmentation functions h(x) and h̃(x).
4 Student network fθ(x) with trainable parameters θ.

5 Teacher network fθ̄(x) with parameters θ̄ = θ.

6 Distance function d (e.g., L1 and L2).

7 for each epoch over DU do

8 bl ← h (xl) ⊲ Mini-batches of labeled input.

9 bu ← h̃ (xu) ⊲ Mini-batches of unlabeled input.

10 for each mini-batch do

11 ŷl ← fθ (bl) ⊲ Forward pass on labeled input.

12 zu ← fθ (bu) ⊲ Forward pass on unlabeled input.

13 z̃u ← fθ̄ (bu) ⊲ Again using θ̄.

14 L ← 1
|bl|

∑
i∈bl

d(ŷil, yil) ⊲ Supervised loss.

15 + λ
|bu|

∑
i∈bu

d(ziu, z̃iu) ⊲ Unsupervised loss.

16 λ← e−5(1−T )2 ⊲ Ramp up λ for T ∈ [0, 1].

17 θ ← θ −∇θL ⊲ Update θ via gradient descent.

18 θ̄ ← αθ̄ + (1− α)θ ⊲ Update θ̄ via EMA.

19 end

20 end

21 return θ, θ̄

3.1. Semi­Supervised Layout Estimation

The task of room layout estimation essentially boils down

to inferring the floor-wall and ceiling-wall boundaries and

wall-wall (or corner) positions. In this work, we derive in-

sight from HorizonNet [33] to regress layout boundaries and

corners to the ground truth for each column of the input

image in the semi-supervised setting. In principle, other

layout prediction methods based on pixel-wise classification

(e.g., LayoutNet, AtlantaNet) could be extended to the semi-

supervised setting. But a comparative investigation of alter-

native layout prediction methods under the semi-supervised

setting is beyond the scope of this paper, and would be an

interesting research direction for future work.

HorizonNet We choose HorizonNet as our prediction

function fθ(x) for its simplicity, efficient computation, and

state-of-the-art performance on room layout estimation.

The input to HorizonNet is an RGB panorama with shape

3 × 512 × 1024 (for channel, height, width) along with a

3-channel target vector of size 3× 1× 1024 representing the

ceiling-wall (yc), floor-wall (yf ), and wall-wall (yw) bound-

ary position of each image column. The values of yc and yf
are normalized in [−π/2, π/2], and yw is scaled to [0, 1].

HorizonNet follows an encoder-decoder approach to learn

whole-room layout from a panoramic scene, similar to other
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competing methods. The encoder is the ResNet-50 archi-

tecture [13] pre-trained on ImageNet [10], combined with a

sequence of convolution layers followed by ReLU [23] acti-

vation, to compute an abstract 1024× 1× 256 dimensional

feature representation from the input image. The decoder

is a bidirectional recurrent neural network [31] that predicts

(ŷc, ŷf , ŷw) ∈ R
1×1024 column by column. Next, we for-

mulate HorizonNet as a student-teacher model, and describe

the resulting SSLayout360 architecture as a semi-supervised

learner for 3D layout reconstruction.

SSLayout360 Our approach treats HorizonNet as a stochas-

tic predictor with the dual role of being both the student and

teacher. Given a batch bl of labeled examples, and their

real-valued target vectors yl ∈ R
3×1×1024, and a batch bu

of unlabeled examples at each training step, we forward

propagate HorizonNet three times: (1) on the batch of la-

beled examples as the student fθ(x) using parameters θ to

produce real-valued prediction vectors ŷl ∈ R
3×1×1024, (2)

on the unlabeled batch using the same parameters θ to com-

pute zu ∈ R
3×1×1024, and (3) on the unlabeled batch as the

teacher fθ̄(x) using parameters θ̄ to output z̃u ∈ R
3×1×1024.

