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Abstract

The problem of grounding VQA tasks has seen an in-

creased attention in the research community recently, with

most attempts usually focusing on solving this task by using

pretrained object detectors. However, pre-trained object

detectors require bounding box annotations for detecting

relevant objects in the vocabulary, which may not always

be feasible for real-life large-scale applications. In this pa-

per, we focus on a more relaxed setting: the grounding of

relevant visual entities in a weakly supervised manner by

training on the VQA task alone. To address this problem, we

propose a visual capsule module with a query-based selec-

tion mechanism of capsule features, that allows the model

to focus on relevant regions based on the textual cues about

visual information in the question. We show that integrat-

ing the proposed capsule module in existing VQA systems

significantly improves their performance on the weakly su-

pervised grounding task. Overall, we demonstrate the ef-

fectiveness of our approach on two state-of-the-art VQA

systems, stacked NMN and MAC, on the CLEVR-Answers

benchmark, our new evaluation set based on CLEVR scenes

with groundtruth bounding boxes for objects that are rele-

vant for the correct answer, as well as on GQA, a real world

VQA dataset with compositional questions. We show that

the systems with the proposed capsule module consistently

outperform the respective baseline systems in terms of an-

swer grounding, while achieving comparable performance

on VQA task.1

1. Introduction

VQA systems have now matured to the point where their us-

age is increasing in real life applications such as answering

questions based on radiology images [1], helping visually

impaired people [10], and human-robot interactions [38].

However, with the increasing maturity of such systems, it

also becomes important to know how the answer is actually

generated in order to assess if it is based on the right cues

1Code will be available at https://github.com/aurooj/

WeakGroundedVQA_Capsules.git

Figure 1. Problem definition: Given an input image and a ques-

tion, we want to answer the question as well as localize the evi-

dence (shown in green boxes) with VQA supervision alone. Best

viewed in color.

or not. If the question is “Are there black horses to the right

of the vehicle?” (see figure 1), it may be important to know

if the answer is generated because the network found black

horses at the right place in the image or not. This allows to

judge the overall correctness beyond simply evaluating the

textual answer. Recent works [17, 36, 4, 20] try to address

this problem by starting to evaluate not only the VQA accu-

racy, but also the accuracy of grounding that the answer is

based on. The grounding of an answer is usually assessed

by considering the respective attention map of the image

for the given answer, and by evaluating if the objects that

are relevant for the right answer are attended to or not.

To achieve good grounding accuracy, most approaches

in this field rely on input feature maps from object detection

models that are pretrained with the relevant object classes.

This restricts the scope to known object classes such as MS

COCO [31], or require to annotate the regions of relevant

objects, and to pretrain an object detector for them[17].

Only few attempts have been made so far to address this

problem to train both, the VQA as well as the grounding,

without pretrained object detection based on the informa-

tion of the VQA task alone as e.g. in context of the GQA

dataset by only using spatial (appearance) features [17].

This paper focuses on exactly this scenario: weakly super-

vised visual grounding based on VQA supervision. The

idea here is that both tasks, the visual question-answering

as well as the correct visual grounding, should be learned
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from the VQA task alone. Hence, we do not use any object-

level information as an input or in supervision.

The correct grounding in this case is usually based on

two major tasks, finding the relevant visual instances and,

usually, modeling the relation between those instances as

seen in figure 1. To address this problem, we propose ex-

tending current VQA frameworks with capsules. Capsule

networks were introduced by Sabour et al. [39], and have

shown promising results for image interpretability [25] and

segmentation in various fields such as 3D point clouds [48],

videos [7] and medical images [28]. This is the result of

capsule layers’ ability to learn part-to-whole relationships

for object entities through routing-by-agreement. We be-

lieve this capability to model objects and their relations

qualifies capsules as a good choice for addressing the prob-

lem of weakly-supervised grounding in VQA.

Current capsule-based methods follow the practice of

adding capsule layers on top of convolutional features, and

training them with object class supervision. A discrete and

supervised masking operation, i.e. masking all capsules ex-

cept the ground-truth class capsule, is often applied to re-

construct or segment the object corresponding to the given

class. In case of weak VQA grounding, no class or ob-

ject based supervision is available; only an embedding of

a natural language question is given. Therefore, we pro-

pose a “soft-masking” procedure which selects the cap-

sule(s) based on the input question. For example, if the rea-

soning operation is Find(“blue spheres”), the soft-masking

operation will mask all capsules not representing the “blue

spheres”. Once the irrelevant capsules are masked, the cap-

sule representations are passed to future reasoning opera-

tions to complete the VQA task.

