
Learning Accurate Dense Correspondences and When to Trust Them

Prune Truong Martin Danelljan Luc Van Gool Radu Timofte

Computer Vision Lab, ETH Zurich, Switzerland

{prune.truong, martin.danelljan, vangool, radu.timofte}@vision.ee.ethz.ch

Abstract

Establishing dense correspondences between a pair of

images is an important and general problem. However,

dense flow estimation is often inaccurate in the case of large

displacements or homogeneous regions. For most appli-

cations and down-stream tasks, such as pose estimation,

image manipulation, or 3D reconstruction, it is crucial to

know when and where to trust the estimated matches.

In this work, we aim to estimate a dense flow field re-

lating two images, coupled with a robust pixel-wise con-

fidence map indicating the reliability and accuracy of the

prediction. We develop a flexible probabilistic approach

that jointly learns the flow prediction and its uncertainty.

In particular, we parametrize the predictive distribution as

a constrained mixture model, ensuring better modelling of

both accurate flow predictions and outliers. Moreover, we

develop an architecture and training strategy tailored for

robust and generalizable uncertainty prediction in the con-

text of self-supervised training. Our approach obtains state-

of-the-art results on multiple challenging geometric match-

ing and optical flow datasets. We further validate the use-

fulness of our probabilistic confidence estimation for the

task of pose estimation. Code and models are available at

https://github.com/PruneTruong/PDCNet.

1. Introduction

Finding pixel-wise correspondences between pairs of

images is a fundamental computer vision problem with nu-

merous important applications, including dense 3D recon-

struction [40], video analysis [33, 45], image registration

[44, 50], image manipulation [11, 28], and texture or style

transfer [20, 26]. Dense correspondence estimation has

most commonly been addressed in the context of optical

flow [2, 12, 16, 48], where the image pairs represent con-

secutive frames in a video. While these methods excel in

the case of small appearance changes and limited displace-

ments, they cannot cope with the challenges posed by the

more general geometric matching task. In geometric match-

ing, the images can stem from radically different views of

(a) Query image (b) Reference image

(c) Baseline (d) PDC-Net (Ours)

Figure 1. Estimating dense correspondences between the query (a)

and the reference (b) image. The query is warped according to the

resulting flows (c)-(d). The baseline (c) does not estimate an un-

certainty map and is therefore unable to filter the inaccurate flows

at e.g. occluded and homogeneous regions. In contrast, our PDC-

Net (d) not only estimates accurate correspondences, but also when

to trust them. It predicts a robust uncertainty map that identifies ac-

curate matches and excludes incorrect and unmatched pixels (red).

the same scene, often captured by different cameras and at

different occasions. This leads to large displacements and

significant appearance transformations between the frames.

In contrast to optical flow, the more general dense corre-

spondence problem has received much less attention [31,

37, 42, 52]. Dense flow estimation is prone to errors in

the presence of large displacements, appearance changes,

or homogeneous regions. It is also ill-defined in case of oc-

clusions or in e.g. sky, where predictions are bound to be

inaccurate (Fig. 1c). For geometric matching applications,

it is thus crucial to know when and where to trust the esti-

mated correspondences. For instance, pose estimation, 3D

reconstruction, and image-based localization require a set of

highly robust and accurate matches as input. The predicted

dense flow field must therefore be paired with a robust con-

fidence estimate (Fig. 1d). Uncertainty estimation is also

indispensable for safety-critical tasks, such as autonomous

driving and medical imaging. In this work, we set out to
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expand the application domain of dense correspondence es-

timation by learning to predict reliable confidence values.

We propose the Probabilistic Dense Correspondence

Network (PDC-Net), for joint learning of dense flow and

uncertainty estimation, applicable even for extreme appear-

ance and view-point changes. Our model predicts the con-

ditional probability density of the flow, parametrized as a

constrained mixture model. However, learning reliable and

generalizable uncertainties without densely annotated real-

world training data is a highly challenging problem. Stan-

dard self-supervised techniques [31, 35, 52] do not faith-

fully model real motion patterns, appearance changes, and

occlusions. We tackle this challenge by introducing a care-

fully designed architecture and improved self-supervision

to ensure robust and generalizable uncertainty predictions.

Contributions: Our main contributions are as follows. (i)

We introduce a constrained mixture model of the predictive

distribution, allowing the network to flexibly model both

accurate predictions and outliers with large errors. (ii) We

propose an architecture for predicting the parameters of our

predictive distribution, that carefully exploits the informa-

tion encoded in the correlation volume, to achieve general-

izable uncertainties. (iii) We improve upon self-supervised

data generation pipelines to ensure more robust uncertainty

estimation. (iv) We utilize our uncertainty measure to ad-

dress extreme view-point changes by iteratively refining the

prediction. (v) We perform extensive experiments on a va-

riety of datasets and tasks. In particular, our approach sets a

new state-of-the-art on the Megadepth geometric matching

dataset [25], on the KITTI-2015 training set [9], and out-

performs previous dense methods for pose estimation on the

YFCC100M dataset [49]. Moreover, without further post-

processing, our confident dense matches can be directly in-

put to 3D reconstruction pipelines [40], as shown in Fig. 2.

