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Abstract

Robust model fitting is a core algorithm in a large num-

ber of computer vision applications. Solving this prob-

lem efficiently for datasets highly contaminated with out-

liers is, however, still challenging due to the underlying

computational complexity. Recent literature has focused

on learning-based algorithms. However, most approaches

are supervised (which require a large amount of labelled

training data). In this paper, we introduce a novel unsuper-

vised learning framework that learns to directly solve robust

model fitting. Unlike other methods, our work is agnostic

to the underlying input features, and can be easily gener-

alized to a wide variety of LP-type problems with quasi-

convex residuals. We empirically show that our method out-

performs existing unsupervised learning approaches, and

achieves competitive results compared to traditional meth-

ods on several important computer vision problems1.

1. Introduction

Many computer vision applications require the estima-

tion of a model from a set of observations [14]. In outlier-

free settings, fitting a geometric model to a dataset can be

performed relatively easily by, for example, solving a least

squares problem. However, in the presence of outliers in the

data, a robust estimator [11, 15] must be employed to ensure

the stable performance of any algorithm. As an example,

consider SLAM [24], which is now a fundamental building

block in several robotic or autonomous driving pipelines. It

requires multiple estimations of the fundamental/essential

matrices (between the consecutive views, captured along

the camera trajectory). In many circumstances, erroneous

correspondences between the frames could lead to incor-

rect camera pose estimation. Consequently, if the outliers

are not removed, the whole tracking trajectory could be

severely affected. Therefore, it is desirable to design ro-

1Code is available at: https://github.com/hagianga21/
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Figure 1: Illustration of the solutions found by our unsu-

pervised learning method (right) and a globally optimal al-

gorithm [4] (left). The number shows the specific index

of points in the point set. The admissible heuristic in A*

method brings the search into some fruitless subparts (green

line) before discovering optimal solution (red line). Our

agent learns to remove outliers by traversing from the ini-

tial state to the goal state in the minimal number of steps

(the states are numbered based on the index of the removed

point). Observe that both methods terminate at the same

solution (i.e., both remove the same set of outliers).

bust fitting algorithms that are highly accurate and able to

achieve real-time performance. This is a challenging task,

as solving robust fitting optimally has been shown to be NP-

hard [3, 5].

In addition to popular methods such as Random Sam-

ple Consensus (RANSAC) [11] and a number of ran-

domized or deterministic variants [7, 6, 21, 17, 2, 4, 1],

the advent of deep learning in recent years has inspired

research in learning-based approaches for robust estima-

tion [30, 31, 23, 28, 8, 19]. The main idea behind these tech-

niques is to exploit the learning capabilities of deep Con-

volutional Neural Networks (CNNs) to directly regress the

robust estimates [19, 8], or quickly identify the outliers [23]

These approaches have demonstrated their superior perfor-

mance on many datasets, and hence, developing learning-

based robust estimators can be a promising research direc-

tion. However, most learning techniques mentioned above
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are supervised, hence they typically require a large amount

of labelled data. This potential bottleneck could be resolved

by either generating ground truth data automatically: by us-

ing synthetic data, or by using conventional methods (e.g.

RANSAC) to generate ground truth. However, these ”quick

fixes” have their own drawbacks. Specifically, a network

fully trained on synthetic data may not be able to generalize

well to real world scenarios since it has not been exposed to

real examples during training. Similarly, ground truth ob-

tained from classic conventional methods is not guaranteed

to be the gold standard as the obtained solutions may be in-

correct. One could, on the other hand, employ some global

consensus maximization methods [4] to generate the ground

truth, but this would be at the cost of an exceptionally slow

training process. Moreover, some methods are problem-

specific, and it is non-trivial to extend them to other robust

fitting tasks.