To evaluate VQA systems for their answer grounding

ability, we consider two datasets, the recently proposed

GQA dataset [17] as well as the CLEVR dataset [23]. To

allow the evaluation of grounding accuracy on CLEVR,

we propose a new CLEVR validation set, named CLEVR-

Answers. CLEVR-Answers provides VQA pairs with the

respective ground truth bounding boxes for all objects that

the answer is based on. Note that, as we are not interested

in using any object annotations during training, we only

need ground truth bounding boxes during evaluation, but

not during training. The idea is, thus, to train on the stan-

dard CLEVR training set and to learn visual representations

of objects during this training without further annotation.

We use this new evaluation set to test current state-of-the-

art frameworks, MAC [16] and Stacked NMN [13] with re-

spect to their grounding abilities. We show that, although all

frameworks perform at the same level with respect to VQA

accuracy, there are major differences with respect to their

grounding abilities. We show that using capsules with soft

query-based masking significantly improves existing meth-

ods’ grounding abilities.

2. Related Work

VQA and visual grounding Recent approaches for VQA

task rely on object level features as input to improve the

VQA accuracy [2, 14, 26, 45, 21, 40, 8, 15, 44]. Those

features are extracted from pretrained object detectors. This

makes the VQA task easier and usually performs better than

spatial or appearance features, but it also adds an additional

preprocessing step (detecting objects) to the pipeline. Ad-

ditionally, since the pretraining relies on the object classes

in the training set, it limits the extension of such methods

to datasets with object-level annotation. Basic appearance

or grid-based features, e.g., based on a backbone pretrained

on ImageNet, are easier to generate and have recently been

shown to work as well as object level features [19] for the

VQA task. All these approaches usually only focus on the

accuracy of the VQA task, and do not evaluate the respec-

tive grounding of their answers.

Focusing on this capability, several VQA datasets now

provide grounding labels such as GQA [17], VCR [46],

VQS [8], CLEVRER [42, 5] and TVQA+ [29]. Here, object

annotations are either provided for all objects in the visual

input, or only for the objects relevant to both question and

answer. Out of those, GQA specifically focuses on the eval-

uation of grounding accuracy with and without object de-

tection supervision and attempts to evaluate MAC [16] and

BottomUp [2] for their grounding ability in natural images.

We, therefore, choose GQA to evaluate capsule-augmented

systems in real world for weakly supervised grounding. Ad-

ditionally, we compute the answer grounding in terms of

overlap and IOU to measure how precise this grounding is

in correlation to the answer.

VQA and visual reasoning on CLEVR CLEVR [23] is

a diagnostic visual reasoning dataset with compositional

questions to test performance of VQA systems on a vari-

ety of reasoning skills. Since the introduction of CLEVR, a

large number of VQA systems [13, 24, 43, 16, 33, 34, 41]

have surfaced to solve VQA task on this benchmark achiev-

ing near perfect VQA accuracy [22]. One line of works

[24, 13, 34] uses reasoning layouts supervision provided

with the image-QA pairs. Additionally, neuro-symbolic ap-

proaches over object level features are proposed, e.g., in

[43, 33]. Many of those ideas implicitly or explicitly in-

clude the concept of grounding on this dataset, but usually

rely on a pretrained object detector to generate initial object

attention maps. Several other variants of CLEVR have also

emerged trying to solve various problems such as CLEVR-

CoGent [23], CLEVR-Dialog [27], CLOSURE [3], simply-

CLEVR [36], and CLEVR-Ref+ [32], with CLEVR-Ref+

focusing on grounding based on referential expressions, but

not VQA, and simply-CLEVR providing only grounding la-

bels for one or all objects in the image. We, on the other

hand, provide bounding box labels for all question types
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Figure 2. Overview of our pipeline: given the question-image pair, we obtain image features X using an image encoder ψ and question

features (both sentence fs and word embeddings fw) using an RNN ρ. These question-based features are then input to a multi-hop

reasoning module which generates T textual queries q0, q1, ..., qT . The Primary Capsules layer then transforms the convolutional image

features into capsules (each capsule has a k × k pose matrix and an activation weight). The primary capsules use a routing-by-agreement

algorithm to vote for higher level capsules at each spatial location. These capsules are used as visual representation inside the reasoning

process. At each timestep t ∈ {1, 2, ..., T}, a soft masking module first masks irrelevant capsules using textual query qt to select a subset

of capsules at each spatial location denoted as Vmct . Then, the reasoning operation is performed over selected capsules (using attention

combined with other reasoning). Output of the reasoning operation is a vector. Output Module then aggregates these outputs and predicts

the answer. We train the system with VQA supervision only. At inference time, we post-process the attention maps produced by the

reasoning modules to obtain grounding predictions.

