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Figure 1: Regularizing GANs under limited training data. (left) Image generation trained on 10% ImageNet training set;

(right) FID scores vs. ImageNet training set size. The proposed regularization method 1) addresses the limited training data

issue for the GAN models, and 2) is empirically complementary to the recent data augmentation approaches [28, 71].

Abstract

Recent years have witnessed the rapid progress of gen-

erative adversarial networks (GANs). However, the success

of the GAN models hinges on a large amount of training

data. This work proposes a regularization approach for

training robust GAN models on limited data. We theoret-

ically show a connection between the regularized loss and

an f -divergence called LeCam-divergence, which we find

is more robust under limited training data. Extensive ex-

periments on several benchmark datasets demonstrate that

the proposed regularization scheme 1) improves the gener-

alization performance and stabilizes the learning dynamics

of GAN models under limited training data, and 2) comple-

ments the recent data augmentation methods. These proper-

ties facilitate training GAN models to achieve state-of-the-

art performance when only limited training data of the Ima-

*Work done during HY’s internship at Google Research.

geNet benchmark is available. The source code is available

at https://github.com/google/lecam-gan.

1. Introduction

Generative adversarial networks (GANs) [2, 7, 13, 44]

have made significant progress in recent years on synthe-

sizing high-fidelity images. The GAN models are the cor-

nerstone techniques for numerous vision applications, such

as data augmentation [11, 12], domain adaptation [18, 19],

image extrapolation [60], image-to-image translation [20,

34, 75], and image editing [1, 4, 21, 63].

The success of the GAN methods heavily relies on a

large amount of diverse training data which is often labor-

expensive or cumbersome to collect [65]. As the example

of the BigGAN [7] model presented in Figure 1, the perfor-

mance significantly deteriorates under the limited training

data. Consequently, several very recent approaches [28, 71,
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73] have been developed to address the data insufficiency

issue. A representative task in this emerging research direc-

tion aims to learn a robust class-conditional GAN model

when only a small proportion of the ImageNet data [54]

are available for the training. Generally, existing methods

exploit data augmentation, either conventional or differen-

tiable augmentation, to increase the diversity of the limited

training data. These data augmentation approaches have

shown promising results on several standard benchmarks.

In this paper, we address the GAN training task on lim-

ited data from a different perspective: model regularization.

Although there are numerous regularization techniques for

the GAN models in the literature [14, 45, 47, 57, 74], none

of them aim to improve the generalization of the GAN mod-

els trained on limited data. In contrast, our goal is to learn

robust GAN models on limited training data that can gener-

alize well on out-of-sample data. To this end, we introduce

a novel regularization scheme to modulate the discrimina-

tor’s prediction for learning a robust GAN model. Specif-

ically, we impose an ℓ2 norm between the current predic-

tion of the real image and a moving average variable that

tracks the historical predictions of the generated image, and

vice versa. We theoretically show that, under mild assump-

tions, the regularization transforms the WGAN [2] formu-

lation towards minimizing an f -divergence called LeCam-

divergence [33]. We find that the LeCam-divergence is

more robust under the limited training data setting.

We conduct extensive experiments to demonstrate the

three merits of the proposed regularization scheme. First,

it improves the generalization performance of various GAN

approaches, such as BigGAN [7] and StyleGAN2 [29]. Sec-

ond, it stabilizes the training dynamics of the GAN models

under the limited training data setting. Finally, our reg-

ularization approach is empirically complementary to the

data augmentation methods [28, 71]. As presented in Fig-

ure 1, we obtain state-of-the-art performance on the limited

(e.g., 10%) ImageNet dataset by combining our regulariza-

tion (i.e., RLC) and the data augment method [71].

2. Related Work

Generative adversarial networks. Generative adversarial

networks (GANs) [2, 7, 13, 25, 29, 44, 68] aim to model

the target distribution using adversarial learning. Various

adversarial losses have been proposed to stabilize the train-

ing or improve the convergence of the GAN models, mainly

based on the idea of minimizing the f -divergence between

the real and generated data distributions [50]. For exam-

ple, Goodfellow et al. [13] propose the saturated loss that

minimizes the JS-divergence between the two distributions.