We address these problems and present a novel unsuper-

vised learning framework for robust fitting. Inspired by the

success of Reinforcement Learning (RL) in several unsu-

pervised tasks [22, 32], we cast our robust fitting problem

as a special case of goal oriented learning. Such a transfor-

mation is achieved thanks to the underlying tree structure

of consensus maximization [4, 18, 1]. Moreover, we also

propose a novel architecture that efficiently captures the in-

stantaneous state of the data during transition. Fig. 1 shows

an example of a 2D line fitting problem, where we plot the

trajectory of A* [4] (a globally optimal algorithm), and the

path traversed by our agent from the initial state to the goal

state. Observe that both remove the same set of outliers,

which demonstrates the learning capability of our network

to effectively explore the environment. Furthermore, in con-

trast to the implementation of A*, which explores redundant

bases before reaching the optimal, our network can quickly

identify the shortest path to reach the goal state, resulting in

significantly faster run times. (see Section. 3 for more de-

tail.) To the best of our knowledge, our work is the first to

learn a deep architecture model in a reinforcement learning

paradigm for consensus maximization in computer vision.

Contributions The main contributions of our paper can

be summarized as follows:

• We propose a novel unsupervised learning framework

for robust estimation. By exploiting the special struc-

ture (see Section. 3) of the problem under the consen-

sus maximization formulation, we incorporate robust

model fitting into the well-known goal-oriented rein-

forcement learning framework, resulting in an efficient

learning mechanism without any supervision.

• We develop a new state embedding scheme based on

a graph convolutional network, and an efficient back-

bone network that allows our agent to effectively ex-

plore the action space to achieve the goal state. (see

Section. 3.3 and Section. 3.4)

1.1. Related Work

Solving robust model fitting has a rich literature, where

the randomized method such as RANSAC [11] is consid-

ered to be the most popular approach because it is simple to

implement, and provides competitive results for many real

world problems. The sampling scheme behind RANSAC

has inspired many of its variants [21, 33, 6], but using them

on data highly contaminated with outliers still results in un-

satisfactory outcomes. In addition to the randomized vari-

ants whose purpose is to improve RANSAC, deterministic

schemes have also become popular [26, 25, 20, 2]. How-

ever, their use in real-time applications is still limited due to

their long processing time. On the other hand, algorithms

that offer globally optimal solutions are also under active

research [4, 1]. Despite their elegant algorithmic construc-

tions, which often do improve their run time, their general

long run time renders them impractical to use them for most

real-world applications.

Learning to fit robust models is an interesting idea that

has emerged in recent years, thanks to the learning capa-

bility of deep CNNs. Such methods have shown promising

results in several fitting tasks. Ranftl et al. [30] proposed a

deep network for fundamental matrix estimation by learning

the weights for the residuals. Learning to solve homography

estimation has also been addressed in [19]. The drawback

of these methods is that they are problem-specific, hence

extending to a more general class of model fitting instances

is not very trivial. The use of an attention mechanism for

robust feature matching has also been considered [23, 31].

The idea behind these approaches is to learn to classify cor-

rect inliers from the potentially contaminated set. Although

efficient, most learning-based approaches require a suffi-

ciently large amount of training data, which could make

them impractical in new environments.

Our work is closely related to the unsupervised learning

approach for consensus maximization proposed by Probst

et al. [28]. However, we take a different approach by ex-

ploiting the tree structure of the underlying fitting problem.

This allows us to easily train our network from scratch,

while [28] requires a certain supervised signal in order to

work effectively. We show that training our network from

scratch in an unsupervised fashion is straightforward and at

the same time the results are competitive when compared

with [28].

2. Background

2.1. Problem Formulation

While there exist different ways to formulate robust esti-

mates, our work uses the popular consensus set maximiza-

tion formulation [4]. The objective is to find an estimate

θ
∗ ∈ R

d that is consistent with as many of the observa-

tions X = {xi}
N
i=1 as possible, i.e., finding the maximum

number of inliers up to a predefined threshold ǫ:

10349



max
θ∈Rd,I⊆X

|I|

subject to r(xi|θ) ≤ ǫ, ∀xi ∈ X .
(1)

where r(xi|θ) is the residual of xi w.r.t model parameter

θ. The solution (I∗,θ∗) of (1) provides the optimal inlier

set I∗ that is consistent with the estimate θ
∗. Similar to

other consensus maximization approaches, we also focus

on quasi-convex residuals having the form [16],

r(θ) =
p(θ)

q(θ)
, (2)

where p(θ) ≥ 0 is a convex function and q(θ) > 0 is a lin-

ear function. The objectives of several vision problems pos-

sess such quasi-convexity [16]. In this paper, to assist visu-

alization of the mathematical concepts, most examples and

analyses will be based on the linear fitting problems, whose

residual functions are in fact convex, and can be written as

follows: given xi = (ai; bi) with ai ∈ R
d and bi ∈ R,

r(θ) = |aTi θ − bi|. (3)