without imposing any constraint on the number of objects

relevant to answer grounding. Thus, CLEVR-Answers en-

ables us to evaluate grounding abilities of current state-of-

the-art methods without any constraints.

Capsule networks Hinton et al. [11] first proposed cap-

sule networks to learn vectors of view equivariant features

from images. More recently, Sabour et al. [39] extended

capsule networks with an iterative routing-by-agreement al-

gorithm to classify and segment multiple digits within an

image. Several works have proposed improved methods

for routing [12, 47, 30, 18] as well as have applied cap-

sule networks to different tasks and domains [6, 28, 48, 35].

While most previous works tend to be supervised by cal-

culating a loss over a set of “class capsules”, our proposed

approach does not have this capsule-to-object supervision;

rather, capsules are incorporated in our system as interme-

diate layers and are learned by using weak supervision from

question answers. Several capsule networks which perform

classification tasks [39, 6, 37] tend to use a masking opera-

tion to ensure capsules learn class-specific representations.

This operation masks all capsule pose values to 0 except for

the selected (i.e. ground-truth or predicted) class capsule,

and uses this masked representation to reconstruct or seg-

ment the input image or video. Since there are no ground-

truth class annotations, we propose a novel soft-masking

operation which effectively selects the capsule(s) relevant

to the input query and masks irrelevant capsules.

3. Proposed Approach

3.1. Problem Formulation

Given an input image I and a question Q, our goal is

to output the correct answer a ∈ A, where A denotes the

answer vocabulary, and B bounding box predictions for the

objects which led to the answer a. Figure 1 illustrates the

problem. Our pipeline is explained in the following sec-

tions. An overview of the framework is given in figure 2.

3.2. Input Embeddings

Question embedding We are given a question Q of words

w1, w2, ..., wl, where l is the length of Q in words. Let V

be the vocabulary for question words in the training set with

a lookup embedding E ∈ R
|V |×de . Each word in Q is rep-

resented by a de-dimensional initial embedding vector. Let

φ(Q, [w1, w2, ..., wl]) be a sentence encoder which outputs

both sentence level embedding fs for Q as well as word-

level features fw. These sentence-level and word-level em-

beddings are then input to our system. Following previous

works [13, 16], we choose φ to be a BiLSTM. Output di-

mensions for sentence embedding fs and word embeddings

fw are, therefore, fs ∈ R
dq , fw ∈ R

dq , where dq = 2 × d,

and d is the dimension of sentence encoder.

Image embedding Given an input image I , we compute
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a feature map X = ψ(I), where ψ is a pretrained image

encoder and X ∈ R
H×W×df denotes the features extracted

for I (df is the feature dimension).

3.3. Textual query generator

To answer a question based on an image, a VQA system per-

forms attentional parsing of the question, i.e. attends to se-

lected words from the question iteratively depending on the

reasoning required to answer the question. This approach

of splitting the question into subqueries is often termed as

multi-hop or recurrent reasoning, where a query is gener-

ated at each reasoning step to attend to the image to col-

lect answer-relevant knowledge. Let ρ be our query gener-

ator which takes sentence embedding, fs, and word embed-

dings, fw, as an input at each time step t (t = 1, 2, .., T ),

and outputs query qt as an output.

qt = ρ(fs, fw), ∀t ∈ {1, 2, ..., T}. (1)

More details are discussed in the supplementary.

3.4. Capsules with soft masking

A capsule is a group of neurons representing an entity or a

part of an entity. In this work, we use matrix capsules [12],

which are composed of a logistic unit (called the activation)

and a 4x4 pose matrix (called the pose). The activation in-

dicates the presence of a specific entity, whereas the pose

represents the entity’s properties. A capsule layer consists

of many capsules, which use a routing-by-agreement algo-

rithm to vote for capsules in the following layer in order

to model part-to-whole relationships. Matrix capsules use

EM-Routing algorithm for capsule routing. We integrate

them into the process as follows.