Here, θ̄ is an exponential moving average (EMA) of the

student’s parameters θ after each training step t:

θ̄t = αθ̄t−1 + (1− α)θt, (2)

where α ∈ [0, 1] is a decay hyper-parameter. The intuition

for setting θ̄ = EMA(θ) is to obtain a good teacher that

provides stable unsupervised targets for the student to imitate,

and was the main result of Mean Teacher. As is common

practice, we do not back-propagate gradients through the

teacher and keep its prediction fixed at each training step [4,

34]. The alternative case is to set θ̄ = θ with α = 0 and back-

propagate gradients through both student and teacher models,

which was the formulation of Π model [18], and has been

shown to produce less stable unsupervised targets and overall

inferior SSL performance to Mean Teacher [34]. Section 5.3

provides an ablation experiment where we evaluate both

settings for comparative semi-supervised layout estimation.

3.2. Loss Function

The real-valued prediction vectors ŷl are regressed to tar-

get vectors yl using L1 distance for (yc, yf ) and squared L2

distance for yw. The supervised loss component, evaluated

over a mini-batch of labeled examples, is computed as:

Ll =
1

|bl|

∑

i∈bl

‖ŷic − yic‖1 + ‖ŷif − yif‖1 + ‖ŷiw − yiw‖
2
2.

(3)

Our supervised objective is different from HorizonNet,

in that we use the squared L2 loss, or the Brier score [5],

instead of binary cross-entropy loss for the wall-wall corner

yw. The Brier score is commonly used in the SSL literature

because it is bounded and does not heavily penalize predicted

probabilities far away from the ground truth [4, 18, 34]. Our

initial experiments showed that the squared L2 loss gave

slightly better accuracy performance than cross-entropy loss.

For the unsupervised loss component, we constrain zu
and z̃u to be close by computing their L1 and squared L2

distances over a mini-batch of unlabeled examples, similar

to Equation (3):

Lu =
1

|bu|

∑

i∈bu

‖zic− z̃ic‖1+‖zif − z̃if‖1+‖ziw− z̃iw‖
2
2.

(4)

It is a reasonable objective to enforce consistency on zu
and z̃u because fθ(x) and fθ̄(x) are stochastic predictors

with random dropout [32] and input data augmentation at

each forward pass. By minimizing the discrepancy between

student zu and teacher z̃u predictions on unlabeled instances,

we encourage the student to learn additional layout repre-

sentations from unlabeled data via the unsupervised targets

provided by the teacher. The compound objective for train-

ing SSLayout360 on both labeled and unlabeled data is the

weighted sum of the supervised and unsupervised losses:

L = Ll + λLu. (5)

Our formulation of the SSLayout360 objective works

well for layout estimation and stands out from previous SSL

methods in that we maintain compatibility between the su-

pervised and unsupervised terms by applying L1 and L2

losses to both. This has the intended benefit of removing the

need to tune the weight hyper-parameter λ during training;

we simply set λ = 1 to obtain reliable results in all experi-

ments across all datasets under consideration. By contrast,

Mean Teacher and other SSL methods used different loss

functions for the supervised and unsupervised terms (e.g.,

cross entropy + L2), resulting in the need to carefully tune

λ to manage the balance between the two objectives.

Our approach to SSLayout360 assumes that the teacher

provides good unsupervised targets for the student to imitate.

As illustrated in Figure 3, at the beginning of model train-

ing, both student and teacher models are likely to produce

incorrect and inconsistent predictions, especially when few

labels are available. Similar to SSL for image classification

[18, 34], we mitigate a potentially degenerate solution by

ramping up the unsupervised loss weight from 0 to 1 ac-

cording to the sigmoid-shaped function: λ(t) = e−5(1−t/T)2 ,

where t is the current training iteration and T is the number

of iterations at which to stop the ramp-up. We define T
to be a percentage of the maximum number of iterations,

which is the product of training epochs and the cardinality of

mini-batches in the unlabeled dataset. For example, T@30%
means that if we train SSLayout360 for 100 epochs over

an unlabeled set of 2,000 images using a mini-batch of 4,

then T@30% = 0.30× 100× 2000/4 = 15, 000 iterations.

