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Abstract

GuessWhat?! is a visual dialog guessing game which in-

corporates a Questioner agent that generates a sequence

of questions, while an Oracle agent answers the respec-

tive questions about a target object in an image. Based

on this dialog history between the Questioner and the Ora-

cle, a Guesser agent makes a final guess of the target ob-

ject. While previous work has focused on dialogue pol-

icy optimization and visual-linguistic information fusion,

most work learns the vision-linguistic encoding for the three

agents solely on the GuessWhat?! dataset without shared

and prior knowledge of vision-linguistic representation. To

bridge these gaps, this paper proposes new Oracle, Guesser

and Questioner models that take advantage of a pretrained

vision-linguistic model, VilBERT. For Oracle model, we

introduce a two-way background/target fusion mechanism

to understand both intra and inter-object questions. For

Guesser model, we introduce a state-estimator that best uti-

lizes VilBERT’s strength in single-turn referring expression

comprehension. For the Questioner, we share the state-

estimator from pretrained Guesser with Questioner to guide

the question generator. Experimental results show that our

proposed models outperform state-of-the-art models signif-

icantly by 7%, 10%, 12% for Oracle, Guesser and End-to-

End Questioner respectively.

1. Introduction

Multi-modal dialog tasks have gained increasing pop-

ularity in recent years such as GuessWhat?! [8], Guess-

Which?! [5], VisDial [7], VDQG [16], vision-and-language

navigation R2R [3], ImageChat [27], Alfred [25] and so

on. Multi-modal dialog tasks are challenging as the models

need to perform high-level image understanding and visual

grounding, and such visual grounding should be properly

combined with understanding and tracking of multi-turn di-
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Figure 1: Example of the GuessWhat?! dataset

alogues in the meanwhile.

The GuessWhat?! dataset is a challenging dataset for a

two-player game, where one player will ask a sequence of

binary questions and make a final guess for an object in an

image designated by another player. The first player per-

forms two sub-tasks, namely as a Questioner to ask ques-

tions, and as a Guesser to make the final guess. The sec-

ond player serves as the Oracle to give Yes/No answer to

first player’s questions. An example of the GuessWhat?!

game can be seen in Figure-1. The GuessWhat?! game is

a good test-bed for such multi-modal tasks such as VQA,

referring expression comprehension and generation, and it

is also organized in a multi-turn multi-agent dialog. This

paper focuses on the three agents for the two players in the

GuessWhat?! dataset, namely the Oracle model, Guesser

model and the Questioner model.

The Oracle task can be considered as an object-aware

Visual Question Answering task (VQA), where the inputs

are an image, a question, and a pre-defined target object,

and the output is an answer of Yes/No/NA depending on

whether the question matches the target object. The base-

line Oracle model [8] encodes the target object with only

category and spatial information but no visual informa-

tion, which may be insufficient for answering more complex

questions about color, shape, relation, actions of an object.

To bridge this gap, we introduce VilBERT-Oracle, which

takes advantage of the VilBERT model’s ability to achieve

state-of-the-art performance on VQA tasks [17, 18]. We

also introduce a two-way background/target fusion mecha-

nism on top of the VilBERT encoder to learn how to predict
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correct binary answers with respective to a target object.

The Guesser model can be considered as a special case of

referring expression comprehension problem. Given an im-

age and an entire dialog history of questions (referring ex-

pression) and its corresponding answers, the Guesser model

has to look at the entire dialog and make a final guess. One

intuitive solution is to simply concatenate the entire dia-

log and feed them to the model [9, 29, 26, 18]. However,

this might be inadequate if the dialog history is not properly

dissected in a way to promote/demote objects according to

question and answer in each turn. Recent work [21] intro-

duces object state tracking mechanism, where the belief of

all objects is dynamically updated after each turn. Another

issue is that almost all existing Guesser models learn the

vision-linguistic associations between object and question

from scratch on the GuessWhat?! dataset, which may be

sparse in coverage of referring expressions for new objects.