2. Related work

Confidence estimation in geometric matching: Only

very few works have explored confidence estimation in

the context of dense geometric or semantic matching.

Novotny et al. [32] estimate the reliability of their trained

descriptors by using a self-supervised probabilistic match-

ing loss for the task of semantic matching. A few ap-

proaches [13, 36, 37] represent the final correspondences

as a 4D correspondence volume, thus inherently encoding a

confidence score for each tentative match. However, these

approaches are usually restricted to low-resolution images,

thus hindering accuracy. Moreover, generating one final

confidence value for each match is highly non-trivial since

multiple high-scoring alternatives often co-occur. Similarly,

Wiles et al. [56] learn dense descriptors conditioned on an

image pair, along with their distinctiveness score. However,

the latter is trained with hand-crafted heuristics, while we

Figure 2. 3D reconstruction of Aachen [38] using the dense corre-

spondences and uncertainties predicted by PDC-Net.

instead do not make assumption on what the confidence

score should be, and learn it directly from the data with

a single unified loss. In DGC-Net, Melekhov et al. [31]

predict both dense correspondence and matchability maps

relating image pairs. However, their matchability map is

only trained to identify out-of-view pixels rather than to re-

flect the actual reliability of the matches. Recently, Shen et

al. [42] proposed RANSAC-Flow, a two-stage image align-

ment method, which also outputs a matchability map. It

performs coarse alignment with multiple homographies us-

ing RANSAC on off-the-shelf deep features, followed by

fine alignment. In contrast, we propose a unified network

that estimates probabilistic uncertainties.

Uncertainty estimation in optical flow: While optical-

flow has been a long-standing subject of active research,

only a handful of methods provide uncertainty estimates.

A few approaches [1, 3, 21, 22, 23] treat the uncertainty es-

timation as a post-processing step. Recently, some works

propose probabilistic frameworks for joint optical flow

and uncertainty prediction instead. They either estimate

the model uncertainty [7, 17], termed epistemic uncer-

tainty [19], or focus on the uncertainty from the observa-

tion noise, referred to as aleatoric uncertainty [19]. Fol-

lowing recent works [8, 58], we focus on aleatoric uncer-

tainty and how to train a generalizable uncertainty estimate

in the context of self-supervised training. Wannenwetsch et

al. [55] propose ProbFlow, a probabilistic approach appli-

cable to energy-based optical flow algorithms [3, 34, 46].

Gast et al. [8] propose probabilistic output layers that re-

quire only minimal changes to existing networks. Yin et

al. [58] introduce HD3F, a method to estimate uncertainty

locally at multiple spatial scales and aggregate the results.

While these approaches are carefully designed for optical

flow data and restricted to small displacements, we con-

sider the more general setting of estimating reliable con-

fidence values for dense geometric matching, applicable to

e.g. pose-estimation and 3D reconstruction. This brings ad-

ditional challenges, including coping with significant ap-

pearance changes and large geometric transformations.
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3. Our Approach: PDC-Net

We introduce PDC-Net, a method for estimating the

dense flow field relating two images, coupled with a robust

pixel-wise confidence map. The later indicates the relia-

bility and accuracy of the flow prediction, which is nec-

essary for pose estimation, image manipulation, and 3D-

reconstruction tasks.

3.1. Probabilistic Flow Regression

We formulate dense correspondence estimation with a

probabilistic model, which provides a framework for learn-

ing both the flow and its confidence in a unified formula-

tion. For a given image pair X = (Iq, Ir) of spatial size

H × W , the aim of dense matching is to estimate a flow

field Y ∈ R
H×W×2 relating the reference Ir to the query

Iq . Most learning-based methods address this problem by

training a network F with parameters θ that directly predicts

the flow as Y = F (X; θ). However, this does not provide

any information about the confidence of the prediction.

Instead of generating a single flow prediction Y , our goal

is to learn the conditional probability density p(Y |X; θ) of

a flow Y given the input X . This is generally achieved

by letting a network predict the parameters Φ(X; θ) of

a family of distributions p(Y |X; θ) = p(Y |Φ(X; θ)) =
∏

ij p(yij |ϕij(X; θ)). To ensure a tractable estimation,

conditional independence of the predictions at different spa-

tial locations (i, j) is generally assumed. We use yij ∈ R
2

and ϕij ∈ R
n to denote the flow Y and predicted parame-

ters Φ respectively, at the spatial location (i, j). In the fol-

lowing, we generally drop the sub-script ij to avoid clutter.