Similarly, the LSGAN [44] formulation leads to minimizing

the χ2-divergence [51], and the EBGAN [70] approach op-

timizes the total variation distance [2]. On the other hand,

some models are designed to minimize the integral proba-

bility metrics (IPM) [48, 58], such as the WGAN [2, 14]

frameworks. In this work, we design a new regularization

scheme that can be applied to different GAN loss functions

for training the GAN models on the limited data.

Learning GANs on limited training data. With the ob-

jective of reducing the data collection effort, several stud-

ies [15, 65] raise the concern of insufficient data for train-

ing the GAN models. Training the GAN models on lim-

ited data is challenging because the data scarcity leads to

the problems such as unstable training dynamics, degraded

fidelity of the generated images, and memorization of the

training examples. To address these issues, recent meth-

ods [28, 62, 69, 71, 72, 73] exploit data augmentation as a

mean to increase data diversity, hence preventing the GAN

models from overfitting the training data. For example,

Zhang et al. [69] augment the real images and introduce a

consistency loss for training the discriminator. The DA [71]

and ADA [28] approaches share a similar idea of applying

differential data augmentation on both real and generated

images, in which ADA further develops an adaptive strat-

egy to adjust the probability of augmentation. In contrast

to prior work, we tackle this problem from a different per-

spective of model regularization. We show that our method

is conceptually and empirically complementary to the exist-

ing data augmentation approaches.

Regularization for GANs. Most existing regularization

methods for GAN models aim to accomplish two goals: 1)

stabilizing the training to ensure the convergence [45, 46],

and 2) mitigating the mode-collapse issue [55]. As the GAN

frameworks are known for unstable training dynamics, nu-

merous efforts have been made to address the issue using

noise [22, 57], gradient penalty [14, 30, 45, 53], spectral

normalization [47], adversarial defense [74], etc. On the

other hand, a variety of regularization approaches [5, 8, 41,

43, 59, 67] are proposed to alleviate the model-collapse is-

sue, thus increasing the diversity of the generated images.

Compared with these methods, our work targets a differ-

ent goal: improving the generalization of the GAN models

trained on the limited training data.

Robust Deep Learning. Robust deep learning aims to pre-

vent the deep neural networks from overfitting or mem-

orizing the training data. Recent methods have shown

successes in overcoming training data bias such as label

noise [3, 16, 23, 24, 52, 40, 49, 66] and biased data dis-

tributions [56, 10, 35, 38, 9]. Recently, few approaches [6,

26, 27, 61] have been proposed for learning the robust GAN

model. While these approaches are designed to overcome

label or image noise in a corrupted training set, we improve

the generalization of the GAN models trained on the limited

uncorrupted training data.
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Figure 2: Algorithmic overview. During the GAN training stage, we use the exponential moving average variables, called

anchors, to track the discriminator predictions. The anchors are then used to compute the regularized discriminator loss

described in Eq. (3) to improve the generalization performance of the GAN models.

3. Methodology

We first review the GAN models, then detail our regular-

ization scheme. Finally, we discuss the connection between

the proposed method and the LeCam-divergence along with

the effect on robust learning under the limited data setting.

3.1. Generative Adversarial Networks

A GAN model consists of a discriminator D and a gener-
ator G. Let VD and LG denote the training objectives of the
discriminator D and generator G, respectively. The training
of the GAN frameworks can be generally illustrated as:

max
D

VD, VD= E
x∼T

[

fD(D(x))
]

+ E
z∼pz

[

fG(D(G(z)))
]

(1)

min
G

LG, LG= E
z∼pz

[

gG(D(G(z)))
]

, (2)

where pz is the prior distribution (e.g., N (0, I)) and T is

the training (observed) image set used to approximate the

data distribution. The notations fD, fG, and gG in Eq. (2)

represent the mapping functions from which various GAN

losses can be derived (cf. [39]).

