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Abstract

Instance segmentation, the task of identifying and sep-

arating each individual object of interest in the image, is

one of the actively studied research topics in computer vi-

sion. Although many feed-forward networks produce high-

quality binary segmentation on different types of images,

their final result heavily relies on the post-processing step,

which separates instances from the binary mask. In com-

parison, the existing iterative methods extract a single ob-

ject at a time using discriminative knowledge-based proper-

ties (e.g., shapes, boundaries, etc.) without relying on post-

processing. However, they do not scale well with a large

number of objects. To exploit the advantages of conven-

tional sequential segmentation methods without impairing

the scalability, we propose a novel iterative deep reinforce-

ment learning agent that learns how to differentiate multiple

objects in parallel. By constructing a relational graph be-

tween pixels, we design a reward function that encourages

separating pixels of different objects and grouping pixels

that belong to the same instance. We demonstrate that the

proposed method can efficiently perform instance segmen-

tation of many objects without heavy post-processing.

1. Introduction

Instance segmentation is one of the challenging com-

puter vision problems that assigns instance labels to pix-

els to separate objects, which is crucial for understanding a

complex scene. Many existing methods are based on com-

plex graphical models with deep neural networks (e.g., con-

volutional neural network [CNN] or recurrent neural net-

work [RNN])) [20, 30]. However, most other methods are

still trying to predict the intermediate representation [27] of

the labeling map, which require extra post-processing steps.

Some object proposal approaches use bounding boxes to

capture the representation of instances [7,21]. Even though,

*Corresponding author

they produce instance maps directly, the bounding boxes

are often criticized for their coarse representation of the ob-

ject’s shape. A recent study by Araslanov et al. [2] aimed

to address the issue by employing reinforcement learning

for a sequential object detection and segmentation task. Al-

though such sequential approaches have shown promising

results when it comes to directly detecting and extracting

individual instances in the image, they are only applicable

to images with a small number of objects due to the sequen-

tial nature of the method.

The motivation behind the proposed work stems from

our recent development of the cell image segmentation

method. In this development, we observed that separat-

ing every individual cell in a large microscopy image is a

slow and time-consuming task for conventional segmenta-

tion methods. To address this problem, we propose a novel

end-to-end instance segmentation method using reinforce-

ment learning, which separates multiple instances in paral-

lel. Unlike in Araslanov et al. where a single agent han-

dles segmentation sequentially, our method leverages mul-

tiple pixel-wise agents (similar to Furuta et al. [5]) work-

ing concurrently to differentiate multiple objects in an it-

erative, end-to-end fashion (Fig. 1). To make multiple in-

stances concurrently labeled, we formulate the segmenta-

tion problem as an iterative binary graph coloring problem.

To achieve this, we employ the asynchronous advantage

actor-critic (A3C) algorithm to train the agents to choose

the t-th bit value in a binary representation of the label (0

or 1) at step t of the coloring process. We demonstrate that

the proposed method can efficiently handle images that have

numerous objects of various shapes while maintaining a su-

perior segmentation quality comparable to state-of-the-art

methods. To the best of our knowledge, this is the first rein-

forcement learning-based end-to-end instance segmentation

that runs in parallel.

2. Related Work

In this section, we briefly review the recent advances in

image segmentation methods that are closely related to the
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Figure 1. Illustration of our agent’s coloring process through six coloring steps. At each step, multiple objects are segmented from the rest

by the agent’s action map (binary images, upper row) and have their color updated (colored images, bottom row). Also, the binary action

map at each step is a binary digit map representing the segmentation label. For example, in the red box, the action values over the steps are

{1,1,0,1, ...}. Therefore, the binary label values are {12, 112, 0112, 10112, ...}, which is equivalent to {110, 310, 310, 1110} in decimal form.

instance segmentation problem.

Object-proposal methods, such as Mask-RCNN [7] and

PANet [29] , detect object bounding boxes and directly out-

put the mask of each object. Nontheless, their use of bound-

ing boxes can hurt the segmentation quality because of the

coarse representation of the object’s shape.