Visual capsules: From the image embedding, X , the pri-

mary capsules are obtained by using a learned convolu-

tion operation resulting in C1 capsule types each with a

4x4 pose matrix and an activation for each spatial posi-

tion. The output dimension of the primary capsule layer

is RH×W×C1×4×4 and R
H×W×C1×1 for poses and activa-

tions respectively. To obtain a higher-level capsule repre-

sentation, we perform EM-routing over primary capsules to

obtain a set of C2 capsules at each spatial position. These

capsules model different objects within the scene (including

the background). Output dimensions for poses and activa-

tions are R
H×W×C2×4×4 and R

H×W×C2×1 respectively.

They are used as the visual representation of the input im-

age in future steps.

Soft masking: The trivial approach of leveraging this

capsule representation for VQA would be to group

the poses and activations to form a tensor of shape

R
H×W×C2×(4×4+1), and use them as a single feature map

like standard convolution-based methods. Although, this

performs decently well, it is not an ideal solution since it

treats each dimension of the capsule poses as independent

features and disregards the fact that all dimensions in the

capsule pose represent a single object or entity.

Instead of this independent feature selection, we pro-

pose the selection of individual capsules based on the ques-

tion. This is achieved by masking capsules which are ir-

relevant to the reasoning operation. Previous capsule meth-

ods use masking for image reconstruction [12] or segmen-

tation [7], however they require ground-truth class labels to

select the single capsule type which is not masked. Since

no object/class-level supervision is present for this task, we

propose learning which capsules should be masked in an

end-to-end manner. For each reasoning step, a fully con-

nected layer generates a set of C2 logits denoting each cap-

sule types’ relevance for the given query. Mathematically,

this can be defined as:

mtlogits
= η(qt), (2)

where qt is the textual query at reasoning step t, and η is

the fully connected layer. Then, a one-hot mask, mt ∈ R
C2

is generated where mi = 1 for i = argmax(mtlogits
). This

mask is then applied to the visual capsule layer:

Vmct = mt ⊙ Yc2 , (3)

where, Yc2 is the output of visual capsules layer, and Vmct

are the masked visual capsules corresponding to textual

query qt. We call this operation hard masking.

We find that hard masking operation leads to sub-optimal

performance, since the lack of supervision leads to some

capsule never being selected, resulting in poor represen-

tations. To remedy this, we present a novel soft masking

method as visualized in the green box in figure 2, which

allows gradients to flow through all capsules. Instead of

creating a one-hot mask, a softmax operation is used on the

logits to create a set of soft weights, which then mask the

visual capsules, as follows:

Vmct = softmax(η(qt))⊙ Yc2 . (4)

These masked visual capsules are then used for reasoning

operations as defined by their respective modules. We show

that incorporating capsules and soft masking within an at-

tentional VQA system can boost its grounding ability sig-

nificantly without compromising VQA accuracy, therefore,

reducing the performance-explainability trade-off.

3.5. Output module

The reasoning modules output features which are aggre-

gated over reasoning steps and sent to an output module i.e.,

a classifier which outputs answer scores. For grounding pre-

dictions, we consider the spatial attention maps produced

by reasoning modules and post-process them to obtain the

object detections. The post-processing is described in the

following section.
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Figure 3. Sample images with QA pair and generated answer

grounding labels for CLEVR-Answers dataset.

4. Implementation details

We integrate capsules into two baseline VQA systems:

Stacked Neural Module Networks [13] and MAC [16]. We

make the following architectural changes to these systems.

Capsules with MAC. MAC [16] is a recurrent reason-

ing architecture which performs T reasoning steps to an-

swer the question. Each reasoning step involves generat-

ing a question-based control signal (textual query), using

this control signal to read from image features (using at-

tention), and writing memory. The final output after T rea-

soning steps is then combined with the question and goes

into the answer classifier. MAC also produces interpretable

attention maps for explaining the reasoning process behind

VQA. For capsule integration into the MAC cell, we make

the following changes: First, capsule layers are added on

top of the convolutional layer to obtain visual capsules from

image features. The read module is responsible for attend-

ing to spatial image features and retrieving query-relevant

image features, based on the previous output and the current

control signal (question based feature at timestep t). Inside

the read module, we first map the control signal to a feature

vector of dimensions C2 × (4 × 4 + 1) using a trainable

linear layer. This feature vector is then used to generate a

soft mask to obtain only query-related capsules for further

reasoning. Weights for the masking layer are shared among

MAC cells. These masked capsules are then used for further

reasoning inside the read module.