Compared to the direct approach Y = F (X; θ), the gen-

erated parameters Φ(X; θ) of the predictive distribution can

encode richer information about the flow prediction, includ-

ing its uncertainty. In probabilistic regression techniques for

optical flow [8, 17] and a variety of other tasks [19, 43, 54],

this is most commonly performed by predicting the vari-

ance of the estimate y. In these cases, the predictive density

p(y|ϕ) is modeled using Gaussian or Laplace distributions.

In the latter case, the density is given by,

L(y|µ, σ2) =
1

√

2σ2
u

e
−
√

2

σ
2
u

|u−µu|
.

1
√

2σ2
v

e
−
√

2

σ
2
v

|v−µv|

(1)

where the components u and v of the flow vector y =
(u, v) ∈ R

2 are modelled with two conditionally indepen-

dent Laplace distributions. The mean µ = [µu, µv]
T ∈

R
2 and variance σ2 = [σ2

u, σ
2
v ]

T ∈ R
2 of the distribu-

tion p(y|ϕ) = L(y|µ, σ2) are predicted by the network as

(µ, σ2) = ϕ(X; θ) at every spatial location.

3.2. Constrained Mixture Model Prediction

Fundamentally, the goal of probabilistic deep learning is

to achieve a predictive model p(y|X; θ) that coincides with

Inliers

Outliers

Figure 3. Distribution of errors |ŷ−y| on MegaDepth [25] between

the flow ŷ estimated by GLU-Net [52] and the ground-truth y.

empirical probabilities as well as possible. We can get im-

portant insights into this problem by studying the empirical

error distribution of a state-of-the-art matching model, in

this case GLU-Net [52], as shown in Fig. 3. Errors can be

categorized into two populations: inliers (in red) and out-

liers (in blue). Current probabilistic methods [8, 17, 33]

mostly rely on a Laplacian model (1) of p(y|X; θ). Such

a model is effective for correspondences which are easily

estimated to be either inliers or outliers with high certainty,

by predicting a low or high variance respectively. However,

often the network is not certain whether a match is an inlier

or outlier. A single Laplace can only predict an intermedi-

ate variance, which does not faithfully represent the more

complicated uncertainty pattern in this case.

Mixture model: To achieve a flexible model capable of fit-

ting more complex distributions, we parametrize p(y|X; θ)
with a mixture model. In general, we consider a distribution

consisting of M components,

p (y|ϕ) =

M
∑

m=1

αmL
(

y|µ, σ2
m

)

. (2)

While we have here chosen Laplacian components (1),

any simple density function can be used. The scalars

αm ≥ 0 control the weight of each component, satisfying
∑M

m=1
αm = 1. Note that all components have the same

mean µ, which can thus be interpreted as the estimated flow

vector, but different variances σ2
m. The distribution (2) is

therefore unimodal, but can capture more complex uncer-

tainty patterns. In particular, it allows to predict the proba-

bility of inlier (red) and outlier (blue) matches (Fig. 3), each

modeled by separate Laplace components.

Mixture constraints: In general, we now consider a net-

work Φ that, for each pixel location, predicts the mean flow

µ along with the variance σ2
m and weight αm of each com-

ponent, as
(

µ, (αm)Mm=1, (σ
2
m)Mm=1

)

= ϕ(X; θ). However,

a potential issue when predicting the parameters of a mix-

ture model is its permutation invariance. That is, the pre-

dicted distribution (2) is unchanged even if we change the

order of the individual components. This can cause confu-

sion in the learning, since the network first needs to decide

what each component should model before estimating the

individual weights αm and variances σ2
m.

We propose a model that breaks the permutation invari-

ance of the mixture (2), which simplifies the learning and
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Figure 4. The proposed architecture for flow and uncertainty estimation. The correlation uncertainty module Uθ independently processes

each 2D-slice Cij·· of the correlation volume. Its output is combined with the estimated mean flow µ to predict the weight {αm}M1 and

variance {σ2

m}M1 parameters of our constrained mixture model (2)-(4).

greatly improves the robustness of the estimated uncertain-

ties. In essence, each component m is tasked with modeling

a specified range of variances σ2
m. We achieve this by con-

straining the mixture (2) as,

0 < β−
1 ≤ σ2

1 ≤ β+

1 ≤ β−
2 ≤ σ2

2 ≤ . . . ≤ σ2
M ≤ β+

M (3)

For simplicity, we here assume a single variance parameter

σ2
m for both the u and v directions in (1). The constants

β−
m, β+

m specify the range of variances σ2
m. Intuitively, each

component is thus responsible for a different range of un-

certainties, roughly corresponding to different regions in the

error distribution in Fig. 3. In particular, component m = 1
accounts for the most accurate predictions, while compo-

nent m = M models the largest errors and outliers. To

enforce the constraint (3), we first predict an unconstrained

value hm ∈ R, which is then mapped to the given range as,

σ2
m = β−

m + (β+
m − β−

m) Sigmoid(hm). (4)

The constraint values β+
m, β−

m can either be treated as hyper-

parameters or learned end-to-end alongside θ.