2.2. Goal­Oriented Reinforcement Learning
Our proposed unsupervised learning approach for robust

estimation is based upon the well-known goal-oriented re-

inforcement learning (RL) framework [32], which is briefly

outlined in this subsection. This framework consists of an

agent A that aims to navigate in an environment to reach a

pre-defined goal, in the smallest number of steps, to maxi-

mize a total reward. Each time step is associated with a state

s(t). The agent can select an action a
(t)
i ∈ A

(t), where A(t)

is the set of actions that are available at time t. Based on

the action a taken by the agent, the environment will transi-

tion to a new state s(t+1) and return a reward rt(a), where

the reward function rt(.) depends on the particular applica-

tion. The goal of the framework is for the agent to reach

the pre-defined goal that maximizes the cumulative reward

(also known as return),
R =

∞
∑

t=t0

βt−t0rt, (4)

obtained from the initial state to the final state, where

βt−t0 is the discount factor to weight the importance of

the Q value at a particular time step. Commonly, deep Q

learning [22] is used in most RL frameworks, for the agent

to learn the optimal actions. In particular, Q learning is a

model-free RL method which learns the quality of actions

(for the agent to take appropriate action under a particular

circumstance). Deep Q-learning is the fundamental model

used in our work, and will be further outlined in Section. 3

3. Proposed Unsupervised Learning Approach
While RL has shown its strength in several applications,

applying it to robust estimation is by no means a trivial task.

The main challenges lie in the definition of: a state, reward

function, goal specification and the design of an agent that

can learn to efficiently explore the environment in an opti-

mal way. In this section, we introduce a novel framework

that enables the use of RL for our robust fitting problem.

Minimax Fit

Basis

Figure 2: Illustration of a minimax fitting problem for a

set of points in 2D. Blue dots represent measurements with

largest residual, which form the basis set.

3.1. Definitions
Given a set of measurements (observations) X =

{xi}
N
i=1, let us first consider the minimax fitting problem

that returns the estimate which minimizes the maximum

residual:

f(X ) = min
θ∈Rd,γ∈R

γ, s.t. r(xi|θ) ≤ γ ∀i,xi ∈ X . (5)

It can be proven that if the residual function r(xi|θ)
is quasi-convex, the above problem is also quasi-convex,

hence it can be solved efficiently up to global optimality us-

ing any off-the-shelf solver [16]. Fig. 2 shows an example

of the minimax fit of a set of points in 2D. This problem is

the core sub-problem in our learning framework.

Observe that if the optimal solution γ∗ obtained from

solving the above problem is not greater than the inlier

threshold, i.e., γ∗ ≤ ǫ, then the solution θ
∗ obtained

from (5) also solves the robust fitting problem (1) (there

are no outliers). Otherwise, the optimal consensus must be

a subset I∗ such that f(I∗) ≤ ǫ. Therefore, the goal of our

agent is to gradually remove a subset of outliers to reach the

subset I∗. Obviously, in order to maximize I∗, the number

of outliers removed by our agent must be minimized.

State. Under the RL framework, let us consider associ-

ating each subset S ⊆ X with a state sS (the detailed

construction of states for our network will be discussed

in the following sections), and set sX to the initial state

at which our agent will start the exploration process, i.e.,

s(t=0) = sX . From the above discussion, at a particular

state sS , if the action taken by our agent is to remove one

data point xj ∈ S such that f(S \ xj) < f(S), then the

task of the agent is to find the state sI such that f(I) ≤ ǫ in

the smallest number of steps (i.e., to minimize the number

of outliers removed). Refer to Fig. 3 for a visualization of a

state and its associated actions for a 2D fitting problem.

Goal and Reward Function. We therefore define our

goal state, based on the RL framework discussed in the pre-

vious section, as a state sS such that f(S) ≤ ǫ. Also, we

can now define a reward function e(.) associated with a state

sS to be

e(sS) =

{

0 if f(S) ≤ ǫ

− 1 otherwise.
(6)
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Figure 3: Visualization of states and actions. The initial

state corresponds to the minimax fit of the original point

set. The action, associated a particular state, consists of

removing a point in the basis set and conduct minimax fit

for the remaining points.