To bridge this gap, we propose VilBERT-Guesser, which is

built on top of VilBERT’s strength in single-turn referring

expression comprehension, and introduces the object state

tracking mechanism into VilBERT encoder to learn to up-

date the belief of object states throughout the dialog. To

our best knowledge, this is the first work that brings dia-

log state tracking to large-scale pre-trained vision-linguistic

model, which is meant to work only on single-turn text de-

scriptions.

The Questioner model can be considered as a special

case of referring expression generation problem. Previous

works for Questioner model intuitively encode the image

feature and dialog history information to a fused representa-

tion, and utilize a language decoder to generate the question

[29, 24, 39, 37, 1, 2]. The multi-modal fusion modules are

mostly learned from scratch on the GuessWhat?! dataset,

which may be insufficient for similar reasons as the Guesser

models. Moreover, the encoding of the dialog history as a

whole, poses challenges for language generator which tends

to forget long-term history and generates repeated ques-

tions. Recent work introduces state-tracking to Questioner,

which dynamically feeds the updated beliefs over objects

into Questioner, so that the language generator could gen-

erate more targeted questions in each turn[21]. Inspired by

this work, we introduce object state estimation mechanism

to our VilBERT-Questioner. Moreover, once the VilBERT-

Guesser is trained, we load its weights to the state-estimator

of VilBERT-Questioner, so that the later could take advan-

tage of the Guesser’s ability to make reliable predictions for

estimating object states.

Our major contribution of the paper are as follows. First,

we propose novel Oracle, Guesser and Questioner models

that are built on top of a state-of-the-art vision-linguistic

pre-trained model. The proposed models outperform ex-

isting state-of-the-art models with significant margins. Sec-

ond, we propose a unified framework for Guesser and Ques-

tioner so that Questioner can take advantage of the ro-

bust state-estimator learned from VilBERT-Guesser. Third,

we conduct thorough ablation-study and analysis and find

that a shared vision-linguistic representation cross the three

agents may be beneficial for mutual-understanding and end-

game success. Our code is made publicly available. 1

2. Related Work

2.1. Oracle

The original work for GuessWhat?! proposes a base-

line Oracle [8] that concatenates question encoding, along

with the spatial and category information of the target ob-

ject, and feeds it into a MLP layer to predict the final an-

swer. However, the baseline Oracle may be insufficient to

deal with more challenging visual questions such as colors,

shapes, relations, actions and so on, without visual infor-

mation encoding. The Oracle task can be considered as a

special case of Visual Question Answering (VQA) problem

with an extra input of object identifier. Methods proposed in

[34, 13, 12, 36] achieve competitive performance on VQA

tasks. However these models cannot be readily used in this

task, unless they are adapted to the extra input of object

identifier.

2.2. Guesser

The Guesser model plays an important role in the Guess-

What?! game, which should perform both referring ex-

pression comprehension on the dialog to describe the vi-

sual objects, and perform multi-turn dialog reasoning. Ear-

lier work proposes Guesser models that fuse the encoding

of entire dialog with the object category and spatial em-

bedding [8, 29] to predict the target object. Later work in

[26, 18, 9] adopted similar approaches and treated entire

dialog history as a whole. This might be problematic for

two reasons. First, reasoning over such multi-turn dialog is

challenging without turn-by-turn explicit dialog state track-

ing. Second, the lack of turn-level visual grounding can also

confuse the Guesser model as to which object the question

is referring to in each turn. On the multi-modal represen-

tation, original Guesser model encodes no visual informa-

tion. Some approaches have used image features such as

VGG features [28] and Faster-RCNN features[33, 17, 20]

into Guesser models, which have shown improvement in

accuracy. Recent work in [20, 33] proposes to break down

the dialog into turn-level question/answer, and update the

final guess with soft state tracking [20], which shows good

performance gains.

2.3. Questioner

Questioner plays a key role in the GuessWhat game,

since it has to both ask visually meaningful questions and

1https://github.com/amazon-research/read-up
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guide the dialog towards goal-oriented end-game success

rate. [8] proposed the first Questioner model with an

encoder-decoder structure where dialog history is encoded

with the hierarchical recurrent encoder decoder (HRED)

[23] and conditioned on the image which is encoded as

fixed-length VGG features [28]. Later work have intro-

duced a shared dialog state encoder for both Guesser and

Questioner, where the visual encoder is based on ResNet

[10] and an LSTM-based language encoder [11]. More re-

cent work in [21] has incorporated turn-level object state

tracking into Questioner, and has shown some improve-

ment in a supervised learning setting. All the approaches

mentioned above learn visual grounding and object state-

tracking from scratch on the GuessWhat?! dataset, which

may be insufficient to generalize to new objects/games due

to the sparse semantic coverage of objects.