Capsules with Stacked Neural Module Network

(SNMN). Stacked neural module network is an atten-

tional VQA method following the same reasoning pipeline

as explained above. SNMN produces human interpretable

attention maps. SNMN trains convolutional layers on pre-

trained image features. The output of these convolutional

layers then goes into the reasoning modules and uses tex-

tual query to perform the reasoning operation producing an

attention map as output. To integrate capsules into SNMN,

we append our capsule module on top of image features to

obtain C2 visual capsules. Instead of convolutional image

features, reasoning modules now perform their reasoning

operation on capsules. For query-based soft masking, each

neural module has a fully connected layer which takes

textual query qt ∈ R
d as input and outputs a feature vector

of dimension C2 × (4× 4 + 1). This feature vector is then

used to generate capsule mask of size C2, and for further

interaction between query and masked capsules. Each

reasoning module in SNMN has its own masking layer

except Scene, And, and Or, since these modules do not

use the textual parameter in their computations.

Generation of attention maps. During training, capsule

layers learn to attend to different visual cues in the image,

including background regions when no grounding evidence

is available for the answer. In order to give more weight to

high attention regions and suppress attention on the back-

ground, we introduce an opacity parameter α. For uniform

attention regions, opacity is scaled up by α. After post-

processing spatial attention using α, an attention threshold

of 0.5 is applied to get a binary mask with high attention

regions. Each connected component in this binary mask is

considered an object detection. See supplementary for re-

sults w.r.t. variations in α.

5. Datasets

We perform our evaluation on two datasets: GQA and

CLEVR. GQA, as real world dataset for visual reasoning

and compositional question answering, combines the two

aspects of the proposed idea by providing an evaluation of

grounding VQA tasks. It also provides a baseline for the

weakly supervised grounding task by using only spatial fea-

tures that are not pretrained on object annotations. CLEVR,

as opposed to GQA, provides a sandbox for visual reason-

ing VQA tasks with synthetic images only, no visual over-

lap to any ImageNet categories, and a challenging ground-

ing setting with objects in various combinations of color,

shape, size, and material. Recent work on attentional VQA

systems (SNMN [13] and MAC [16]) show high VQA ac-

curacy, making this dataset a good candidate to explore the

relationship of grounding and VQA accuracy.

GQA. GQA is a real world visual reasoning dataset with

multi-hop reasoning questions. GQA provides composi-

tional questions for challenging real world images. Ques-

tions in GQA are more diverse than VQA 2.0 [9] in several

ways with more coverage to relation, spatial, and compo-

sitional questions [17]. This dataset consists of 22M QA

pairs for more than 113K images. GQA provides ground-

ing labels for objects referenced in the question and answer

which makes it a suitable test bed for our task. We use the

balanced version of this dataset with the standard split pro-

vided by the authors for our experiments.

CLEVR-Answers for Visual Grounding. In this paper,

we extend CLEVR dataset to CLEVR-Answers for visual

grounding of answers. The CLEVR dataset is a syntheti-

cally rendered dataset for the evaluation of visual reasoning
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Overlap IOU

Method T #param Acc. P R F1 P R F1

MAC [16]
4

12.20M 97.70 24.92 56.27 34.55 13.99 33.50 19.73
MAC-Caps 12.92M 96.79 47.04 73.06 57.23 23.97 39.06 29.71

MAC [16]
6

12.72M 98.00 30.10 52.41 38.24 12.59 23.62 16.42
MAC-Caps 12.76M 98.02 48.49 79.75 60.31 29.03 47.63 36.07

MAC [16]
12

14.30M 98.54 28.66 53.27 37.27 8.50 18.11 11.57
MAC-Caps 15.02M 97.88 50.90 94.61 66.19 27.72 49.84 35.62

SNMN [13]
9

7.32M 96.18 52.87 67.03 59.12 37.81 47.50 42.11
SNMN-Caps 6.94M 96.66 73.81 78.13 75.91 50.58 51.80 51.18