Another approach is using dense-prediction. For exam-

ple, some methods predict a high dimensional encoding of

the label map [4,11,17], which is then processed by cluster-

ing methods to extract individual instances. Specifically, in

the electron microscope (EM) instance segmentation task, a

commonly used approach to handle many densely-packed,

irregularly-shaped objects is predicting binary object masks

and then agglomerating information to produce the final

results [13, 26]. 3C [14] predicts the mask of the target

EM image in the base-k number system then agglomerate

the over-segmentation labels across slides. These methods,

however, relies on intermediate representations of the label

and post-processing steps.

Iterative methods that predict and track the segmentation

masks object-by-object do not need intermediate represen-

tation and bounding boxes. Araslanov et al. [2] used rein-

forcement learning (RL) agent to find a good order to pre-

dict each object at a time. Ren et al. [20] used a recurrent

architecture to perform step-by-step attention and segmen-

tation the mask of a single object. FFN [10] has been very

successful in 3D EM segmentation by tracking a single ob-

ject at a time. These methods, however, are constrained by

their low scalability in processing many instances.

Since the seminal work by Mnih et al. [16], an increasing

number of tasks requiring a complex sequence of decision-

making processes have been solved by reinforcement learn-

ing [24, 25]. Inspired by this trend, reinforcement learn-

ing has been adopted to solve computer vision problems as

well [2, 23, 25, 28]. For example, Furuta et al. presented

an efficient way to train an asynchronous actor-critic agent

(A3C), called PixelRL [5], that uses decision making per

pixel for the denoising problem.

3. Method

3.1. Problem Formulation

In this work, similar to Gomez et al. [6], we formulate

the instance segmentation problem into a multi-step graph

coloring problem where the per-instance color (represented

as a base-2 number) is determined by per-pixel RL agents

via series of bit-value assignments. The feedback/rewards

for each pixel’s decision is determined by comparing the

pixel’s color with those of neighboring pixels, which are in-

dicated by graph edges. More formal definitions and prob-

lem formulation are given below.

Let image I be the set of pixels V = {v1, v2, ..., vN},

and a segmentation of I is a partition of V defined as

P = {P1, P2, ..., PM}, where each vi belongs to exactly

one subset of pixels Pj (1 ≤ i ≤ N and 1 ≤ j ≤ M ).

We denote the ground truth segmentation of I as the par-

tition P̂ = {P̂1, P̂2, ..., P̂K}. Then, the objective is to

find P that is as close to P̂ as possible. In our coloring

approach, for each image I, we want to find a color map-

ping function that assigns a color to each pixel, C : V →
{c1, c2, ..., cN}, ci ∈ {0, 1, 2, ..., c − 1}. Here, C(V ) de-

notes the color of all the pixels in V , and C(V )[v] denotes

the color of pixel v. The ideal condition for the pixels is that

C(V )[v] = C(V )[u] when u, v ∈ P̂i for a subset P̂i ∈ P̂

(i.e., pixels in the same object should have the same color).

Also, C(v)[v] �= C(v)[u] when u ∈ P̂i and v ∈ P̂j for

i �= j (i.e., pixels of different objects should have differ-

ent colors). To relax the above conditions to be applied to

only pixels of close proximity, we build a set of edges be-

tween pixels to indicate close proximity relationship. We
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Figure 2. Illustration of the binary coloring process by the proposed agent. The number on each vertex represents its color label, and the

green (or black) vertex during the action selection phase represents the action value of 1 (or 0). For example, at step t = 4, the vertex u

with the color label of 11 (C(4)(V )[u] = 11, see (b)), it chooses the action value of 1 (F (4)(V,C(4)(V ))[u] = 1 (green vertex), see (c)).

Then, the color label of u at t = 5 becomes 11 + 24 · 1 = 27 (see (d))

define a graph G by considering V as a set of vertices (i.e.,

each pixel in I is a vertex in G) and can then construct

the set of edges E that connect pixels. The graph color-

ing formulation for the instance segmentation problem is

formally defined as follows: For a given graph G = (V,E)
and a ground truth partition P̂ = {P̂1, P̂2, ..., P̂m} of V ,

C[V ](v) = C[V ](u) if there exists an edge (u, v) ∈ E

and u, v ∈ P̂i for some P̂i ∈ P̂ . C[V ](v) �= C[V ](u) if

there exists an edge (u, v) ∈ E and u ∈ P̂i, v ∈ P̂j for

P̂i, P̂j ∈ P̂ and i �= j. The details for edge construction is

stated in section 3.3.