3.2. Regularizing GANs under Limited Data

Our goal is to improve the performance of the GAN

models when the training set T merely contains a limited

amount of data, as the example shown in Figure 1. Different

from the existing data augmentation methods [28, 71], we

approach this problem by incorporating the regularization

on the discriminator. We present the overview of the pro-

posed method in Figure 2. The core idea is to regulate the

discriminator predictions during the training phase. Specif-

ically, we introduce two exponential moving average [32]

variables αR and αF , called anchors, to track the discrim-

inator’s predictions of the real and generated images. The

computation of the anchors αR and αF is provided in the

supplementary document. We then use the identical objec-

tive LG described in Eq. (2) for training the generator, and

minimize the regularized objective LD for the discrimina-

tor:

min
D

LD, LD = −VD + λRLC(D), (3)

where RLC is the proposed regularization term:

RLC= E
x∼T

[

‖D(x)−αF ‖
2
]

+ E
z∼pz

[

‖D(G(z))−αR‖
2
]

. (4)

At first glance, the objective in Eq. (3) appears counterintu-

itive since the regularization term RLC pushes the discrim-

inator to mix the predictions of real and generated images,

as opposed to differentiating them. However, we show in

Section 3.3 that RLC offers meaningful constraints for opti-

mizing a more robust objective. Moreover, we empirically

demonstrate in Section 4 that with the appropriate weight λ,

this simple regularization scheme 1) improves the general-

ization under limited training data, and 2) complements the

existing data augmentation methods.

Why moving averages? Tracking the moving average of

the prediction reduces the variance across mini-batches and

stabilizes the regularization term described in Eq. (4). In-

tuitively, the moving average becomes stable while the dis-

criminator’s prediction gradually converges to the station-

ary point. We find this holds for the GAN models used in

our experiments (e.g., Figure 8). We illustrate a general case

of using two moving average variables αR and αF in Fig-

ure 2. In some cases, e.g., in theoretical analysis, we may

use a single moving average variable to track the predictions

of either real or generated images.

3.3. Connection to LeCam Divergence

We show the connection of the proposed regularization

to the WGAN [2] model and an f -divergence called LeCam

(LC)-divergence [33] or triangular discrimination [64]. Un-

der mild assumptions, our regularization method can en-

force WGANs to minimize the weighted LC-divergence.

We show that the LC-divergence 1) can be used for train-

ing GAN models robustly under limited training data, and

2) has a close relationship with the f -divergences used in

other GAN models [13, 44, 70].
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Figure 3: Comparison of various f -divergences. The x-
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in the f -divergence in Eq. (5). For extremely large or small

inputs of P (x)/Q(x), LeCam-divergence yields the most

robust values of f(P (x)/Q(x)). The weighted LeCam-

divergence is plotted where the weight is 1

2λ
− α = 1

4
.

We first revisit the definition of the f -divergence. For

two discrete distributions Q(x) and P (x), an f -divergence

is defined as:

Df (P‖Q) =
∑

x

Q(x)f(
P (x)

Q(x)
) (5)

if f is a convex function and f(1) = 0. The f -

divergence plays a crucial role in GANs as it defines

the underlying metric to align the generated distribution

pg(x) and data distribution pd(x). For instance, Goodfel-

low et al. [13] showed that the saturated GAN minimizes

the JS-divergence [37] between the two distributions:

C(G) = 2JS(pd‖pg)− log(4), (6)

where C(G) is the virtual objective function for the

generator when D is fixed to the optimal. Similarly,

the LSGAN [44] method leads to minimizing the χ2-

divergence [51] and the EBGAN [70] scheme minimizes

the total variation distance [2].

More recently, the Wasserstein distance [2], which does

not belong to the f -divergence family, introduces a differ-

ent distribution measurement. However, the performance

of WGANs and similar models, e.g., BigGAN [7], deterio-

rates when the training data is limited. We show that incor-

porating the proposed regularization into these GAN mod-

els improves the generalization performance, especially un-

der limited training data. Next, we show the connection

between the regularized WGANs and LC-divergence.

Proposition 1. Consider the regularized objective in

Eq. (3) for the WGAN [2], where RLC is with a single an-

chor and λ > 0. Assume that with respect to a fixed genera-

tor G, the anchor converges to a stationary value α (α > 0).

Let C(G) denote the virtual objective function of the gener-

ator for the fixed optimal D. We have:

C(G) = (
1

2λ
− α)∆(pd‖pg), (7)

where ∆(P‖Q) is the LeCam (LC)-divergence aka the tri-

angular discrimination [33] given by:

∆(P‖Q) =
∑

x

(P (x)−Q(x))2

(P (x) +Q(x))
. (8)

Since the divergence is non-negative, we need λ < 1

2α
,

which indicates the regularization weight should not be too

large. The proof is given in the supplementary materials.