While this paper focuses on using supervised methods

for the three models, its worth mentioning there are methods

as in [29, 38, 2, 39, 21] that use Reinforcement Learning

(RL) approaches to learn Questioner/Guesser model with

different variants of end-game success reward.

3. Vision-Linguistic Pretrained Model: Vilbert

Before introducing our VilBERT-based models, we

briefly review the model structure of VilBERT [17]. Vil-

BERT is a model for learning task-agnostic joint represen-

tation of image content and natural language. Similar as the

BERT architecture, VilBERT processes both visual and tex-

tual inputs in separate streams then interacts them through

co-attention transformer layers [17]. Given an image I

represented as a set of object/region features o1, o2, ..., oM
and a text input w1, w2, ..., wL, the VilBERT model out-

puts final representations ho1, ho2, ..., hoM for vision in-

formation and hw1, hw2, ..., hwL for text information. For

more details of VilBERT, please refer to the original work

[17]. There are also concurrent work such as VL-Bert [31],

Lxmert [32], Oscar [15], UNITER [6] and so on.

4. Proposed Method

In this section, we describe the three models built upon

VilBERT, namely VilBERT-Oracle, VilBERT-Guesser and

VilBERT-Questioner.

4.1. VilBERTOracle Model

The Oracle task can be considered as an object-aware

Visual Question Answering task (VQA), where the inputs

are an image, a question, and a pre-defined target object,

and the output is an answer of (Yes, No, NA) depending on

whether the question matches the target object.

The Oracle model structure is illustrated in Figure-

2. The model is composed a multi-modal encoder (Vil-

BERT) and a background/target fusion predictor. The

multi-modal encoder includes language encoding for a

question q = {[CLS],w1,w2, ...,wL} and vision en-

coding, which in turn involves both target object en-

coding otgt and image/all objects encoding OI =

{[IMG],otgt,o
pred
1 ,o

pred
2 , ...,o

pred
M }. Features of q are

word embeddings pretrained by Vilbert model. Features

otgt,o
pred
1 ,o

pred
2 , ...,o

pred
M are visual features of target object

and all M regions/objects predicted by the object detection

model such as Faster-RCNN [22]. The input features are

then fed into Vilbert to obtain final hidden states for vi-

sual information HO = {h[IMG],htgt,ho1 , ...,hoM } and

text information Hq = {h[CLS],hw1
, ...,hwL

}.

For our two-way background/target fusion, we fuse the

background image hidden states h[IMG] and language out-

put h[CLS], and target object hidden states htgt and lan-

guage output h[CLS] respectively by taking element-wise

multiplication between each pair, and concatenate them

with the target object category embedding as fusion result:

xfusion = (h[IMG]⊙h[CLS])⊕(htgt⊙h[CLS])⊕ccat. The

final fusion vector xfusion is fed into multi-layer perceptron

followed by softmax to predict the answer pi. Finally, the

loss of VilBERT-Oracle is defined with cross-entropy loss

on the three answer classes.

LV ilBERT−Oracle = −

N∑

i=1

K∑

j=1

yi,j · log(pi,j) (1)

Where N is total number of questions, and K is the

size of answer classes. Our intuition is that if the ques-

tion matches the target object, then the fusion of htgt and

h[CLS] would give stronger signals. The fusion between

h[IMG] and h[CLS] is expected to learn to understand object

relations that goes beyond what htgt can represent.

[IMG] [CLS] Is it ?

Vision

BERT

Language

BERT

co-

attention

!"#

Category embed.

“snowboard”

MLP Yes / No / N/A

$%#% $&
'()*

$+
'()* ,& ,- ,.