Because directly finding a perfect color mapping C∗ that

satisfies the mentioned constraints is an intractable problem,

we instead find an approximation of C∗ via an iterative bi-

nary coloring process. We let C(t)(V ) be the color mapping

of V at time step t and define the binary coloring action

at = F(V,C(t)(V )), in which F maps V to {0, 1}N , and

N is the size of V (i.e., each v in V is mapped to a value of

either 0 or 1 through F). For a pixel v, F (t)(V,C(t)(V ))[v]
denotes its binary mapped value. The color of v at time step

t+ 1 is computed as follows (illustrated in Fig. 2):

C
(0)(V )[v] = 0

C
(t+1)(V )[v] = C

(t)(V )[v] + 2tF(V,C(t)(V ))[v]
(1)

Here, F is a binary segmentation model that takes V and

the color map C(t)(V ) as its input. In this binary color-

ing scheme, at time step t, a(t)[v] = F(V,C(t)(V ))[v], af-

ter being multiplied by 2t, becomes the t-th least signifi-

cant binary digit of the binary representation of the color

of v. Through T coloring steps, we have the color map-

ping function C(T ), which maps V to {c1, c2, ..., cN}, ci ∈
{0, 1, 2, ..., 2T − 1}.

3.2. Coloring Agent

For the coloring problem, we can naturally think of a

multi-agent system in which the agents decide the color

C(t+1) of the pixels by taking actions at = F(V,C(t)).
Our coloring agent consists of many pixel-level agents

as in the PixelRL [5]. It processes the state s(t) at time

step t to produce a binary map of N actions (one for

each pixel), and each action decides the color of a single

pixel. We formulate the Markov Decision Process for the

instance segmentation problem as follows (Fig. 3 shows an

overview of our agent architecture):

State: Like F (t) in Eq. 1, our coloring agent takes

the set of vertices V and the current color map C(t)(V )
as the input. Thus, the state of the agent s(t) consists of

V and C(t)(V ). Given that image I has shape H×W×CH

and there are T coloring steps, then the representation of

V in the state is of shape H×W×CH. As for C(t), its state

representation is the binary-valued array of shape H×W×T.

The t-th binary map of shape H×W in the T channels is

the binary map of the t-digit in the binary representation of

the color map. Combining the two components, the state

(input) of the agent is an array of shape H×W×(CH+T).

Initially, at step t = 0, C(t)(V ) is just a zero-valued array.

Actions: Action map at, which is a result of F(V,C(t)[V ],
is a binary image of shape H×W. At each step t (t > 0),

after the agent takes action, the color map C(t) of the

agent’s current state will have its t-th channel map replaced

with at, resulting in C(t+1) for the next state s(t+1). Each

action map at is a binary segmentation map of objects. By

Eq. 1, the segmented objects by action at have their color

updated and are separated from the unsegmented objects.

Rewards: Reward map r(t) is given after the agent

takes an action at. At the pixel level, the per-pixel coloring

agent that is in charge of pixel v takes an action at[v] and

receives a real-valued reward rt[v]. rt[v] is the indicator

that shows how good the action at[v] is. The reward value

is reduced when at[v] generates merge (split) errors (i.e.,

pixels of different (same) objects have the same (different)

colors). The reward value increases when the action rightly

merges or splits pixels. To make the color comparison

between pixels for the rewards, we construct a set of edges

E between pixels from the ground truth partition (segmen-

tation label) P̂ . Our reward has three components: one that

encourages the splitting actions, another that encourages
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Figure 3. Overview of our coloring agent. The state of the agent comprises the sets of pixels V (input image I) and the binary color

map Ct(V ). The input path (blue arrows) leads the current state to the agent network. The input image I and the binary color map are

processed by two different modules. The outputs of the modules concatenate and then go through a CNN to produce the action map. The

action-related path (green arrows) produces a new color map C(t+1)(V ) from the action map at. Then, a graph algorithm will take the

ground truth coloring Ĉ(V ) and C(t+1)(V ) to produce reward map R(t)(v). Red arrows indicate update-related paths where the network

and state are updated using a new reward and a color map, respectively.