The ramp-up period ensures that student learning progresses
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Epoch 1 Epoch 10 Epoch 100

Figure 3. The evolution of HorizonNet as both the student (red lines) and teacher (green lines) over the course of training on 100 labeled and

1,009 unlabeled images. We encourage the student to learn layout representations of floor, ceiling, and wall boundaries from unlabeled data

by enforcing consistency (or minimizing discrepancy) between student and teacher predictions perturbed by random model and data noise.

predominantly via the supervised loss on labeled data at

the beginning of training up to T iterations, after which the

teacher becomes reliable to provide good stable targets.

4. Experimental Setup

4.1. Datasets

We train and evaluate our SSLayout360 algorithm on

three challenging benchmark datasets covering both simple

cuboid and complex non-cuboid indoor layouts. For cuboid

layout estimation, we use PanoContext [38] and Stanford-

2D3D [1], which consist of 512 and 550 RGB panoramic

images, respectively. For non-cuboid layout estimation, we

train and evaluate on MatterportLayout [41], which comprise

2,295 RGB panoramic images of indoor scenes having up to

22 corners. We use the standard training, validation, and test

splits provided by Zou et al. [40, 41] for all three datasets.

See Section B.1 in the supplementary material for details.

MatterportLayout is a labeled subset of the larger Matter-

port3D [6] dataset comprising 10,912 panoramas of general

indoor and outdoor environments. We use the auxiliary

Matterport3D dataset (minus 458 test instances) of 10,454

panoramas as a source of extra unlabeled data to augment our

SSL experiments on MatterportLayout, and to evaluate SS-

Layout360 under the condition of data distribution mismatch

that includes a mixture of indoor and outdoor scenes.

We also experiment with Structured3D [39], a large photo-

realistic synthetic dataset comprising 21,835 panoramas of

rooms in 3,500 diverse indoor scenes with ground truth

cuboid and non-cuboid layout annotations. We pre-train

HorizonNet on 18,362 synthetic images and perform transfer

learning on the MatterportLayout dataset via fine-tuning.

4.2. Evaluation Protocol

Existing evaluation procedures for layout estimation suf-

fer from statistical unreliability, given the relatively small

sample sizes of training, validation, and test instances. Case

in point, our findings in Table 1 show that supervised results

can vary as much as 4% points. Moreover, prior work only

reported point estimates without standard error bounds for

performance evaluations, making a comparison of published

methods difficult when considering for statistical signifi-

cance. We adopt the rigorous evaluation protocol previously

used for semi-supervised image classification [24] and ex-

tend it to this work for semi-supervised layout estimation.

We conduct our supervised and semi-supervised experi-

ments over four runs using different random seeds, and report

the mean and standard deviation to assess statistical signifi-

cance. This helps to evaluate the contributions of unlabeled

data instead of confounding statistical noise inherent in deep

neural networks (e.g., dropout, weight initialization). For

SSL, we follow the standard practice of randomly sampling

varying amounts of the training data as labeled examples

while treating the combined training and validation sets, dis-

carding all label information, as the source of unlabeled data

[24, 34, 35]. We take extra care not to include any test in-

stances as unlabeled data. We train SSLayout360 with both

labeled and unlabeled data according to Algorithm 1 and

compare its performance to that of HorizonNet trained using

only the labeled portion in the traditional supervised manner.

We extend our rigorous evaluation protocol to include

experiments with extra unlabeled and synthetic data, which

have not been explored for layout estimation. In experiments

using synthetic data, we ask the question: given a strong

predictor pre-trained on synthetic data, can our model bridge

the performance gap between synthetic and real data by

using a combination of both in the semi-supervised setting?