Lastly, we emphasize an interesting interpretation of our

constrained mixture formulation (2)-(3). Note that the pre-

dicted weights αm, in practice obtained through a final Soft-

Max layer, represent the probabilities of each component m.

Our network therefore effectively classifies the flow predic-

tion at each pixel into the separate uncertainty intervals (3).

We visualize in Fig. 5 the predictive log-distribution with

M = 2 for three cases. The red and blue matches are with

certainty predicted as inlier and outlier respectively, thus re-

quiring only a single active component. In ambiguous cases

(green), our mixture model (2)-(3) predicts the probability

of inlier vs. outlier, giving a better fit compared to a single-

component alternative. As detailed next, our network learns

this ability without any extra supervision.

Training objective: As customary in probabilistic regres-

sion [5, 8, 10, 17, 19, 43, 53, 54], we train our method using

the negative log-likelihood as the only objective. For one

input image pair X = (Iq, Ir) and corresponding ground-

truth flow Y , the objective is given by

− log p
(

Y |Φ(X; θ)
)

= −
∑

ij

log p
(

yij |ϕij(X; θ)
)

. (5)

In Appendix B.1, we provide efficient analytic expressions

of the loss (5) for our constrained mixture (2)-(4), that also

ensure numerical stability. As detailed in Sec. 4.1, we can

train our final model using either a self-supervised strategy

where X and Y are generated by artificial warping, using

real sparse ground-truth Y , or a combination of both. Next,

we present the architecture of our network Φ that predicts

the parameters of our constrained mixture model (2).

3.3. Uncertainty Prediction Architecture

Our aim is to predict an uncertainty value that quantifies

the reliability of a proposed correspondence or flow vec-

tor. Crucially, the uncertainty prediction needs to general-

ize well to real scenarios, not seen during training. How-

ever, this is particularly challenging in the context of self-

supervised training, which relies on synthetically warped

images or animated data. Specifically, when trained on sim-

ple synthetic motion patterns, such as homography trans-

formations, the network learns to heavily rely on global

smoothness assumptions, which do not generalize well to

more complex settings. As a result, the network learns to

confidently interpolate and extrapolate the flow field to re-

gions where no robust match can be found. Due to the sig-

nificant distribution shift between training and test data, the

network thus also infers confident, yet highly erroneous pre-

dictions in homogeneous regions on real data. In this sec-

tion, we address this problem by carefully designing an ar-

chitecture that greatly limits the risk of the aforementioned

issues. Our architecture is visualized in Figure 4.

Current state-of-the-art dense matching architectures

rely on feature correlation layers. Features f are extracted

at resolution h×w from a pair of input images, and densely

correlated either globally or within a local neighborhood of

Figure 5. Predictive log-distr. log p(y|X) (2)-(3) for an inlier (red),

outlier (blue), and ambiguous (green) match. Our mixture model

faithfully represents the uncertainty also in the latter case.
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(a) Query image (b) Reference image (c) Common decoder (d) Our decoder (e) Our decoder and data (f) RANSAC-Flow

Figure 6. Visualization of the estimated uncertainties by masking the warped query image to only show the confident flow predictions. The

standard approach (c) uses a common decoder for both flow and uncertainty estimation. It generates overly confident predictions in the sky

and grass. The uncertainty estimates are substantially improved in (d), when using the proposed architecture described in Sec. 3.3. Adding

the flow perturbations for self-supervised training (Sec. 3.4) further improves the robustness and generalization of the uncertainties (e). For

reference, we also visualize the flow and confidence mask (f) predicted by the recent state-of-the-art approach RANSAC-Flow [42].

size d. In the later case, the output correlation volume is

best thought of as a 4D tensor C ∈ R
h×w×d×d. Computed

as dense scalar products Cijkl = (fr
ij)

Tf
q
i+k,j+l, it encodes

the deep feature similarity between a location (i, j) in the

reference frame Ir and a displaced location (i+ k, j+ l) in

the query Iq . Standard flow architectures process the corre-

lation volume by first vectorizing the last two dimensions,

before applying a sequence of convolutional layers over the

reference coordinates (i, j) in order to predict the final flow.

Correlation uncertainty module: The straightforward

strategy for implementing the parameter predictor Φ(X; θ)
is to simply increase the number of output channels to in-

clude all parameters of the predictive distribution. How-

ever, this allows the network to rely primarily on the local

neighborhood when estimating the flow and confidence at

location (i, j), and thus to ignore the actual reliability of the

match and appearance information at the specific location.

It results in over-smoothed and overly confident predictions,

unable to identify ambiguous and unreliable matching re-

gions, such as the sky. This is visualized in Fig. 6c.

We instead design an architecture that assesses the uncer-

tainty at a specific location (i, j), without relying on neigh-

borhood information. We note that the 2D slice Cij·· ∈
R

d×d encapsulates rich information about the matching

ability of location (i, j), in the form of a confidence map.