As can be observed, the maximized total reward obtained by

our agent, using reward function (6), corresponds to mov-

ing from the initial state to the goal state in the minimum

number of steps.

3.2. Generating Action Sets
As previously discussed, the available actions associated

with a particular state sS corresponds to the removal of

points xj ∈ S such that f(S \ xj) < f(S). One could

test all the points in S to generate the action set. However,

such exhaustive testing turns out to be unnecessary for our

problem. To reduce the number of available actions at each

state, we exploit a special property of our application as fol-

lows.

Assume θS is the solution of (5) for a set S . Let us con-

sider the set BS containing points having the largest residu-

als,
BS = {xj ∈ S|r(xj |θS) = f(S)} (7)

Following the terminology in [4, 1], we also call BS a basis

of the set S . In the example shown in Figure 2, the basis for

a 2D-line fitting problems w.r.t. to the current estimate are

the points plotted in blue.

Given BS , one can prove (see [4, 1]) that,

f(S \ xj) < f(S), ∀xj ∈ BS . (8)

Intuitively, removing a point belonging to the basis set

guarantees the reduction of the minimax fit for the remain-

ing set (see Figure 3). This suggests that the actions associ-

ated with a state sS corresponds to the removal of a point in

BS , and conduct minimax fit for the remaining points. Fig-

ure 3 visually illustrates how the actions can be generated

from a particular state.

Moreover, for quasi-convex residuals in d dimension, the

maximum size of BS is proven to be |BS | ≤ d+1( see [9]).

Therefore, at a particular state, the maximum number of

available actions in our cases is d+1. This property signifi-

cantly reduces the action space for our learning framework,

and is one of the key factors that leads to the efficacy of our

learning scheme.

3.3. State Encoding

In order to use the states above as the inputs to our net-

work, they first need to be properly encoded. Based on the

above discussion, the crucial information for a state sS con-

sist of the point set S together with its basis BS (which also

stores the information about the available actions associated

with sS ). To enrich the information for sS , our state encod-

ing also comprises the set VS = X \S . Clearly, VS encodes

the agent’s state traversal history before reaching the state

sS . Given S , BS and VS , we construct a matrix SS to feed

it into our network.

To encode BS and VS , we define two binary vectors

bS ∈ {−1, 1}
N and vS ∈ {−1, 1}

N , respectively, defined

as follows (we use the notation x[i] to denote the ith com-

ponent of a vector x),

bS [i] =

{

1 if xi ∈ BS

−1 otherwise.
and vS [i] =

{

1 if xi ∈ VS

−1 otherwise.

(9)

Therefore, each state sS can now be encoded by the matrix

SS ,
SS = [H bS vS ] , (10)

where H is the matrix that collects all the data points in

the input set X . More specifically, we set the i-th row of

the matrix H to h(xi), where h(.) being any mapping that

can well represent the information of a given input xi. For

example, in linear fitting, h (xi = (ai, bi)) can be simply

chosen to be h(xi) = [aTi bi] (i.e., h concatenates ai and bi
to make a row vector).

Note that since our state involves point sets, one expects

our network to be permutation invariant w.r.t. the input S .

In other words, changing positions of the rows in the matrix

SS does not affect the output of our network. Such permu-

tation invariance can be achieved by using the graph CNN

architecture, described in the following section.

3.4. Network (Agent) Design

Similar to other RL problems, our agent needs to learn

to traverse from the initial state, to the goal state, in such

a way that the total rewards is maximized (in the smallest

number of steps). This section describes our agent design,

which is also illustrated in Figure 4.

The network takes as input a particular state (encoding

using the method described in Section 3.3), and outputs the

predicted rewards for the actions associated with the input

state. We use Θ to represent the network parameters, we de-

note by Q̂(s(t), a|Θ) the action-value function that returns

the optimal reward if the action a is taken given the current

state s(t). In other words, the selected action given a current
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Figure 4: Illustration of our proposed framework. Top row shows the (unrolled) operations (we use an instance of 2D line

fitting as an example). Given a set of measurements, minimax is performed to obtain the initial state. Then, the state is

encoded into a graph representation which is fed to the agent to predict the expected Q value (returns) of choosing each point

in basis to eliminate. The agent then performs an action, receives a reward and moves to the next state. This process iterates

until the agent reaches the goal state. Bottom row depicts the design of our network (agent).

state s(t) is the action that maximizes Q̂, i.e.,

a = argmax
a∈A(BS)

Q̂(s(t), a|Θ), (11)

where we useA(BS) to denote the set of actions associated

with the removals of points in the basis set BS as described

in Section 3.2.