/01 /02 /03/[567]/%#% /91 /9:/[;<=]

!%#%

Fuse Fuse

Figure 2: Illustration of Oracle-Vilbert model.
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4.2. VilbertGuesser Model

The Guesser model can be considered as a special case

of referring expression comprehension problem. Given an

image I with a set of regions/objects {o1, ...,oN} , and an

entire dialog history of question (referring expression) and

corresponding answers {(q1, a1), ..., (qT , aT )}, a Guesser

model predicts the likelihood of all objects in the image to

be the target object.

The model structure of VilBERT-Guesser is illustrated

in Figure-3. The model is composed of a multi-modal en-

coder (VilBERT), a global image/text fusion layer, a state-

weighting layer, and answer-updating layer. Specifically,

during each turn, we first feed the visual and language

features ({o1, ...,oN}, (qt) ) into the model, where (qt)
are the word embeddings of current-turn question. Af-

ter the VilBERT layers we obtain the final visual hidden

states {h<IMG>,ho1 , ...,hoN } and take element-wise multi-

plication with the sentence-level VilBERT language output

h<CLS> for each visual state to get fused visual output foi :

foi = hoi ⊙ h<CLS>. Our intuition is that the fused visual

output of the object foi that matches the question description

encoded by h<CLS> will have stronger signals compared to

irrelevant objects. Next, the fused output for each object is

weighted by previous-turn object state belief pt to derive

f ′oi : f
′
oi = foi ⊙ pti , where pti is the belief of the ith ob-

ject in previous turn-t. Next we further update the weighted

output of each object by adding the answer embedding of

this turn to it: voi = f ′oi + at. Now the final visual output

of each object voi should ideally satisfy all the following:

(1) object(s) matching the current-turn question should have

stronger signals; (2) if the objects have higher likelihood in-

dicated in previous turn, that belief should carry over to the

current turn; (3) if the answer is positive/negative, then the

belief should be updated to reflect the increased/decreased

belief of certain objects. The fundamental basis of all of the

above is the robust referring expression comprehension that

Vilbert has been pre-trained for.

Eventually the final visual output of each object voi is

fed into MLP layer followed by softmax to derive the up-

dated state belief for this turn pt+1, which will be used

to re-weight foi for next-turn. We also accumulate the

belief states cross-turns for faster convergence: pt+1 =
α · p′

t+1 + (1 − α) · pt, where α ∈ [0, 1] is the state ac-

cumulation coefficient. Finally, at the final turn T , Guesser-

VilBERT makes a guess by picking the object with highest

probability. Therefore the loss of VilBERT-Guesser can be

defined as cross-entropy loss over all objects in an image:

LV ilBERT−Guesser = −

|D|∑

i=1

M∑

j=1

yi,j · log(pi,j) (2)

Where |D| is the number of dialogues, and M is the

[IMG] [CLS] Is it ?

Vision

BERT

Language

BERT

co-

attention

!" #" #$ #%

&'( &') &'*&[,-.]&0) &01&[234]

Weighting

56

++++

86
(answer emb.)

Project & Softmax

569"
:

!$ !;

&0(

Fuse Fuse Fuse Fuse

Figure 3: Illustration of Guesser-Vilbert model.

number of objects in each image. To view a concrete ex-

ample of how object states are updated turn-by-turn, please

refer to our supplementary materials (Figure ??-??).

4.3. VilBERTQuestioner Model

The Questioner model can be considered as a special

case of referring expression generation problem. Given

an image I with K regions/objects {opred
1 , ...,o

pred
K } and a

dialog history {(q1, a1), ..., (qt−1, at−1)}, the Questioner

model is expected to generate a new question qt that seeks

useful information about the target object strategically.

The model structure of VilBERT-Questioner is depicted in

Figure-4.

The VilBERT-Questioner model is composed of a state-

estimator, a state-reweighting layer, a vis-diff layer, and a

question generator. In each turn, starting from uniformly

distributed object states p0 , we first re-weight visual fea-

tures of all objects {opred
1 , ...,o

pred
K } with the last-turn object

states pt−1 . Then we feed the re-weighted object visual

features into vis-diff module to derive the most distinctive

feature of each object relative to others and merge the repre-

sentation to vt [35, 21]. Then the language decoder (LSTM

[11]) generates question conditioned on the encoder output

vt.