4.3. Implementation Details

We implement SSLayout360 using PyTorch [25] and train

on 2 NVIDIA TITAN X GPUs each with 12GB of video

memory. Our SSL experiments take between 6 and 65 hours

to complete, depending on the number of training epochs and

how much unlabeled data is used in combination with labeled

data. The supervised HorizonNet baselines are trained using

the original authors’ publicly available source code for direct

comparison. See Section B.2 in the supplementary material

for a detailed breakdown of our training protocol.

Data Processing and Augmentation We separate the input

data source into labeled and unlabeled branches. All images

are pre-processed by the panorama alignment algorithm de-

scribed in [40] to enforce the Manhattan constraint, owing to

the use of HorizonNet as the prediction function. We follow
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PanoContext 3D IoU (%) ↑

Method
20 labels 50 labels 100 labels 200 labels 963 labels

1,009 images 1,009 images 1,009 images 1,009 images 1,009 images

HorizonNet 61.48± 2.07 63.84± 2.87 65.43± 1.30 75.76± 0.62 83.55 ± 0.31

SSLayout360 63.05 ± 0.65 68.41 ± 1.02 72.86 ± 1.07 78.64 ± 0.72 83.30 ± 0.53

Corner Error (%) ↓

Method
20 labels 50 labels 100 labels 200 labels 963 labels

1,009 images 1,009 images 1,009 images 1,009 images 1,009 images

HorizonNet 3.51± 0.79 2.78± 0.90 3.17± 0.27 1.07 ± 0.15 0.70 ± 0.02

SSLayout360 2.57 ± 0.58 1.76 ± 0.51 1.42 ± 0.31 0.96 ± 0.06 0.69 ± 0.01

Pixel Error (%) ↓

Method
20 labels 50 labels 100 labels 200 labels 963 labels

1,009 images 1,009 images 1,009 images 1,009 images 1,009 images

HorizonNet 5.68± 0.52 5.03± 0.45 4.75± 0.06 3.17± 0.17 1.97± 0.03
SSLayout360 4.84 ± 0.32 3.73 ± 0.26 3.47 ± 0.24 2.72 ± 0.08 1.90 ± 0.02

Stanford-2D3D 3D IoU (%) ↑

Method
20 labels 50 labels 100 labels 200 labels 916 labels

949 images 949 images 949 images 949 images 949 images

HorizonNet 62.20± 3.98 68.27± 1.45 69.94± 3.64 74.95± 3.69 82.79± 0.90
SSLayout360 71.60 ± 2.04 73.86 ± 1.65 76.96 ± 1.20 79.78 ± 0.83 84.66 ± 0.57

Corner Error (%) ↓

Method
20 labels 50 labels 100 labels 200 labels 916 labels

949 images 949 images 949 images 949 images 949 images

HorizonNet 2.70± 0.60 1.64± 0.12 1.66± 0.20 1.50± 0.18 0.64± 0.02
SSLayout360 1.69 ± 0.22 1.32 ± 0.04 1.15 ± 0.24 1.04 ± 0.13 0.60 ± 0.01

Pixel Error (%) ↓

Method
20 labels 50 labels 100 labels 200 labels 916 labels

949 images 949 images 949 images 949 images 949 images

HorizonNet 5.03± 0.51 3.95± 0.22 3.77± 0.39 3.69± 0.26 2.13± 0.05
SSLayout360 3.50 ± 0.17 3.24 ± 0.18 3.01 ± 0.26 2.91 ± 0.27 1.97 ± 0.06

Table 1. Quantitative cuboid layout results evaluated on the PanoContext (left) and Stanford-2D3D (right) test sets over four randomized

trials. The semi-supervised SSLayout360 settings outperform the supervised HorizonNet baselines across most metrics under consideration.