In particular, it encodes the distinctness, uniqueness, and

existence of the correspondence. We therefore create a cor-

relation uncertainty decoder Uθ that independently reasons

about each correlation slice as Uθ(Cij··). In contrast to stan-

dard decoders, the convolutions are therefore applied over

the displacement dimensions (k, l). Efficient parallel imple-

mentation is ensured by moving the first two dimensions of

C to the batch dimension using a simple tensor reshape. Our

strided convolutional layers then gradually decrease the size

d × d of the displacement dimensions (k, l) until a single

vector uij = Uθ(Cij··) ∈ R
n is achieved for each spatial

coordinate (i, j) (see Fig. 4).

Uncertainty predictor: The cost volume does not capture

uncertainty arising at motion boundaries, crucial for real

data with independently moving objects. We thus addition-

ally integrate predicted flow information in the estimation

of its uncertainty. In practise, we concatenate the estimated

mean flow µ with the output of the correlation uncertainty

module Uθ, and process it with multiple convolution lay-

ers. It outputs all parameters of the mixture (2), except for

the mean flow µ (see Fig. 4). As shown in Fig. 6d, our un-

certainty decoder, comprised of the correlation uncertainty

module and the uncertainty predictor, successfully masks

out most of the inaccurate and unreliable matching regions.

3.4. Data for Self­supervised Uncertainty

While designing a suitable architecture greatly alleviates

the uncertainty generalization issue, the network still tends

to rely on global smoothness assumptions and interpolation,

especially around object boundaries (see Fig. 6d). While

this learned strategy indeed minimizes the Negative Log

Likelihood loss (5) on self-supervised training samples, it

does not generalize to real image pairs. In this section, we

further tackle this problem from the data perspective in the

context of self-supervised learning.

We aim at generating less predictable synthetic motion

patterns than simple homography transformations, to pre-

vent the network from primarily relying on interpolation.

This forces the network to focus on the appearance of the

image region in order to predict its motion and uncertainty.

Given a base flow Ỹ relating Ĩr to Ĩq and representing a

simple transformation such as a homography as in prior

works [31, 35, 51, 52], we create a residual flow ǫ =
∑

i εi,

by adding small local perturbations εi. The query image

Iq = Ĩq is left unchanged while the reference Ir is gener-

ated by warping Ĩr according to the residual flow ǫ. The

final perturbed flow map Y between Ir and Iq is achieved

by composing the base flow Ỹ with the residual flow ǫ.

An important benefit of introducing the perturbations ε

is to teach the network to be uncertain in regions where it

cannot identify them. Specifically, in homogeneous regions

such as the sky, the perturbations do not change the appear-

ance of the reference (Ir ≈ Ĩr) and are therefore unnoticed

by the network. However, since the perturbations break the

global smoothness of the synthetic flow, the flow errors on

those pixels will be higher. In order to decrease the loss (5),

the network will thus need to estimate a larger uncertainty

for these regions. We show the impact of introducing the

flow perturbations for self-supervised learning in Fig. 6e.
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3.5. Geometric Matching Inference

In real settings with extreme view-point changes, flow

estimation is prone to failing. Our confidence estimate can

be used to improve the robustness of matching networks to

such cases. Particularly, our approach offers the opportu-

nity to perform multi-stage flow estimation on challenging

image pairs, without any additional network components.

Confidence value: From the predictive distribution

p(y|ϕ(X; θ)), we aim at extracting a single confidence

value, encoding the reliability of the corresponding pre-

dicted flow vector µ. Previous probabilistic regression

methods mostly rely on the variance as a confidence mea-

sure [8, 17, 19, 54]. However, we observe that the variance

can be sensitive to outliers. Instead, we compute the prob-

ability PR of the true flow being within a radius R of the

estimated mean flow µ. This is expressed as,

PR = P (|y − µ| < R) =

∫

{y∈R2:|y−µ|<R}

p(y|ϕ)dy. (6)

Compared to the variance, the probability value PR also

provides a more interpretable measure of the uncertainty.

Multi-stage refinement strategy: For extreme view-point

changes with large scale or perspective variations, it is par-

ticularly difficult to infer the correct motion field in a single

network pass. While this is partially alleviated by multi-

scale architectures, it remains a major challenge in geomet-

ric matching. Our approach allows to split the flow esti-

mation process into two parts, the first estimating a simple

transformation, which is then used as initialization to infer

the final, more complex transformation.

One of the major benefits of our confidence estimation is

the ability to identify the set of accurate matches from the

densely estimated flow field. After a first forward network

pass, these accurate correspondences can be used to esti-

mate a coarse transformation relating the image pair, such

as a homography transformation. A second forward pass

can then be applied to the coarsely aligned image pair, and

the final flow field is constructed as a composition of the fine

flow and the homography transform. While previous works

also use multi-stage refinement [35, 42], our approach is

much simpler, applying the same network in both stages and

benefiting from the internal confidence estimation.