The generated question together with its corresponding

answer, is fed into the state-estimator, which is the pre-

trained VilBERT-Guesser, to get updated state belief pt+1

as input to next-turn Vilbert-Questioner encoder. The loss

function of the VilBERT-Questioner model is defined as fol-
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lows:

LV ilBERT−Questioner = −

T∑

i=1

L∑

j=1

|V |∑

k=1

yi,j,k · log(pi,j,k)

(3)

Where T is the number of turns in the dialog, L is the length

of questions, and |V | is the size of vocabulary for the lan-

guage decoder.

Figure 4: Illustration of Vilbert-Questioner model.

5. Experiments

5.1. Dataset

The GuessWhat?! dataset [8] contains 155k dialogues

with 821k question-answer pairs on 66k unique images with

134k unique objects. The answers are 52.2%, 45.6% and

2.2% for (Yes,No,N/A) respectively. 84.6% of the dialogues

are successful games. We use the partitioned datasets with

training (70%), validation (15%) and test (15%) in all of

our experiments, as specified in the original GuessWhat?!

dataset [8].

5.2. Evaluation Metrics

Independent Accuracy Independent accuracy refers to the

percentage of correct predictions one agent achieves by iso-

lating it on the ground-truth data without interacting with

other agents. The Oracle and Guesser models can be evalu-

ated independently.

End-to-end Success Rate. The Questioner models cannot

be evaluated independently due to its dependency on dy-

namically generated dialog history. The Questioner models

can only be evaluated jointly by having all three agents play

the GuessWhat?! game together and measuring the success

rate at the end of the game, which is the percentage of games

where the Guesser model makes correct guesses based on

generated dialogues.

Semantic Diversity and Rate of Games with Repeated

Questions. One common problem for Questioner mod-

els is the generation of repeated questions within a game.

Repeated questions reduces the opportunities to ask more

meaningful questions. Therefore, we measure the percent-

age of games with at least one repeated question, as in pre-

vious work [24].

5.3. Experiment Settings

The backbone of the VilBERT encoder [17] in all our

models is adapted from the official VilBERT implementa-

tion 2. We use Faster R-CNN model [22] for feature ex-

traction, pre-trained on Visual Genome dataset [14] with

ResNet-101 backbone [10]. Relative coordinates and area

are concatenated with feature vectors before feeding them

into VilBERT. For the VilBERT-Oracle, the category em-

bedding size is 512, and the number of bounding boxes M

is 100. For the VilBERT-Guesser, the answer embedding

size is 128 and the state accumulation coefficient α is 0.9.

For the VilBERT-Questioner decoder, the word embedding

size is 512 and the number of bounding boxes K is 100.

5.4. Results

5.4.1 The Oracle Model

To the best of our knowledge, all existing work use the same

baseline Oracle [8] except [30]. We compare the perfor-

mance of the baseline oracles with the proposed VilBERT-

Oracle. Further, we also modify the baseline Oracles by

introducing image-level and object-level Faster-RCNN fea-

tures as extra input for predicting answer.

From the results in Table-1, we observe the following.

First, introducing visual features increases the accuracy of

baseline Oracle. This is intuitive since the baseline Oracle

only relies on category/spatial information and not any vi-

sual information to predict any answer, it is prone to errors

on challenging questions that need robust visual grounding.

Second, VilBERT-Oracle further outperforms baseline Ora-

cle, RCNN-Oracle and MultiHop Oracle. We attribute this

to the two-way global/target fusion on top of VilBERT en-

coder, which not only supports matching of the target object

with descriptive question, but also helps with contextually

capturing the underlying relationships between objects in

the image, therefore making it easier to answer more com-

plex questions such as is it to the left of the women in red?.

To corroborate to this observation, we further break

down Oracle models’ performances across different types

of questions same as previous work [24], as in column 2 and

3 in Table-4. From the table we see that VilBERT-Oracle

2https://github.com/facebookresearch/vilbert-

multi-task
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Oracle Models Accuracy

Baseline Oracle [8] 78.5%

RCNN-Oracle (Ours) 81.7%

Multi-hop FiLM Oracle[30] 83.1%

VilBERT-Oracle (Ours) 85.0%

Table 1: Comparison of Oracle Models (Independent Accu-

racy Evaluation)

indeed performs much better on all types of questions other

than object type compared to baseline Oracle by 8% - 19%.