In order to achieve permutation invariance of the input,

we design the first stage of our network (shown in the Deep

Feature Extraction (DFE) block in Figure 4) to be a series

of Edge Convolution (EdgeConv) Layers [34], which was

originally inspired from PointNet [29]. We employed the

EdgeConv layer because, unlike PointNet, it has the abil-

ity to capture local geometric structures, by taking into ac-

count the nearest neighbors of each single input (interested

readers are referred to [34] for more detail), hence more

information can be extracted to improve the learning capa-

bility. The main role of this DFE block is to capture the

relationship between every single input data point and its

local geometric structure. Then, the ’global set feature’ is

obtained from the Global Feature block shown in Figure 4.

The repeated concatenation of the global feature with the

individual input features is then fed in to a multi-layer per-

ceptron (MLP) to obtain the expected rewards. We then

apply a mask to extract only rewards for points in BS .

3.5. Learning algorithm

Based on the components discussed above, this section

introduces our general learning algorithm, which is summa-

rized in Algorithm 1. Our learning framework relies on the

popular deep Q-learning approach that has been used exten-

sively in several other RL applications. The training is re-

peated over multiple episodes. At the start of each episode,

a set of measurements X containing N data points (with

N fixed throughout the training process) is randomly sam-

pled from the training set. Note that the outlier rates in X
is randomly chosen to be in the range from 1% to 40% for

each episode. A minimax fit (5) is then performed on X to

obtain the initial state sX . Starting from sX , our agent ex-

plores the search space by passing through multiple states

until reaching the goal state. During the training process,

the action taken at each state is sampled based on the popu-

lar ε - greedy policy [22]. After taking an action, the agent

receives the reward computed based on (6) and moves to

next state. The the network parameters are then updated

based on the well-known Bellman’s equation [22],

Q̂(s(t), a|Θ) = e(st) + γ max
a∈A(BS)

Q̂(s(t+1), a|Θ). (12)

Therefore, the network parameters are updated by minimiz-

ing the temporal difference error δ defined by

δ = ρ(e(st) + γ max
a∈A(BS)

Q̂(s(t+1), a|Θ)− Q̂(s(t), a|Θ)),

(13)

where we choose ρ to be the Huber loss [15]. When the

agent reaches the goal state (i.e., f(S) ≤ ǫ), another set

of measurements X is taken and a new episode is started.

As we use the popular PyTorch framework to implement

our network, the optimization of (13) to update the network

parameters can be performed by the off-the-shelf gradient-
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Algorithm 1 Main algorithm.

1: Initialize experience relay memoryM
2: for episode e = 1 to L do

3: Take a set of putative measurements X = {xi}
N
i=1

4: Obtain maximum residual f(S) and basis BS by

solving (5)

5: Initialize first state s(t=0)

6: while (f(S) > ǫ) do

7:

at =







random action a ∈ A(BS), w.p.ε

argmax
a∈A(BS)

Q̂(s(t), a|Θ), otherwise

8: Get reward e(st)) and move to next state st+1

9: Add tuple (st, at, st+1, e(st)) toM
10: Sample random batch fromM
11: Update network parameter Θ
12: end while

13: end for

Algorithm 2 Local Tree Refinement

Require: Input data X , initial solution S0

1: t← 0, improved← True

2: while improved do

3: Ŝ(t) ← X \ S(t), improved← False

4: for xj ∈ Ŝ
(t) do

5: if f(S(t) ∪ xj) ≤ ǫ then

6: S(t) ← S(t) ∪ xj ; improved← True.

7: end if

8: end for

9: t← t+ 1.

10: end while

based solvers. More information about the choices of train-

ing parameters can be found in the supplementary material.