We note that the analysis in Proposition 1, which uses only

a single anchor, is a simplified regularizer of our method de-

scribed in Section 3.2. To achieve better performance and

more general applications, we use 1) two anchors and 2)

apply the regularization term to the hinge [7, 36] and non-

saturated loss [13, 29] in the experiments. We note this is

not a rare practice in the literature. For example, Goodfel-

low et al. [13] show theoretically the saturated GAN loss

minimizes the JS-divergence. However, in practice, they

use the non-saturated GAN for superior empirical results.

After drawing the connection between LC-divergence

and regularized WGANs, we show that the LC-divergence

is a robust f -divergence when limited data is available.

Figure 3 illustrates several common f -divergences, where

the x-axis plots the input to the function f in Eq. (5),

i.e., P (x)/Q(x), and the y-axis shows the function value

of f . Note that the input P (x)/Q(x) is expected to be er-

roneous when limited training data is available, and likely

to include extremely large/small values. Figure 3 shows

that the LC-divergence helps obtain a more robust function

value for extreme inputs. In addition, the LC-divergence

is symmetric and bounded between 0 and 2 which attains

the minimum if and only if pd = pg . These properties

demonstrate the LC-divergence as a robust measurement

when limited training data is available. This observation is

consistent with the experimental results shown in Section 4.

Proposition 2 (Properties of LeCam-divergence). LC-

divergence ∆ is an f -divergence with following properties:

• ∆ is non-negative and symmetric.

• ∆(pd‖pg) is bounded, with the minimum 0 when pd =
pg and the maximum 2 when pd and pg are disjoint.

• ∆-divergence is a symmetric version of χ2-divergence,

i.e., ∆(P‖Q) = χ2(P‖M) + χ2(Q‖M), where M =
1

2
(P +Q).

• The following inequalities hold [42]: 1

4
∆(P,Q) ≤

JS(P,Q) ≤ 1

2
∆(P,Q) ≤ 1

2
TV (P,Q), where JS

and TV represent JS-divergence and Total Variation.

Proposition 2 shows that the LC-divergence is closely

related to the f -divergences used in other GAN methods.

For example, it is a symmetric and smoothed χ2-divergence

used in the LSGAN [44]. The weighted ∆ lower bounds the

JS-divergence used in the saturated GAN [13] and the Total

Variation distance used in the EBGAN [70] approaches.
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Table 1: Quantitative results on the CIFAR dataset. We report the average FID scores (↓) of three evaluation runs. The

best performance is in bold and the second best is underscored.

Methods
CIFAR-10 CIFAR-100

Full data 20% data 10% data Full data 20% data 10% data

Non-saturated GAN [13] 9.83±0.06 18.59±0.15 41.99±0.18 13.87±0.08 32.64±0.19 70.50±0.38

LS-GAN [44] 9.07±0.01 21.60±0.11 41.68±0.18 12.43±0.11 27.09±0.09 54.69±0.12

RaHinge GAN [25] 11.31±0.04 23.90±0.22 48.13±0.33 14.61±0.21 28.79±0.17 52.72±0.18

BigGAN [7] 9.74±0.06 21.86±0.29 48.08±0.10 13.60±0.07 32.99±0.24 66.71±0.01

BigGAN + RLC (Ours) 8.31±0.05 15.27±0.10 35.23±0.14 11.88±0.12 25.51±0.19 49.63±0.16

F
ID

Non-saturated LS RaHinge

BigGAN BigGAN + 𝑅!" (Ours)

20% dataFull data

Figure 4: FID curves during the training on the CIFAR-

10 dataset. The proposed method 1) improves the best per-

formance, and 2) stabilizes the training dynamic of the Big-

GAN model under the limited (e.g., 20%) data setting.

4. Experimental Results

We conduct extensive experiments on several bench-

marks to validate the efficacy of our method on training the

leading class-conditional BigGAN [7] and unconditional

StyleGAN2 [29] models on the limited data.

Datasets. The CIFAR 10/100 [31] and ImageNet [54]

datasets are standard benchmarks for the image generation

models. The resolutions of the images in the CIFAR, Ima-

geNet datasets are 32x32, and 128x128, respectively.

Evaluation metrics. We use two common metrics: In-

ception Score (IS) [55] and Fréchet Inception Distance

(FID) [17]. Unless specified otherwise, we follow the eval-

uation protocol in the DA paper [71] that reports the average

and standard deviation values over three evaluation trials.