4. Experimental results

We integrate our approach into a generic pyramidal cor-

respondence network and perform comprehensive exper-

iments on multiple geometric matching and optical flow

datasets. We also show that our method can be used for

various tasks, including pose estimation and dense 3D re-

construction. Further results, analysis, visualizations and

implementation details are provided in the Appendix.

4.1. Implementation Details

We adopt the recent GLU-Net-GOCor [51, 52] as our

base architecture. It consists in a four-level pyramidal net-

work operating at two image resolutions and employing a

VGG-16 network [4] pre-trained on ImageNet for feature

extraction. At each level, we add our uncertainty decoder

(Sec. 3.3) and propagate the uncertainty prediction to the

next level. We model the probability distribution p (y|ϕ)
with a constrained mixture (Sec. 3.2) with M = 2 Laplace

components, where the first is fixed to σ2
1 = β−

1 = β+

1 = 1
to represent the very accurate predictions, while the second

models larger errors and outliers, as 2 = β−
2 ≤ σ2

2 ≤ β+

2 ,

where β+

2 is set to the square of the training image size.

Our training consists of two stages. First, we follow

the self-supervised training procedure of [51, 52]. Random

homography transformations are applied to images com-

piled from different sources to ensure diversity. For bet-

ter compatibility with real 3D scenes and moving objects,

the data is further augmented with random independently

moving objects from the COCO [27] dataset. We further

apply our perturbation strategy described in Sec. 3.4. In

the second stage, we extend the self-supervised data with

real image pairs with sparse ground-truth correspondences

from the MegaDepth dataset [25]. We additionally fine-

tune the backbone feature extractor. For fair comparison,

we also train a version of GLU-Net-GOCor, denoted GLU-

Net-GOCor*, using the same settings and data.

For datasets with very extreme geometric transforma-

tions, we also report using a multi-scale strategy. In particu-

lar, we extend our two-stage refinement approach (Sec. 3.5)

by resizing the reference image to different resolutions. The

resulting image pairs are passed through the network and we

fit a homography for each pair, using our predicted flow and

uncertainty map. We select the homography with the high-

est percentage of inliers, and scale it to the images original

resolutions. The original image pair is then coarsely aligned

and from there we follow the same procedure, as explained

in Sec. 3.5. We refer to this option as Multi Scale (MS).

4.2. Geometric Correspondences and Flow

We first evaluate our PDC-Net in terms of the quality of

the predicted flow field.

Datasets and metrics: We evaluate on standard datasets

with sparse ground-truth, namely the RobotCar [24, 30],

GLU-Net-GOCor*
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Figure 7. Results on ETH3D [41]. PCK-1 (left), PCK-3 (center)

and PCK-5 (right) are plotted w.r.t. the inter-frame interval length.
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MegaDepth RobotCar

PCK-1 PCK-3 PCK-5 PCK-1 PCK-3 PCK-5

SIFT-Flow [28] 8.70 12.19 13.30 1.12 8.13 16.45

NCNet [37] 1.98 14.47 32.80 0.81 7.13 16.93

DGC-Net [31] 3.55 20.33 32.28 1.19 9.35 20.17

GLU-Net [52] 21.58 52.18 61.78 2.30 17.15 33.87

GLU-Net-GOCor [51] 37.28 61.18 68.08 2.31 17.62 35.18

RANSAC-Flow (MS) [42] 53.47 83.45 86.81 2.10 16.07 31.66

GLU-Net-GOCor* 57.86 78.62 82.30 2.33 17.21 33.67

PDC-Net 70.75 86.51 88.00 2.54 18.97 36.37

PDC-Net (MS) 71.81 89.36 91.18 2.58 18.87 36.19

Table 1. PCK (%) results on sparse correspondences of the

MegaDepth [25] and RobotCar [24, 30] datasets.

MegaDepth [25] and ETH3D [41] datasets. RobotCar de-

picts outdoor road scenes, taken under different weather

and lighting conditions. Images are particularly challeng-

ing due to their numerous textureless regions. MegaDepth

images show extreme view-point and appearance variations.

Finally, ETH3D represents indoor and outdoor scenes cap-

tured from a moving hand-held camera. For RobotCar and

MegaDepth, we evaluate on the correspondences provided

by [42], which includes approximately 340M and 367K

ground-truth matches respectively. For ETH3D, we follow

the protocol of [52], sampling image pairs at different inter-

vals to analyze varying magnitude of geometric transforma-

tions, resulting in 600K to 1100K matches per interval. In

line with [42], we employ the Percentage of Correct Key-

points at a given pixel threshold T (PCK-T ) as metric.

Results: In Tab. 1 we report results on MegaDepth and

RobotCar. Our method PDC-Net outperforms all previous

works by a large margin at all PCK thresholds. In partic-

ular, our approach is significantly more accurate and ro-

bust than the very recent RANSAC-Flow, which utilizes

an extensive multi-scale (MS) search. Interestingly, our

uncertainty-aware probabilistic approach also outperforms

the baseline GLU-Net-GOCor* in pure flow accuracy. This

clearly demonstrates the advantages of casting the flow es-

timation as a probabilistic regression problem, advantages

which are not limited to uncertainty estimation. It also sub-

stantially benefits the accuracy of the flow itself through

a more flexible loss formulation. In Fig. 7, we plot the

PCKs on ETH3D. Our approach is consistently better than

RANSAC-Flow and GLU-Net-GOCor* for all intervals.