(a) Edges for splitting - Er(v) (b) Edges for merging - Em

Figure 4. Edges for the splitting and merging rewards computation.

(a): The splitting reward for v is computed on the edges connected

to pixels of different objects within the distance r from the object

containing v. (b): The merging reward is computed on the bi-

directional edges within the same object.

merging actions, and a third that separates foreground and

background objects.

3.3. Reward Function

For convenience, let C(V ) be the colormap for the set

of pixels V while C(v) is the mapping of a single-pixel v

(the same meaning with C(V )[v]). We denote Ĉ as the per-

fect color mapping function (i.e., the ground truth coloring

function) and let the background color be 0 (Ĉ(v) = 0 if

v is a background pixel). Also, P̂ (vi) is defined as the set

of pixels of the ground truth object that contains vi (i.e.,

P̂ (vi) = {vj | Ĉ(vi) = Ĉ(vj)}). As mentioned earlier

in section 3.1, a relational graph and coloring constraints

are constructed from the ground truth segmentation. Dur-

ing training, for each image, a graph is constructed with two

types of edges (one for splitting and the other for merging)

to provide feedback for the agent’s coloring decisions.

Reward for predicting background-foreground: The

background object has the most irregular shape and size, es-

pecially in the cell images. Thus, it is reasonable to first sep-

arate the background object from the other objects. In the

first step, we let our agent separate foreground objects from

the background; once the background has been separated,

then its color is not changed in the later coloring steps (only

the pixels belonging to foreground objects are changed). At

time step t, the background-foreground reward RBF of a

pixel v is defined as follows:

R
(t)
BF (v) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

rbg if C(t+1)(u) = 0, Ĉ(v) = 0

0 if Ĉ(v) �= 0, t > 0

−rbg if C(t+1)(u) �= 0, Ĉ(v) = 0

rfg if C(t+1)(u) = 1, Ĉ(v) �= 0, t = 0

−rfg if C(t+1)(u) = 0, Ĉ(v) �= 0, t = 0

where rbg and rfg are the proportions of pixels that are of

foreground and of background respectively.

Reward for splitting actions: Pixel-level agents gain

the spatial information of surrounding pixels through the

relational graphs between pixels. We denote a directed edge

from pixel u to pixel v as (u, v). Given a radius r, the set of

directed edges between pixels constructed with r is denoted

as Erand Er(u) ⊂ Er is the set of edges that originates

from u. Let a pixel u belong to the foreground object P̂ (u);
if pixel v of another foreground object that is within the
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distance r from P̂ (u), then (u, v) is in Er(u) (Fig. 4a).

To state the definition of Er formally, (u, v) ∈ Er(u) if

Ĉ(v) �= Ĉ(u), Ĉ(v) �= 0, Ĉ(u) �= 0 and ∃u′ ∈ P̂ (u) such

that d(u′, v) < r, where d(u′, v) is the Manhattan distance

between u′ and v. We consider r as the radius of segments

and call it the splitting radius. The sets of falsely merged

pixels FM
(t)
r (v) and truly split pixels TS

(t)
r (v) for a pixel

v at time step t are defined as follows:

TS
(t)
r

(v) = {u | (v, u) ∈ E
r
, C

(t)
(u) �= C

(t)
(v), Ĉ

(t)
(u) �= Ĉ

(t)
(v)}

FM
(t)
r

(v) = {u | (v, u) ∈ E
r
, C

(t)
(u) = C

(t)
(v), Ĉ

(t)
(u) �= Ĉ

(t)
(v)}

With the set of edges Er, at time step t (1 ≤ t), the splitting

reward component R
(t)
S (v | Er) for the pixel-level agent

that is in charge of pixel u is computed as follows:

R
(t)
TS

(v | E
r
) =

|TS(t+1)
r

(v)| − |TS(t)
r

(v)|

|Er(v)|

R
(t)
FM

(v | E
r
) =

1

T

|FM(t+1)
r

(v)|

|Er(v)|

R
(t)
TS(v | Er) is the percentage of pixels that are truly (cor-

rectly) split from v by the action map a(t) to the total num-

ber of pixels that should be split from v. R
(t)
FM (v | Er) is

the percentage of pixels that are still being falsely (wrongly)

merged to the total number of pixels that should be split

from v, which is normalized by the total number of color-

ing steps. By combining RTS as the reward (positive com-

ponent) and RFM as the penalty (negative component) in

Eq. 2, we have the splitting reward function RS :

R
(t)
S (v | Er) = R

(t)
TS(v | Er)−R

(t)
FM (v | Er)

We use multiple sets Er with different r, which gives a

higher priority for the splitting of closer pixel pairs.