5.4.2 The Guesser Model

For Guesser models, we compare proposed VilBERT-

Guesser with a comprehensive set of baselines and SOTAs

under an independent evaluation setting. The input is an im-

age along with the entire dialog history of question/answer

pairs, and the output is the target object, all from ground-

truth.

From the results in Table-2, we observe the follow-

ing. First, Guesser models that utilize image features (Vil-

BERT [18], GST [20], ATT-R4 (w2v) [9], and HACAN

[33]) achieve slightly higher accuracy compared to mod-

els that include no visual information (LSTM [9], Guesser

[29], and RIG [26]). Second, Guesser models that encode

text at turn-level instead of dialog-level shows slightly bet-

ter performance (GST[20] and HACAN [33]). Third, our

VilBERT-Guesser outperforms all baseline models by an

absolute margin of 10%. Intuitively, the VilBERT-Guesser

model encodes visual information of objects through pre-

trained vision-linguistic layers of VilBERT; the turn-level

state tracking and state accumulation mechanism, update

the belief state with information from the VilBERT output,

as it was used for referring expression comprehension. Both

of these factors contribute to the improvement over state-of-

the-art Guesser model. Please see supplementary material

for example of object state update process.

5.4.3 The Questioner Model

End-to-end success rate. Table-3 compares different

Questioner models in end-to-end self-play games based on

success rate. The dialog sessions were generated by mak-

ing Questioner and Oracle talking to each other, and having

Guesser to make a final guess about the target object. Rows

1-5 correspond to baseline and SOTA Questioner model re-

sults, rows 6-10 refer to different combinations of proposed

models, and rows 11-12 are two variants of the VilBERT-

Questioner model.

From the results (row 1-10), we observe the follow-

ing. First, the state-of-the-art Questioner (VDST) only

Guesser Models Accuracy

Mask-RCNN (no gt bbox) [4] 57.9%

LSTM [8] 61.3%

PLAN [40] 63.4%

Guesser [29] 63.8%

RIG [26] 64.2%

12-in-1 Vilbert [18] 65.7%

GST [20] 65.7%

ATT-R4 (w2v) [9] 65.8%

HACAN [33] 66.8%

Multi-hop FiLM Guesser [30] 69.5%

Vilbert-Guesser (Ours) 76.5%

Table 2: Comparison of Guesser Models (Independent Ac-

curacy Evaluation)

achieves slightly improvement over baseline Questioner

(45.9% over 44.6%) when collaborating with baseline Or-

acle and Guesser. On the other hand, when combined

with state-of-the-art Guesser (GST), VDST achieves much

higher performance (50.6%). Our speculation is that GST

and VDST share very similar model structures, which pro-

motes mutual understanding in self-play games [21, 20].

Similarly for GDSE-SL, the Guesser and Questioner share

the same encoder that encodes visually grounded dialog

states. This might promote mutual understanding of the

two models in end-to-end games. Second, our VilBERT-

Questioner, combined with baseline Oracle and Guesser

(row-8), also achieves higher end-to-end success rate over

VDST (52.5% over 45.9%). Third, for row 9 and 10, when

we introduce two or three proposed models into the game,

the performance continuously improves (55.7% and 62.8%

respectively). As contrast, as in row 6 and 7, when only

VilBERT-Oracle or VilBERT-Guesser is introduced in the

game, the improvement is minimal. We will discuss details

in Ablation Study.

Please note that we did not include RL-based models for

comparison of success rate, since this work focuses on su-

pervised learning. Previous work also show evidence that

RL-based Questioner models may generate unnatural ques-

tions as indicated by skewed distribution across different

visual attributes [19, 24]. As can be seen in Table-3, RL

[29] and VDST [21], which are both RL-based models tend

to generate more questions about object and location, while

BL [8], SL [24], CL[24], and our VilBERT-Questioner have

less skewed distributions across different question types.