Generalization to optical flow: We additionally show that

our approach generalizes well to accurate estimation of op-

tical flow, even though it is trained for the very different

task of geometric matching. We use the established KITTI

dataset [9], and evaluate according to the standard metrics,

namely AEPE and F1. Since we do not fine-tune on KITTI,

we show results on the training splits in Tab. 2. Our ap-

proach outperforms all previous generic matching methods

(upper part) by a large margin in terms of both F1 and

AEPE. Surprisingly, PDC-Net also obtains better results

than all optical flow methods (bottom part), even outper-

forming the recent RAFT [48] on KITTI-2015.

KITTI-2012 KITTI-2015

AEPE ↓ F1 (%) ↓ AEPE ↓ F1 (%) ↓

DGC-Net [31] 8.50 32.28 14.97 50.98

GLU-Net [52] 3.14 19.76 7.49 33.83

GLU-Net-GOCor [51] 2.68 15.43 6.68 27.57

RANSAC-Flow [42] - - 12.48 -

GLU-Net-GOCor* 2.26 10.23 5.58 18.76

PDC-Net 2.08 7.98 5.22 15.13

PWC-Net [47] 4.14 21.38 10.35 33.7

LiteFlowNet [14] 4.00 - 10.39 28.5

HD3F [58] 4.65 - 13.17 24.0

LiteFlowNet2 [15] 3.42 - 8.97 25.9

VCN [57] - - 8.36 25.1

RAFT [48] - - 5.54 19.8

Table 2. Optical flow results on the training splits of KITTI [9].

The upper part contains generic matching networks, while the bot-

tom part lists specialized optical flow methods, not trained on kitti.

4.3. Uncertainty Estimation

Next, we evaluate our uncertainty estimation. To assess

the quality of the uncertainty estimates, we rely on Spar-

sification Error plots, in line with [1, 18, 55]. The pixels

having the highest uncertainty are progressively removed

and the AEPE or PCK of the remaining pixels is calculated,

which results in the Sparsification curve. The Error curve

is constructed by subtracting the Sparsification to the Ora-

cle, for which the AEPE and PCK are calculated when the

pixels are ranked according to the ground-truth error. As

evaluation metric, we use the Area Under the Sparsification

Error curve (AUSE). In Fig. 8, we compare the Sparsifica-

tion Error plots on MegaDepth, of our PDC-Net with other

dense methods providing a confidence estimation, namely

DGC-Net [31] and RANSAC-Flow [42]. Our probabilis-

tic method PDC-Net produces uncertainty maps that much

better correspond to the true errors.

4.4. Pose and 3D Estimation

Finally, to show the joint performance of our flow and

uncertainty prediction, we evaluate our approach for pose

estimation. This application has traditionally been domi-

nated by sparse matching methods.

Pose estimation: Given a pair of images showing dif-

ferent view-points of the same scene, two-view geometry

estimation aims at recovering their relative pose. We fol-

low the standard set-up of [59] and evaluate on 4 scenes

of the YFCC100M dataset [49], each comprising 1000 im-

age pairs. As evaluation metrics, we use mAP for dif-
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(right) on MegaDepth. Smaller AUSE (in parenthesis) is better.
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ferent thresholds on the angular deviation between ground

truth and predicted vectors for both rotation and transla-

tion. Results are presented in Tab. 3. Our approach PDC-

Net outperforms the recent D2D [56] and obtains very sim-

ilar results than RANSAC-Flow, while being 12.2 times

faster. With our multi-scale (MS) strategy, PDC-Net outper-

forms RANSAC-Flow while being 3.6 times faster. Note

that RANSAC-Flow employs its own MS strategy, using

additional off-the-shelf features, which are exhaustively

matched with nearest neighbor criteria [29]. In compari-

son, our proposed MS is a simpler, faster and more uni-

fied approach. We also note that RANSAC-Flow relies on

a semantic segmentation network to better filter unreliable

correspondences, in e.g. sky. Without this segmentation,

the performance is drastically reduced. In contrast, our ap-

proach can directly estimate highly robust and generalizable

confidence maps, without the need for additional network

components. The confidence masks of RANSAC-Flow and

our approach are visually compared in Fig. 6e-6f.

Extension to 3D reconstruction: We also qualitatively

show the usability of our approach for dense 3D reconstruc-

tion. We compute dense correspondences between day-time

images of the Aachen city from the Visual Localization

benchmark [38, 39]. Accurate matches are then selected by

thresholding our confidence map, and fed to COLMAP [40]

to build a 3D point-cloud. It is visualized in Fig. 2.