Reward for merging actions: Similar to the splitting

reward component, we also build edges between pixels that

should have the same color. The set of directed edges Em

Em(u) ⊂ Em are constructed as follows: if u and v are of

foreground objects and Ĉ(u) = Ĉ(v), then (u, v) ∈ Em(u)
and (v, u) ∈ Em(v). An illustration of edge construction

for merging reward is in Fig. 4b. The set of truly merged

pixels TM (t)(v) and falsely splited pixels FS(t)(v) for a

pixel of foreground object v at time step t is defined as fol-

lows:

FS
(t)

(v) = {u | (v, u) ∈ Em, C
(t)

(u) �= C
(t)

(v), Ĉ
(t)

(u) = Ĉ
(t)

(v)}

TM
(t)

(v) = {u | (v, u) ∈ Em, C
(t)

(u) = C
(t)

(v), Ĉ
(t)

(u) = Ĉ
(t)

(v)}

With the set of edges Em, at time step t, where t ≥ 1,

the merging reward component R
(t)
M (v | Em) for the pixel-

level agent that is in charge of of pixel u is computed with

the following:

R
(t)
TM

(v | Em) =
1

T

|TM(t+1)
m

(v)|

|Em[v]|

R
(t)
FS

(v | Em) =
|FS(t)

m
(v)| − |FS(t+1)

m
(v)|

|Em[v]|

R
(t)
TM (v | Em) is the percentage of the number of pixels that

is still truly (correctly) merged with v to the total number

of pixels that should have the same color as v, which is

normalized by the total number of step T . R
(t)
FS(v | Em) is

the percentage of the pixels that are falsely (wrongly) split

from v as a result of action map a(t). By using RTM as the

reward component and RFS as the penalty component we

form the merging reward function RM :

R
(t)
M (v | Em) = R

(t)
TM (v | Em)−R

(t)
FS(v | Em)

Reward for pixel v at time step t: The reward function

R(t)(v) for the pixel-level agent at pixel v is:

When 1 ≤ t < T :

R
(t)(v) = R

(t)
BF (v) + wmR

(t)
M (v | Em) + ws

∑

Er∈Gs

R
(t)
S (v | Er)

and when t = 0:

R
(t)(v) = R

(t)
BF (v)

Here, wm and ws are the weights for merging reward and

splitting reward, respectively. Gs is the sets of Er(s) for

different values of r.

4. Experiments and Results

4.1. Experimental settings

For 2D image instance segmentation, we used a U-

Net-based architecture [18] for the core network.For each

dataset, we empirically chose the set of hyperparameters

ws, wm, and r(s) for the best performance on the valida-

tion set and chose T so that 2T−1 (the maximum number

of colors that our agent can assign) is greater than the maxi-

mum number of neighboring objects that an object can have

in the training set. During the evaluation, because our agent

allows far apart objects to have the same color, we perform

connected-component labeling for the post-processing pro-

cedure. For more information related to the data prepara-

tion and implementational and experimental details, please

see the appendix. Our code is published online 1.

4.2. Ablation Study

Splitting radius setting: With multiple radii r, the

edges of a smaller radius are counted for a reward more

times than the edges of a larger radius are. Thus, this gives

a higher priority to closer pixel pairs and makes the col-

oring agent focus more on separating the objects that are

close in proximity. Here, we analyze the behavior of our

agent with two levels of splitting radii r1 and r2. We con-

duct this analysis in a simplified environment by letting the

agent learn to color a single image with no augmentation

with ws = wm = 1. We experimented with six pairs of

radii on the CVPPP dataset with an input image size of

1https://github.com/anhtuanhsgs/ColorRL
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r1=4, r2=28 r1=12, r2=12 r1=12, r2=28 r1=28, r2=28 r1=12, r2=72GT Image

Figure 5. Coloring results from the agent after it learn to perform coloring on a single image with different settings for splitting radii. We

experimented with two levels of radius r1 and r2, and let r1 ≤ r2.