3.6. Local Tree Refinement

Recall from previous sections that the solution returned

by our network is a set S∗ such that f(S∗) ≤ ǫ. Since

the proposed algorithm is sub-optimal, the consensus size

obtained from S∗ could be less than the optimal solution

I∗, i.e., |S∗| ≤ |I∗|, where I∗ is the solution of Prob-

lem (1). To partially overcome this, we propose a simple

heuristic in order to gradually improve our obtained solu-

tion, which is summarized in Algorithm 2. Intuitively, start-

ing from the initial solution St1=0 = S∗ (note that we use

t1 to avoid confusion with the state index t used in the pre-

vious sections), we test all points xj in the current outlier

set Ŝt1 = X \ St1 and add points that lead to consensus

size improvement, i.e., f(St1 ∪ xJ) ≤ ǫ. This process is

repeated until no more points can be added.

4. Experiments
All experiments were executed on an Ubuntu machine

with an Intel Core 3.70GHz i7 CPU, 32Gb RAM and a

Geforce GTX 1080Ti GPU. Our network is implemented

in Python using the popular PyTorch [27] and Torch Ge-

ometric [10]. We present the main results in this section.

A keen reader can refer to the supplementary material for

implementation details.

Baseline Algorithms. We compare our method against

the following: Original A* tree search [4], A*- Non-

Adjacent Path Avoidance (NAPA) with Dimension Insensi-

tive Branch Pruning (DIBP) [1], RANSAC [12], and Local

Optimization for RANSAC (LO-RANSAC) [21]. In addi-

tion, we also run a random baseline (RB) approach, where at

each state, the agent takes an action randomly until reach-

ing a goal state. The objective of comparing with RB is

to show that our network traverses the path intelligently as

opposed to taking random guesses. For fundamental ma-

trix estimation experiments, we also compare our method

with the state-of-the-art unsupervised approach for consen-

sus maximization introduced by Probst et al. [28]2 (since

only the source code for fundamental estimation is publicly

available, we did not compare against [28] in the line and

plane fitting experiments).

In order to have a fair comparison, for each problem in-

stance, we allowed the RANSAC variants to take equal (or

longer) run times compared to the run time required by our

method.

4.1. Robust Line And Plane Fitting

We first test the algorithms on robust 2D and 3D linear

fitting with synthetic data (with various outlier rates) in or-

der to evaluate their performance in a well-controlled set-

ting.

Robust 2D Line Fitting. To create data (for both training

and testing), we randomly generate N (where N is chosen

to be 100 and 200) points ai ∈ R, and a line parameter

θ̂ ∈ R
2. From {ai} and θ̂, we obtain the set bi ∈ R by

computing bi = aiθ1 + θ2. Of the N points in total, No are

randomly chosen to be outliers by corrupting their bi with a

uniformly distributed noise between [−5,−0.1) ∪ (0.1, 5],
while the remaining N − No points are perturbed with a

uniform noise in the range [−0.1, 0.1]. The inlier threshold

is set to ǫ = 0.1. When training, we vary the outlier rate

from 1 to 40%. We compare the performance of our net-

work against the random baseline models, and Original A*.

Our method and all randomized methods were executed 100
times.

We report our results in the form of boxplots to summa-

rize important statistical information, including the median,

the variance, and the extreme cases of the data. Since op-

timal solutions from A* are available in this experiment,

2We used the source code provided by the authors with default settings
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(a) N = 100 (b) N = 200

Figure 5: 2D line fitting on (a) 100 and (b) 200 points, with various outlier rates. Left: Distribution of distance between

predicted consensus and global solution (obtained using A*) with baseline models. Right: Run-time(s) of our method

compared to optimal methods (A*).

(a) N = 100 (b) N = 200

Figure 6: 3D plane fitting on (a) 100 and (b) 200 points, with various outlier rate. Left: Distribution of distance between

predicted consensus and global solution (obtained using A*) with random baseline model. Right: Run-time(s) of our method

compared to the optimal method (A*).

we use them as the gold standard to test the quality of the

obtained consensus sets. The box plot in Fig. 5a (left) de-

picts the differences in the consensus sizes between A* and

other methods for N = 100 points. As shown, our method

consistently obtains almost optimal solutions, while the so-

lutions provided by RANSAC and LO-RANSAC are rather

unstable over the runs (and unsatisfactory for higher outlier

rates). Fig. 5a (right) shows the run times for all methods.