Rate of Games with Repeated Questions. One com-

mon issue for Questioner models is question repetition

[24]. We compare the rate of games with repeated ques-

tions, for the baseline Questioner models and our VilBERT-

Questioner. The results are reported in Table-5. From the
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results we can see that our VilBERT-Questioner has the low-

est rate of games with repeated questions.

6. Ablation Study

6.1. Variants of Guesser Model

In this paper, we decompose the dialog history to turns,

and feed question representation to the VilBERT-Guesser

encoder, instead of concatenating the entire dialogue his-

tory together [9, 29, 26, 18]. We compare two methods,

namely injecting answer information to the post-layers of

the state-estimator (Post-Fusion), versus concatenating a

pair of question and answer as input to the model (Pre-

Concatenation).

From Table-6 we observe that both variants outper-

forms the previous work [18] significantly by 9%-11%.

Second, the Post-Fusion method further outperforms Pre-

Concatenation method by 2%. We hypothesize that pre-

trained vision-linguistic models like VilBERT may be best

used to its strength if we isolate the input to a way simi-

lar to how the model has been pretrained, in this case, on

single-turn descriptive questions.

6.2. Variants of Questioner Model

For Vilbert-Questioner, the weights of state-estimator

is loaded from pretrained VilBERT-Guesser. We com-

pare two variants: fine-tuning the state-estimator together

with question generator (w/ fine-tune), versus freezing the

weights of state-estimator while training the rest of the

Vilbert-Questioner (w/o fine-tune). These results are re-

ported in row 11-12 of Table-3. The results show that

the VilBERT-Questioner w/ fine-tune performs poorer than

the VilBERT-Questioner w/o fine-tune. This is intuitive

since the state-estimator learned by VilBERT-Guesser is

already good at inferring object states turn-by-turn, fine-

tuning it with the question generation objective may confuse

the state-estimator to go astray from predicting the correct

states and thus make the end-to-end performance worse.

6.3. Variants of Combinations of the Three Models

As is shown in the ablation study (Table-3 row 6,7 and

9), when only the VilBERT-Oracle or VilBERT-Guesser is

introduced to the end-to-end game, the overall accuracy has

shown minor improvement over the baselines. Whereas

when both are introduced, the end-to-end accuracy has im-

proved significantly (55.7% over 50.6%). We investigate

the possible causes as follows.

When Oracle model’s performance is very poor, even

a highly accurate Guesser may not achieve a high end-

to-end success rate. To simulate this effect, we keep a

fixed ground-truth dialog and add random errors to the

answer data with varying levels (10%-90%) by toggling

the yes/no answer. We run both the baseline guesser and

Figure 5: Performance of Two Guesser Models on Cor-

rupted Oracle Data with Varying Corruption Ratios

our VilBERT-Guesser on this corrupted dataset to study

model performance deterioration. The results are reported

in Figure 5. When the corruption ratio is low (10%-

40%), VilBERT-Guesser consistently outperforms the base-

line Guesser. When the Oracle data is corrupted to a large

ratio (≥ 50%), the accuracy of VilBERT-Guesser drops

faster than baseline model, suggesting that it is more sen-

sitive to the correctness of the Oracle output. This partially

explains why row-6 shows little improvement over row-2

in Table-3, since in both settings the baseline Oracle is ex-

pected to have lower accuracy.

Second, only introducing a better Oracle, while keep-

ing a Guesser that is less sensitive to the correct/wrong an-

swers, may also not help end-to-end success rate, as indi-

cated in row-7 versus row-2 in Table-3. To demonstrate this,

we compute a confusion matrix (Table-7) between baseline

Guesser and VilBERT-Guesser, both run on dialogs gener-

ated with VilBERT-Oracle and VDST [21]. From the ta-

ble, it is clear that given a better Oracle (VilBERT-Oracle),

VilBERT-Guesser is able to make more correct guess com-

pared to a baseline Guesser. For more details of baseline

Guesser and VilBERT-Guesser model behavior, please re-

fer to examples in our supplementary materials.

Examining row 6-10 together, we argue that sharing

a similar visual-linguistic encoder across the three agents

may be beneficial for the end-to-end game.