Iter 16 Iter 20 Iter 24Iter 4 Iter 8 Iter 12GT Image

Figure 6. The ground truth segmentation and the intermediate results of the agent at different training iterations.

176 × 176. Fig. 5 shows the final results of the agent af-

ter six steps. We observed that r1 = 12 and r2 = 28 gave

the best result among the trials. Small radii (r = 4) do not

give the agents enough useful guidance to separate large and

far apart objects. Large radii (r = 72), on the other hand,

require each pixel-level agent to look further and process

more information, thus making the task more complex.

Weights for splitting and merging rewards: To con-

tinue the single image coloring experiment, we analyze how

splitting reward Rs and merging reward Rm influence the

agent and change during the learning session. Influenced by

the reward RBF (separating only the foreground and back-

ground in the first step), the agent learns to segment between

foreground and background first then gradually learns to

segment the foreground leaves (Fig. 6).

Next, we analyze how the agent behaves with different

pairs of ws and wm. We used 103 training images and 25

validation images of the CVPPP dataset in this experiment.

Table 1 and Fig. 7 show the segmentation results. The agent

tries to make more merging actions during early training it-

erations early on due to the influence of RBF (Fig. 6). Thus,

when ws < wm, it is much difficult for the agent to learn to

separate the leaves since the reward is not high enough for

the agent to explore for a better coloring solution and to go

out of the local maxima. We conclude that during training,

the agent should have ws ≥ wm so that there are incentives

for it to explore more complex coloring decisions.

4.3. CVPPP Dataset

The Computer Vision Problems in Plants Phenotyping

(CVPPP) dataset [15] is one of the popular datasets used

for assessing the performance of instance segmentation al-

gorithms. Our agent’s results are shown in Fig. 8. The re-

sults in Table 2 show that our agent can generate results

Table 1. Results of our reinforced graph coloring agent (GraphCL)

on the CVPPP validation set with different weight settings

Model ws wm r1 r2 SBD↑ |DiC|↓

0.00 2.00 21.2 15.6

0.25 1.75 21.2 9.44

0.50 1.50 70.7 2.72

ColorRL 1.00 1.00 12 28 85.2 1.40

1.50 0.50 87.3 1.34

1.7 0.25 81.4 1.44

2.00 0.00 5.60 92.8

Table 2. Segmentation quality of the CVPPP testset.

Model SBD↑ |DiC|↓

MSU [22] 66.7 2.3

Nottingham [22] 68.3 3.8

IPK [19] 74.4 2.6

DLoss [4] 84.2 1.0

E2E [20] 84.9 0.8

AC-Dice [2] 79.1 1.12

Ours (ColorRL) 80.0 1.36

comparable to the state-of-the-art methods in terms of the

object count and segmentation accuracy.

4.4. MoNuSeg Dataset

From the MoNuSeg 2018 nuclear segmentation chal-

lenge [12], we prepared two versions of the data that have

the same scale but in different sizes: MNSeg-160 (image

size of 160x160) and MNSeg-224 (image size of 224x224).

The average (avg. cnt) and maximum (max cnt) number of

objects are included for each dataset. The nuclei varies in

sizes, positions, and density in each image. For this exper-

iment, we used the Mask R-CNN (mrcnn) implementation
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Figure 7. Coloring results of the agent trained with different pairs of splitting and merging weights.

Figure 8. Coloring results of CVPPP test set before post-

processing. Top row: input images, bottom row: coloring results.
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Figure 9. Experiment results of MoNuSeg-160 (two left columns)

and MoNuSeg-224 (two right columns) test sets.

from [1] with the ResNet50 [8] backbone. The results are

shown in Fig. 9 and Table 3.

Table 3. Segmentation quality of the MoNuSeg results. We evalu-

ate the segmentation performance in terms of the aggregated Jac-

card index (AJI) adapted rand index (ARand) and average infer-

ence time per image (avg. time)

Dataset
avg. max

Model
avg.