Setups. We conduct the CIFAR experiments using the Big-

GAN [7] framework implemented by Zhao et al. [71].1

We train the BigGAN model on TPU for the ImageNet

experiments.2 Finally, the StyleGAN2 [29] framework

is trained and evaluated using the implementation from

Zhao et al. [71] and Karras et al. [28].13 As for the hyper-

parameter settings, we use the decay factor of 0.99 for the

exponential moving average variables. We set the regular-

1https://github.com/mit-han-lab/data-efficient-gans
2https://github.com/google/compare_gan
3https://github.com/NVlabs/stylegan2-ada

Table 2: Comparison to GAN regularization methods.

We report the average FID (↓) scores on the CIFAR datasets.

Method
CIFAR-10 CIFAR-100

Full data 20% data Full data 20% data

BigGAN [7] 9.74±.06 21.86±.29 13.60±.07 32.99±.24

+ noise [57] 9.64±.06 21.87±.11 13.88±.07 32.38±.01

+ CR [69] 8.96±.10 20.62±.10 11.59±.05 36.91±.12

+ GP-0 [45] 10.30±.16 19.10±.08 14.67±.08 29.85±.04

+ RLC (Ours) 8.31±.05 15.27±.10 11.88±.12 25.51±0.19

ization weight λ to 0.3, 0.01 for the CIFAR, ImageNet ex-

periments, respectively.

Baselines. We compare three types of baseline methods

on the CIFAR datasets. The first group are GAN mod-

els that optimize various loss functions including non-

saturated [13], LS [44], and RaHinge [25]. Second,

we compare with three regularization methods: instance

noise [57], zero-centered gradient penalty (GP-0) [45] and

consistency regularization (CR) [69]. Finally, we compare

with two recent differentiable data augmentation methods

DA [71] and ADA [28] that address the limited data issue

for GANs. For the experiments on other datasets, we focus

on comparing with the state-of-the-art methods. For a fair

comparison, we compare the baseline methods under the

same GAN backbone using their official implementation on

each dataset, except Table 5 in which we cite the numbers

of [71] reported in the original paper.

4.1. Results on CIFAR­10 and CIFAR­100

As shown in Table 1, the proposed method improves

the generalization performance of the BigGAN model. The

comparison between other GAN models shows the compet-

itive performance of the proposed method, especially under

limited training data. These results substantiate that our reg-

ularization method minimizes a sensible divergence on lim-

ited training data. To further understand the impact on the

training dynamics, we plot the FID scores during the train-

ing stage in Figure 4. The proposed method stabilizes the

training process on limited data (i.e., FID scores deteriorate

in a later stage) and achieves the lowest FID score at the

final iteration (100K). This result suggests that our method

can stabilize the GAN training process on limited data.
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Table 3: Quantitative comparisons to data augmentation. We report the average FID (↓) scores of three evaluation runs.

Methods
CIFAR-10 CIFAR-100 StyleGAN

Full 10% Full 10% Full 1K

BigGAN [7] + DA [71] 8.75±0.05 23.34±0.28 11.99±0.10 35.39±0.16 - -

BigGAN + DA + RLC (Ours) 8.46±0.06 16.69±0.02 11.20±0.09 27.28±0.05 - -

StyleGAN2 [29] + ADA [28] 2.68±0.02 6.72±0.03 3.04±0.02 14.06±0.07 3.82±0.01 23.27±0.14

StyleGAN2 + ADA+ RLC (Ours) 2.47±0.01 6.56±0.02 2.99±0.01 13.01±0.02 3.49±0.04 21.70±0.06

Table 4: Quantitative results on the ImageNet dataset. We report the mean IS (↑) and FID (↓) scores of three training runs.

Methods
Full data 50% data 25% data

IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓

BigGAN [7] 90.48±12.7 8.60±1.08 80.26±5.55 9.83±0.94 61.05±6.43 18.22±2.59

BigGAN + RLC (Ours) 93.00±3.27 7.27±0.14 89.94±6.67 9.13±0.84 65.66±4.96 14.47±1.73

20% data

G
P

-0

BigGAN BigGAN + GP-0

BigGAN + !!" (Ours)

Full data

Figure 5: Zero-centered gradient penalty values. We vi-

sualize the values of zero-centered gradient penalty (GP-

0) [45] during the training stage. The proposed regulariza-

tion also constrains the values without explicitly minimiz-

ing the GP-0 loss.