Mixed Corners 3D IoU (%) ↑

Method
50 labels 100 labels 200 labels 400 labels 1,650 labels

1,837 images 1,837 images 1,837 images 1,837 images 1,837 images

HorizonNet 63.44± 0.56 68.79± 0.49 72.25± 0.50 74.46± 0.35 79.12± 0.37
SSLayout360 67.42 ± 0.24 72.37 ± 0.35 75.31 ± 0.37 77.09 ± 0.41 80.33 ± 0.48

2D IoU (%) ↑

Method
50 labels 100 labels 200 labels 400 labels 1,650 labels

1,837 images 1,837 images 1,837 images 1,837 images 1,837 images

HorizonNet 67.17± 0.65 72.06± 0.49 75.16± 0.53 77.15± 0.36 81.54± 0.31
SSLayout360 71.03 ± 0.28 75.46 ± 0.36 78.05 ± 0.33 79.67 ± 0.40 82.54 ± 0.51

δ1 ↑

Method
50 labels 100 labels 200 labels 400 labels 1,650 labels

1,837 images 1,837 images 1,837 images 1,837 images 1,837 images

HorizonNet 0.76± 0.01 0.84± 0.01 0.89± 0.01 0.91± 0.01 0.94 ± 0.01

SSLayout360 0.81 ± 0.01 0.89 ± 0.01 0.91 ± 0.01 0.93 ± 0.01 0.95 ± 0.01

RMSE ↓

Method
50 labels 100 labels 200 labels 400 labels 1,650 labels

1,837 images 1,837 images 1,837 images 1,837 images 1,837 images

HorizonNet 0.41± 0.01 0.34± 0.01 0.30± 0.01 0.28± 0.01 0.23 ± 0.01

SSLayout360 0.35 ± 0.01 0.29 ± 0.01 0.27 ± 0.01 0.25 ± 0.01 0.22 ± 0.01

Table 2. Quantitative non-cuboid layout results evaluated on the

MatterportLayout test set over four runs. SSLayout360 surpasses

the supervised HorizonNet baselines across all settings and metrics.

standard panorama augmentation techniques [33, 36, 40],

and apply random stretching in both (kx, kz) ∈ [0.5, 1.5]
directions, horizontal rotation r ∈ (0◦, 360◦], left-right

flipping with probability 0.5, and gamma correction with

γ ∈ [0.5, 2.0] to each branch independently.

Hyper-parameters We start with the hyper-parameter con-

figuration for the HorizonNet baseline, and only tune hyper-

parameters specific to SSLayout360 which include: the con-

sistency loss weight λ, the ramp-up period T , and EMA

decay α. In our implementation, we tune hyper-parameters

on the PanoContext validation set and fix them constant for

experiments on Stanford-2D3D and MatterportLayout. We

make a conscientious effort to keep our hyper-parameter

configuration general to avoid overfitting on a per-dataset

or per-experiment basis, which can limit the real-world ap-

plicability of our method. Section 5.3 discusses our hyper-

parameter choices with detailed ablation experiments.

Model Selection We use the same underlying architecture

and training protocol for both supervised and SSL experi-

ments, with the exception of tuning hyper-parameters spe-

cific to SSLayout360. This is to ensure that any performance

boost in the SSL setting is directly attributed to unlabeled

data and not to changes in model configuration.

We employ the Adam optimizer [16] to train Horizon-

Net and SSLayout360. Following HorizonNet’s training

protocol, we use learning rate 0.0003 and batch size 8 for

PanoContext and Stanford-2D3D experiments; for Matter-

portLayout experiments, we use learning rate 0.0001 and

batch size 4 to achieve the best results on both HorizonNet

and SSLayout360. Similar to Tran [35], we anneal the learn-

ing rate hyper-parameter after each training step t according

to the polynomial schedule: lr× (1− t/tmax)
0.5

.

We check-point the best models for testing based on their

best performances on the validation sets. At test time, SS-

Layout360 produces two sets of model parameters θ and

θ̄ = EMA(θ), both of which are expected to have compara-

ble predictive accuracy. For simplicity, we take the average

of both predictions on each test instance and report results,

but otherwise do not perform any test-time augmentation.