ARand↓ AJI↑
cnt cnt time (ms)

MNSeg-160 90 361

E2E 7860 0.779 0.110

Mask RCNN 315.57 0.546 0.412

ColorRL 57.039 0.261 0.557

MNSeg-224 182 603

E2E 9578 0.826 0.072

Mask RCNN 642.93 0.6644 0.333

ColorRL 58.115 0.319 0.537

Table 4. Segmentation quality of the CREMI testset. The metrics

we used are VOI-split, VOI-merge, adapted rand index (ARand),

and average inference time per image (avg. time). We omit the

evaluation of ACIS for Cre-448 as it did not show any reasonable

result.

Dataset
avg. max

Model
avg. VOI- VOI-

ARand↓
cnt cnt time (ms) split↓ merge↓

Cre-160 16 25

E2E 223.72 0.463 0.394 0.129

mrcnn 296.21 0.856 0.354 0.239

ACIS 107.33 0.420 0.395 0.134

Our 81.13 0.248 0.135 0.034

Cre-256 24 43

E2E 514.83 0.772 0.544 0.276

mrcnn 359.71 0.660 0.493 0.206

ACIS 118.50 0.657 1.316 0.365

Our 99.82 0.412 0.113 0.07

Cre-448 65 80

E2E 910.46 1.178 3.082 0.660

mrcnn 383.56 0.757 0.976 0.340

Our 98.33 0.379 0.230 0.095

4.5. CREMI Dataset

From dataset A of CREMI [3], we prepared three dif-

ferent datasets: Cre-160, Cre-256, and Cre-448. The three

datasets have the same image size of 224×224 but differ-

ent scales and average number of objects per image. The

cells in CREMI are densely packed and have very irregular

shapes and sizes. We let our agent perform coloring through

six steps. Table 4 shows our experiment results. The results

show that conventional iterative methods, such as E2E and

ACIS, do not handle many objects well. When the number

of objects increases, the segmentation task becomes much
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Figure 10. Experiment results of Cre-160 and Cre-448. We show our agent’s coloring results from steps 2, 4, and 6.

Input image GTt = 2t = 1 t = 3 t = 4 t = 5

Figure 11. Step-by-step coloring result of the 3D electron microscopy volume of a Zebrafish through five steps.

Table 5. Segmentation quality of 3D larval zebrafish testset. We

measured segmentation quality in terms of the symetric best dice

score (SBD) and adapted RAND error (ARAND)

Method SBD↑ ARand↓

U-Net3D + Connected Component 74.4 0.560

U-Net3D + Watershed 87.9 0.054

ColorRL 90.0 0.038

more challenging and takes longer. Mask R-CNN showed

trouble when learning the irregular shape of the cells. Note

also that our method scales well over a large number of ob-

jects (the running time does not increase as the number of

objects increases). However, since our agent relies on the

network for long range information, segmentation of ex-

tremely large or irregularly-shaped instances can be chal-

lenging (such as CREMI B and C datasets). We believe that

designing a better core network with a more generalized re-

ward formulation will solve this problem, which is left for

future work.

4.6. Larval Zebrafish EM data

In this experiment, we tested ColorRL on a 3D stack of

serial-section electron microscopy images of a of zebrafish

brain [9]. The graph construction and coloring algorithm of

ColorRL can be easily extended to a 3D setup without any

change. We used a 3D U-Net as the core architecture for

the coloring agent. We compared our method with a binary

segmentation baseline from the same 3D U-Net model with

a binary cross-entropy loss that was post-processed with a

3D watershed transform and connected component analy-

sis. The results are shown in Fig. 11 and Table 5. It is

shown that our agent takes advantage of the binary seg-

mentation model’s strength and performs segmentation in

a more instance-oriented way to produce better results.

5. Conclusion

In this paper, we introduced a novel per-pixel label

assignment method for end-to-end instance segmentation

based on a graph coloring approach. Without the need of

intermediate representations, our parallel per-pixel color-

ing agents directly label and separate many objects con-

currently. We also demonstrated that our method can be

easily extended to 3D volume instance segmentation prob-

lems. With this promising results, we plan to apply our

method to large scale connectomics segmentation. We ex-

pect that designing a better core network with a more gener-

alized reward formulation will handle EM volume of large

and complex instances. Adopting constancy constraints be-

tween sections of EM images/volumes as in 3C is another

interesting future direction to explore.
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