We compare our method with three regularization meth-

ods: instance noise [57], GP-0 [45] and CR [69] in Table 2.

Notice that the spectral norm regularization [47] is used by

default in the BigGAN model [7]. For the GP-0 method, we

apply the gradient penalty only on real images. Our regu-

larization scheme performs favorably against these regular-

ization methods, particularly under the limited data setting.

Despite the improvement under the limited data, the GP-0

approach degrades the FID performance when using the full

training data. We note that a similar observation is raised in

the BigGAN paper [7]. In Figure 5, we visualize the GP-0

values of the models trained with the GP-0 and our meth-

ods during the training stage. Interestingly, the proposed

method also constrains the GP-0 values, although it does

not explicitly minimize the GP-0 loss.

Finally, we combine our regularization method with data

augmentation and show it is complementary to the recent

data augmentation methods [28, 71]. As presented in Ta-

ble 3, the proposed approach improves the performance of

DA and ADA, especially under the limited data settings.

Note that the data augmentation methods tackle the problem

from different perspectives and represent the prior state-of-

the-art on limited training data before this work.

4.2. Comparison to State­of­the­art on ImageNet

ImageNet [54] is a challenging dataset since it contains

more categories and images with higher resolution. Con-

sidering the variance of the model performance, we follow

the evaluation protocol in the BigGAN paper [7]. Specifi-

cally, we run the training/evaluation pipeline three times us-

ing different random seeds, then report the average perfor-

mance. We present the quantitative results in Table 4. The

proposed method improves the resistance of the BigGAN

model against the scarce training data issue (e.g., ↓ 3.75
in FID under 25% data). It is noteworthy that the per-

formance variance of our models is reduced in most cases

(e.g., 2.59 → 1.73 in FID under 25% data), suggesting its

capability in stabilizing the training process.

Table 5 demonstrates the quantitative results compared

to the state-of-the-art model that uses the DA [71] method.

Both the quantitative results and qualitative comparison

presented in Figure 6 validate that the proposed method

complements the data augmentation approach. We achieve

state-of-the-art performance on the limited (e.g., 10%) Ima-

geNet dataset by combining our regularization and the data

augment approaches.

4.3. Comparison with Data Augmentation

We use the StyleGAN dataset to conduct the experi-

ments.Experiment details are provided in the supplemen-

tary document. As presented in Table 3 and Table 6, the

proposed method improves the performance of the Style-

GAN2 model trained with(out) data augmentation [28] in

all cases. We note that different from BigGAN, the Style-

GAN2 model minimizes the non-saturated [13] GAN loss

and uses the gradient penalty GP-0 [45] in the default set-

ting. This shows that the proposed regularization scheme

can be applied to other GAN loss functions along with ex-

isting regularization approaches.

We make a comparison in Table 7 to summarize the

(dis)advantages of the data augmentation and our meth-

ods. First, the data augmentation approaches yield more
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Figure 6: Qualitative comparisons under limited training data. We show the generation results on the (top) 10% and

(bottom) 25% ImageNet dataset. The baseline models trained with our approach synthesize more realistic images.

Table 5: Comparison to the state-of-the-art on the limited ImageNet training data.. We train and evaluate the Big-

GAN [7] model following the same evaluation protocol in [71]. † denotes the result is quoted from [71].

Methods
Full data 50% data 25% data 10% data

IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓

DA [71] (Zhao et al.) 100.8±0.2
† 6.80±0.02

† 91.9±0.5
† 8.88±0.06

† 74.2±0.5
† 13.28±0.07

† 27.7±0.1 37.71±0.11

DA + RLC (Ours) 108.0±0.6 6.54±0.03 91.7±0.6 8.59±0.01 84.7±0.5 11.16±0.05 42.3±0.3 24.38±0.06

significant gain than the proposed method when the train-

ing data is extremely limited. Nevertheless, our method can

further improve the performance of data augmentation due

to the complementary nature of the two methods. Second,

the data augmentation approaches may degrade the per-

formance when the training images are sufficiently diverse

(e.g., the full dataset). This is consistent with the observa-

tion described in [28]. In comparison, our regularization

method may not suffer the same problem.