7. Conclusion

In this paper, we propose three novel models, VilBERT-
Oracle, VilBERT-Questioner and VilBERT Guesser for the
GuessWhat?! game. The proposed models take advantage
of a pretrained visual-linguistic encoder (VilBERT[17])
that has shown state-of-the-art performance in multiple
vision-language tasks especially in VQA and referring
expression comprehension. A state-estimator is introduced
to the Guesser and Questioner model to handle object
state update turn-by-turn. Experimental results show
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Oracle Guesser Questioner Success Rate

1 Baseline Oracle [8] Baseline Guesser [29] Baseline Questioner [29] 44.6%

2 Baseline Oracle [8] Baseline Guesser [29] VDST [21] 45.9%

3 Baseline Oracle [8] GDSE-SL [24] GDSE-SL [24] 47.8%

4 Baseline Oracle [8] Guesser (MN) [39] TPG [39] 48.8%

5 Baseline Oracle [8] GST [20] VDST [21] 50.6%

6 Baseline Oracle [8] Vilbert-Guesser (Ours) VDST [21] 47.5%

7 Vilbert-Oracle (Ours) Baseline Guesser [29] VDST [21] 47.8%

8 Baseline Oracle [8] Baseline Guesser [29] VilBert-Questioner (Ours) 52.5%

9 Vilbert-Oracle (Ours) Vilbert-Guesser (Ours) VDST [21] 55.7%

10 Vilbert-Oracle (Ours) Vilbert-Guesser (Ours) Vilbert-Questioner (Ours) 62.8%

11 Vilbert-Oracle (Ours) Vilbert-Guesser (Ours) Vilbert-Questioner (w/ fine-tune) 57.0%

12 Vilbert-Oracle (Ours) Vilbert-Guesser (Ours) Vilbert-Questioner (w/o fine-tune) 62.8%

Table 3: Comparison of Different Questioner Models in End-to-End Evaluation

Type
Baseline

Oracle [8]

VilBERT-

Oracle
BL[8] SL [24] CL [24] RL [29] VDST [21]

VilBERT-

Questioner
Human

Object 94% 94% 49.00 48.08 46.40 24.00 36.44 65.23 38.12

Color 63% 82% 2.75 13.00 12.51 0.12 0.01 9.1 15.50

Shape 67% 75% 0.00 0.01 0.02 0.00 0.00 0.00 0.30

Size 60% 77% 0.02 0.33 0.39 0.02 0.01 0.01 1.38

Texture 70% 83% 0.00 0.33 0.15 0.01 0.00 0.00 0.89

Location 67% 77% 47.25 37.09 38.54 74.80 64.80 25.60 40.00

Action 65% 81% 1.34 7.97 7.60 0.66 0.30 5.04 7.59

Other 75% 82% 1.12 5.28 5.90 0.49 0.03 1.95 8.60

Table 4: Oracle Accuracy by Types of Question and Question Distribution for Models.

Questioners % Games with Repeated Q’s

GDSE-BL [8] 93.50

GDSE-SL [24] 55.80

CL [24] 52.19

RL [29] 96.47

VDST [21] 40.05

VilBERT-Questioner 32.56

Human N/A

Table 5: Rate of Games with Repeated Questions of Dif-

ferent Questioner Models. Note: * the VDST Model Used

Here is the Model Trained in Supervised Learning Setting.

that feeding the VilBERT model with turn-level text
description is better than feeding a long dialog history,
in accordance with how the VilBERT model has been
pretrained. Ablation study suggests that a shared vision-
linguistic encoder may be beneficial for such three-agent
games. For future work, we plan to explore differ-
ent reinforcement learning approaches with Questioner

Models Accuracy

12-in-1 VilBERT: Concatenate Entire Dialog 65.7%

Answer Pre-Concatenation (Ours) 74.3%

Answer Post-Fusion (Ours) 76.5%

Table 6: Different Variants of Answer Fusion

VilBERT-Guesser

Correct Wrong Total

Baseline

Guesser

Correct 7565 1993 47.8%

Wrong 3573 6864 52.2%

Total 55.7% 44.3%

Table 7: Confusion Matrix of End-to-End Dialogue Suc-

cess Rate Generated from Baseline Guesser and VilBERT-

Guesser Using VilBERT-Oracle.

and Guesser to further improve end-to-end success rates.
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