Performance Metrics We assess layout estimation perfor-

mance using six standard metrics to maintain parity with

previous work [33, 40, 41]. For evaluation between pre-

dicted layout and the ground truth, we use 3D intersection

over union (IoU), 2D IoU, corner error, and pixel error. For

evaluation between predicted and ground truth layout depth,

we use root mean squared error (RMSE) and δ1, defined

by Zou et al. [41] as “the percentage of pixels where the

ratio (or its reciprocal) between the prediction and the label

is within a threshold of 1.25.” We evaluate cuboid layout

estimation using 3D IoU, corner error, pixel error, and non-

cuboid layout using 3D IoU, 2D IoU, RMSE, and δ1.

5. Results and Analysis

5.1. Quantitative Evaluation

Cuboid Layout Estimation Quantitative evaluations on

the PanoContext and Stanford-2D3D test sets are presented
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Figure 4. SSLayout360 results averaged over four runs on Matter-

portLayout with increasing amount of unlabeled data, evaluated for

rooms with mixed corners. More unlabeled data improves semi-

supervised layout estimation when the number of labels is 400 or

less. The effect of unlabeled data diminishes when all labels are

used, but performance still remains above the supervised baseline.

in Table 1. We show SSLayout360 surpasses the supervised

HorizonNet baselines across most settings under considera-

tion. For the fully supervised setting with all labeled images,

SSLayout360 achieves similar performance to HorizonNet

on the 3D IoU metric, and outperforms HorizonNet on the

corner and pixel error metrics, indicating the benefit of learn-

ing with consistency regularization for layout estimation.

Non-Cuboid Layout Estimation We present quantitative

non-cuboid results on the challenging MatterportLayout test

set in Table 2. For space considerations, we report the overall

performances of rooms having “mixed corners”. Detailed

results for rooms having 4, 6, 8, 10 or more corners are

reported in Section D of the supplementary material. The

trend is clear: the effective use of unlabeled data, in combi-

nation with labeled data, improves layout estimation across

all settings and metrics under investigation, most notably in

the scenarios with only 50 and 100 labeled images.

SSLayout360 without Unlabeled Data In light of the re-

sults observed in Tables 1 – 2 for the fully supervised setting,

we perform experiments to clarify the utility of SSLayout360

without unlabeled data, and report them in Section C of the

supplementary material due to space limitation. Our findings

show that SSLayout360 without unlabeled data produces

slightly better results than the HorizonNet counterpart across

most settings and metrics. Our results corroborate previous

SSL literature that regularization can slightly improve su-

pervised learning without unlabeled data [21, 35, 37]. In

scenarios with additional unlabeled data, SSLayout360 gives

a significant boost in accuracy over the supervised baselines.

SSLayout360 with Extra Unlabeled Data We randomly

sample 2,163 and 8,617 extra unlabeled images from the

Matterport3D dataset and combine them with the Matter-

portLayout training and validation sets (1,837 images) for
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)

[a] Supervised Baseline (1,650 real labels)
[b] ST3D Baseline (18,362 synthetic labels)
[c] HorizonNet w/ ImageNet Weights
[d] HorizonNet w/ ST3D Weights
[e] SSLayout360 w/ ST3D Weights

Figure 5. Supervised and semi-supervised fine-tuning experiments

on MatterportLayout for rooms with mixed corners using Struc-

tured3D (ST3D) synthetic data. Shaded regions denote standard

deviation over four runs. The x-axis is shown on the log scale.

Coupled with HorizonNet pre-trained on ST3D [d], SSLayout360

matches the fully supervised counterpart with only 200 labels [e].

the total of 4,000 and 10,454 unlabeled images, respectively.

Figure 4 shows that extra unlabeled data helps improve semi-

supervised layout estimation by an average of about 1%

point when the number of labels is 400 or less. When the

full labeled set is used with 4,000 and 10,454 unlabeled im-

ages, test performance dips a bit but remains above the fully

supervised HorizonNet baseline. Our encouraging results

suggest that SSLayout360 is capable of learning additional

supervisory signals from extra unlabeled data, even when

there is a data distribution mismatch.