Observe that, compared to A*, our run times are an order-

of-magnitude faster. Also note that the run time of A*-

NAPA-BIDP [1] increases exponentially with higher outlier

rate. On the other hand, although we allow RANSAC and

LO-RANSAC [21] to run longer than ours, we still achieve

much better results. We verify the robustness and general-

ization of our framework by testing it with double the num-

ber of points (N = 200) and higher outlier rates (up to 80%)

without retraining the model. The same conclusions can be

drawn from Fig. 5b.

Robust 3D Plane Fitting. A setting similar to the 2D Fit-

ting experiment (above) is repeated for 3D plane fitting,

which also has many practical applications in computer vi-

sion. Fig. 6 shows the performance comparison between

our proposed method and a simple random baseline model

for N = 100 and N = 200. One can see that our proposed

method actually learns something, compared to a random

method that has “no knowledge”. We also verify the ro-

bustness and generalization of our framework by testing it

with double the number of points (N = 200) and higher

outlier rate without retraining the model. On average, our

proposed method usually achieves optimal solution with a

much faster run-time, compared to the A* methods. More-

over, as shown in Fig. 6, given a less time budget, our model

returns optimal solutions that RANSAC-based approaches

never return.

4.2. Linearized Fundamental Matrix Estimation

We also test the algorithms on fundamental matrix esti-

mation with linearized residuals, following the settings used

in state-of-the-art [4, 2]. For this experiment, we also com-

pare our algorithm with the state-of-the-art unsupervised

learning approach ULCM [28]. It is important to highlight

the fact that in these experiments it is very difficult to obtain

the ground truth, as it is impractical to apply the global op-

timal methods (like A* and its derivatives), since they take

took too long to arrive at an optimal solution. Therefore, we

use the consensus size as the evaluation metric.

ModelNet40 Dataset First, we use data from the Model-

Net40 [35] dataset to train and evaluate our model. Two-

view pairs are generated by projecting the point clouds on

two image planes having different focal lengths and extrin-

sic camera parameters. For each image pair, N = 100 cor-

respondences with outlier rates ranging from 10% to 50%
are generated for training and testing. The inlier threshold

is chosen as ǫ = 0.1. The left plot in Fig. 7a compares the
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(a) ModelNet40 Dataset. (b) KITTI Dataset.

Figure 7: Linearized Fundamental Matrix Estimation. Left: Consensus size comparison. Right: Run time(s) in log scale.

Figure 8: Qualitative results for robust fundamental matrix. Top: Ours; Middle: RANSAC; Bottom: UCLM

average consensus size on various outlier rate. The run time

of A*-NAPA-DIBP [1] increases exponentially with higher

outlier rates. On average, with less time budget, we gener-

ally obtain higher consensus sets, compared to RANSAC-

based methods. Although the state-of-the-art unsupervised

deep learning method, ULCM [28] might be comparatively

inexpensive, our method is still able to perform better and

achieve higher consensus size.

KITTI Dataset We repeat the robust fundamental fitting

experiment on one sequence of KITTI dataset [13]. We

compute and match SIFT keypoints using the VLFeat tool-

box3. The inlier threshold is chosen as ǫ = 0.01. Fig. 7b

plots the consensus sizes obtained by our method in com-

parison with RANSAC and ULCM [28].

As seen, our method generally achieves higher consen-

sus sizes compared to ULCM [28]. When compared to

RANSAC, although our spread is larger, we have a smaller

variance and higher median consensus size. This means

that our method only occasionally returns the worst extreme

case. We believe that our method can be improved in future

work by designing better network architectures to address

3http://vlfeat.org

such outlying scenarios. We also visualize the solutions

qualitatively in Fig. 8 for the three methods. The visualiza-

tion is consistent with the results shown in Fig. 7b, where

our method achieves inlier sets with higher quality.

5. Conclusion
We have presented in this work a novel unsupervised re-

inforcement learning framework for robust estimation. By

exploiting the problem structure, we propose an efficient

state encoding, and a back-bone network, that enables our

agent to effectively learn to explore the search tree. Our

approach can be applied in many traditional pipelines (e.g.

Structure from Motion), which require the estimation of

pairwise fundamental or homography matrices. In future,

our work can be extended to other robust fitting tasks in

SfM such as registration, 2D-3D matching, etc. and with

larger scale datasets.
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