4.4. Analysis and Ablation Studies

We use the BigGAN model and the CIFAR-10 dataset to

conduct the analysis and ablation studies.

Regularization strength for RLC. We conduct a sensitive

study on the regularization weight λ. As shown in Fig-

ure 7(b), weights greater than 0.5 degrade the performance.

This agrees with our analysis in Eq. (7) that larger weights

λ result in negative divergence values. Generally, the pro-

posed method is effective when the weight λ is in a reason-

able range, e.g., [0.1, 0.5] in Figure 7(b).

Regularizing real vs. generated image predictions. Our

default method regularizes the predictions of both real im-

ages D(x) and generated images D(G(z)). In this exper-

iment, we investigate the effectiveness of separately regu-

larizing the two terms D(x) and D(G(z)). As shown in
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Table 6: Quantitative results of the StyleGAN2 [29] model. We report the average FID (↓) scores of three evaluation runs.

Method 70k images 30k images 10k images 5k images 1k images

StyleGAN2 [29] 3.79±0.02 6.19±0.05 14.96±0.05 25.88±0.09 72.07±0.04

StyleGAN2 + RLC (Ours) 3.66±0.02 5.78±0.03 14.58±0.04 23.83±0.11 63.16±0.11

Table 7: Comparisons with data augmentation methods.

We report the FID (↓) scores of the StyleGAN2 backbone.

Method Full data 1K data

StyleGAN2 [29] 3.71±0.01 72.07±0.04

+ DA [71] 4.21±0.03 25.17±0.09

+ ADA [28] 3.81±0.01 23.27±0.14

+RLC 3.66±0.02 63.16±0.11

+ ADA + RLC 3.49±0.04 21.70±0.06

Table 8: Ablation study on regularizing real vs. gener-

ated image predictions. We train and evaluate the Big-

GAN [7] model on the CIFAR-10 dataset, then report the

average FID (↓) scores.

Real Generated Full data 20% data

9.74±0.06 21.86±0.29

X 8.73±0.04 20.47±0.36

X 8.79±0.09 18.18±0.08

X X 8.31±0.03 15.27±0.10
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Figure 7: Different (a) model sizes and (b) regularization

strengths. The scores are computed on the (a) 10% and (b)

20% CIFAR-10 datasets.

Table 8, regularizing both terms achieves the best result.

Discriminator predictions. We visualize the discrimina-

tor predictions during training in Figure 8. Without regu-

larization, the predictions of real and generated images di-

verge rapidly as the discriminator overfits the limited train-

ing data. On the other hand, the proposed method, as de-

scribed in Eq. (4), penalizes the difference between predic-

tions of real and generated images, thus keeping the pre-

dictions in a particular range. This observation empirically

substantiates that the discriminator’s prediction gradually

converges to the stationary point, and so do the moving av-

erage variables αR and αF .

Model size. Since reducing the model capacity may allevi-

Full data 20% data
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Figure 8: Discriminator predictions. We visualize the

discriminator predictions from the BigGAN model on the

CIFAR-10 dataset during the training stage. The proposed

method prevents the predictions of real images D(x) and

generated images D(G(z)) from diverging under the lim-

ited (e.g., 20%) data setting.

ate the overfitting problem, we investigate the performance

of using a smaller model size for both generator and dis-

criminator. Figure 7(a) shows the results of progressively

halving the number of channels in both the generator and

discriminator. The improvement made by our method in-

creases with the model size, as the overfitting issue is more

severe for the model with higher capacity.

5. Conclusion and Future Work

In this work, we present a regularization method to train

the GAN models under the limited data setting. The pro-

posed method achieves a more robust training objective

for the GAN models by imposing a regularization loss to

the discriminator during the training stage. In the experi-

ments, we conduct experiments on various image genera-

tion datasets with different GAN backbones to demonstrate

the efficacy of the proposed scheme that 1) improves the

performance of the GAN models, especially under the lim-

ited data setting and 2) can be applied along with the data

augmentation methods to further enhance the performance.

In future, we plan the training data scarcity issue for 1) the

conditional GAN tasks such as image extrapolation, image-

to-image translation, etc, and 2) the robust GAN learning

on large-scale noisy training data.
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