SSLayout360 with Synthetic Data Figure 5 summarizes

the following findings when utilizing Structured3D synthetic

data to evaluate on MatterportLayout: there is a large per-

formance gap between HorizonNet models trained on real

and synthetic data [a] vs. [b]; HorizonNet pre-trained on

Structured3D and fine-tuned on MatterportLayout [d] always

outperforms HorizonNet initialized with ImageNet weights

[c]; and SSLayout360 with pre-trained HorizonNet matches

the fully supervised results using only 200 labels [e], ef-

fectively bridging the performance gap between real and

synthetic domains in the semi-supervised setting.

5.2. Qualitative Evaluation

Figure 6 compares qualitative test results between Hori-

zonNet and SSLayout360 trained on 100 labels for PanoCon-

text, Stanford-2D3D, and MatterportLayout under equirect-

angular view. We report additional qualitative results for 3D

layout reconstruction utilizing the post-processing algorithm

of HorizonNet in Section E of the supplementary material.

5.3. Ablation Study

Figures 7(a) – 7(c) show ablation experiments where we

systematically search for good values of the three hyper-

parameters essential to the SSLayout360 algorithm. In each
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Figure 6. Exemplar qualitative test results of cuboid and non-cuboid layout estimation under equirectangular view. Best viewed electronically.

We compare supervised HorizonNet trained on 100 labels with our SSLayout360 model trained on the same 100 labels along with unlabeled

images for PanoContext (top), Stanford-2D3D (middle), and MatterportLayout (bottom). Layout boundary lines for HorizonNet are

shown in cyan, SSLayout360 in magenta, and ground truth in green. We observe that SSLayout360 predicts layout boundary lines following

more closely to the ground truth than HorizonNet, which explains the performance gap between the supervised and semi-supervised models.
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Figure 7. Ablation experiments on PanoContext using 100 labeled and 1,009 unlabeled images over four randomized runs. For each

hyper-parameter (a) – (c), we find the optimal value (in boldface) via the “knee in the curve” that produces the best 3D IoU performance on

the validation set. For the experiment in (d), we show SSLayout360 achieves uniformly better performance with EMA θ̄ as the teacher.

experiment, we vary one hyper-parameter while keeping the

other two constant. We confirm our hypothesis in the for-

mulation of Equation (5) that λ = 1 is the principled choice

for the consistency weight. We observe that the ramp-up

period T@30% provides a good balance between student

learning and teacher soft supervision that results in the high-

est validation accuracy. The intuition for the ramp-up is that

if it is too short, then the teacher provides unstable targets;

and if ramp-up takes too long, then the teacher’s supervisory

contributions to performance are delayed. We also find the

EMA decay coefficient α = 0.999 gives the best validation

accuracy with the lowest standard deviation. Lastly, Figure

7(d) shows that SSLayout360 with teacher parameters θ̄,

which is the main driver for all experiments in this paper,

uniformly outperforms SSLayout360 with shared θ̄ = θ.

6. Conclusion

We presented SSLayout360, an approach that combines

the strengths of HorizonNet and Mean Teacher, and extends

them both to enable semi-supervised layout estimation from

complex 360◦ panoramic indoor scenes. A distinct modifi-

cation that allows our algorithm to work well is the loss for-

mulation to regress real-valued prediction vectors to ground

truth via L1 and L2 distances. We evaluated our approach

on three challenging benchmarks across six metrics and re-

ported steady gains in semi-supervised layout estimation

from the state-of-the-art supervised baseline, utilizing only

unlabeled data as the additional source of soft “supervisory”

information. Our work takes an important first step towards

robust semi-supervised layout estimation with exciting ap-

plications related to 3D scene modeling and understanding.
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