4.5. Ablation study

Here, we perform a detailed analysis of our approach in

Tab. 4. As baseline, we use a simplified version of GLU-

Net, called BaseNet [52]. It is a three-level pyramidal net-

work predicting the flow between an image pair. Our prob-

abilistic approach integrated in this smaller architecture re-

sults in PDC-Net-s. All methods are trained using only the

first-stage training, described in Sec. 4.1.

Probabilistic model (Tab. 4, top): We first com-

pare BaseNet to our approach PDC-Net-s, modelling the

flow distribution with a constrained mixture of Laplace

(Sec. 3.2). On both KITTI-2015 and MegaDepth, our ap-

proach brings a significant improvement in terms of flow

metrics. Note also that performing pose estimation by tak-

ing all correspondences (BaseNet) performs very poorly,

which demonstrates the need for robust uncertainty estima-

tion. While an unconstrained mixture of Laplace already

drastically improves upon the single Laplace component,

mAP @5° mAP @10° mAP @20° Run-time (s)

Superpoint [6] 30.50 50.83 67.85 -

SIFT [29] 46.83 68.03 80.58 -

D2D [56] 55.58 66.79 - -

RANSAC-Flow (MS+SegNet) [42] 64.88 73.31 81.56 9.06

RANSAC-Flow (MS) [42] 31.25 38.76 47.36 8.99

PDC-Net 63.98 73.48 81.91 0.74

PDC-Net (MS) 65.20 74.51 83.04 2.55

Table 3. Two-view geometry estimation on YFCC100M [49].

KITTI-2015 MegaDepth YFCC100M

AEPE F1 (%) AUSE PCK-1 (%) PCK-5 (%) AUSE mAP @5° mAP @10°

BaseNet (L1-loss) 7.51 37.19 - 20.00 60.00 - 15.58 24.00

Single Laplace 6.86 34.27 0.220 27.45 62.24 0.210 26.95 37.10

Unconstrained Mixture 6.60 32.54 0.670 30.18 66.24 0.433 31.18 42.55

Constrained Mixture (PDC-Net-s) 6.66 32.32 0.205 32.51 66.50 0.210 33.77 45.17

Commun Dec. 6.41 32.03 0.171 31.93 67.34 0.213 31.13 42.21

Corr unc. module 6.32 31.12 0.418 31.97 66.80 0.278 33.95 45.44

Unc. Dec. (Fig 4) (PDC-Net-s) 6.66 32.32 0.205 32.51 66.50 0.210 33.77 45.17

BaseNet w/o Perturbations 7.21 37.35 - 20.74 59.35 - 15.15 23.88

BaseNet w Perturbations 7.51 37.19 - 20.00 60.00 - 15.58 24.00

PDC-Net-s w/o Perturbations 7.15 35.28 0.256 31.53 65.03 0.219 32.50 43.17

PDC-Net-s w Perturbations 6.66 32.32 0.205 32.51 66.50 0.210 33.77 45.17

Table 4. Ablation study. In the top part, different probabilistic

models are compared (Sec. 3.1-3.2). In the middle part, a con-

strained Mixture is used, and different architectures for uncertainty

estimation are compared (Sec. 3.3). In the bottom part, we analyze

the impact of our training data with perturbations (Sec. 3.4).

the permutation invariance of the unconstrained mixture

confuses the network, which results in poor uncertainty es-

timates (high AUSE). Constraining the mixture instead re-

sults in better metrics for both the flow and the uncertainty.

Uncertainty architecture (Tab. 4, middle): While the

compared uncertainty decoder architectures achieve similar

quality in flow prediction, they provide notable differences

in uncertainty estimation. Only using the correlation un-

certainty module leads to the best results on YFCC100M,

since the module enables to efficiently discard unreliable

matching regions, in particular compared to the common

decoder approach. However, this module alone does not

take into account motion boundaries. This leads to poor

AUSE on KITTI-2015, which contains independently mov-

ing objects. Our final architecture (Fig. 4), additionally inte-

grating the mean flow into the uncertainty estimation, offers

the best compromise.

Perturbation data (Tab. 4, bottom): While introduc-

ing the perturbations does not help the flow prediction for

BaseNet, it provides significant improvements in uncer-

tainty and in flow performance for our PDC-Net-s. This

emphasizes that the improvement of the uncertainty esti-

mates originating from introducing the perturbations, also

leads to improved and more generalizable flow predictions.

5. Conclusion

We propose a probabilistic deep network for estimating

the dense image-to-image correspondences and associated

confidence estimate. Specifically, we train the network to

predict the parameters of the conditional probability den-

sity of the flow, which we model with a constrained mixture

of Laplace distributions. Moreover, we introduce an archi-

tecture and improved self-supervised training strategy, de-

signed for robust and generalizable uncertainty prediction.

Our approach PDC-Net sets a new state-of-the-art on mul-

tiple geometric matching and optical flow datasets. It also

outperforms dense matching methods on pose estimation.
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