Table 1. Comparison with baseline systems on CLEVR-Answers

validation set. MAC-Caps and SNMN-Caps are the variants with

the proposed soft masked capsules. For MAC, results are shown

with varying reasoning steps, T (column 2). SNMN uses T=9. See

section 6.1 for details. Numbers are reported in percentages.

and complex VQA tasks. It consists of a train set with 70K

images and approximately 700K question-answer pairs and

a validation set of 15K images with about 150K question-

answer pairs. To allow for an evaluation of visual ground-

ing on this task, we use the framework provided by [23],

and generate new question-answer pairs with the bounding

box labels for the answers as shown in figure 3. We use the

same training and validation scenes (images) and generate

10 new QA pairs for each image. To get localization labels

for each answer, we follow a two step process: First, we

obtain the set of object ids which leads to the answer. Each

question in CLEVR dataset is accompanied with a ques-

tion graph, a stepwise reasoning layout with the information

required to solve the question [23]. We traverse question

graph in a backward direction starting from the last node

and do breadth-first-search (BFS) till we traverse all nodes

which are at breadth level=1. This gives us the list of ob-

jects which were used in the final reasoning step and gen-

erated an answer. Please note that not every answer will

have grounding labels. For instance, if the question is “how

many blue rubber blocks are behind red cylinder?” and the

answer is 0, then there will be no bounding box labels. Sec-

ond, to get bounding boxes for this set of objects, we need

scene information. For each question and its corresponding

answer grounding objects, we use the center pixel coordi-

nate information (available with each scene object) to locate

each object in the scene. Then, based on the object size and

shape, we use a few heuristics to get a rough estimate of the

bounding box around each object of interest.

This two-step process results in 901K bounding boxes (for

about 700K QA pairs) for training set and 193K boxes (for

about 150K QA pairs) for validation set i.e. more than

1M bounding boxes labels. Note that we do not use those

bounding boxes for training, but we will provide them as

well to spur further research. To have a standard train-val-

test setup for our experiments, we separate 1K training im-

ages with 10K QA pairs for validation of hyper parameters.

The original CLEVR validation set is used as test set and is

never seen during training or validation.

Overlap IOU

Method Grd. GT Acc. P R F1 P R F1

MAC
Q

57.09 19.75 30.69 24.04 2.88 4.36 3.46
MAC-Caps 55.13 37.77 63.65 47.41 5.39 8.65 6.64

MAC
FA

57.09 22.43 31.35 26.15 3.30 4.48 3.80
MAC-Caps 55.13 41.53 63.00 50.06 6.14 8.85 7.25

MAC
A

57.09 5.61 27.36 9.31 0.92 4.46 1.52
MAC-Caps 55.13 11.95 62.56 20.07 2.32 11.91 3.88

MAC
All

57.09 25.01 30.48 27.47 3.66 4.28 3.95
MAC-Caps 55.13 46.06 62.30 52.96 7.03 8.72 7.79

Table 2. Results on GQA validation set for MAC with T=4. Re-

sults are based on grounding of objects referenced in the ques-

tion (Q), full answer (FA), short answer (A), as well as combined

grounding of question and answer (All). We consistently outper-

form MAC in all metrics. When evaluating for a certain ground-

ing label type, other detected objects are treated as false positives.

Numbers are reported in percentages.

6. Experiments and Results

Evaluation Metrics. To evaluate the correct answer lo-

calization (grounding), we report precision, recall, and

F1-score based on two criteria: intersection over detec-

tion (Overlap), and intersection over union (IOU). Bound-

ing boxes for the object detections are compared with the

ground truth bounding boxes to evaluate how close they

are to the ground truth labels in terms of overlap and IOU.

Predicted regions are considered true positives if the spatial

overlap of predicted bounding box and ground truth bound-

ing box is greater than a certain threshold. The detection

threshold is 0.5. The baseline systems use a multi-hop rea-

soning process producing attention maps for each reason-

ing step. Since the reasoning process is divided into sub-

operations resulting in each operation producing a separate

attention map, it is possible that evidence for the correct

answer was attended at some intermediate step and not nec-

essarily at the last step. To give advantage to the baseline

methods, we consider the best attention map in the reason-

ing process with respect to F1 score.

6.1. Comparison to baseline method

We first compare the impact of the proposed capsule

module on the two baseline systems, MAC and SNMN, on

the CLEVR-Answers dataset as well as MAC on GQA. See

tables 1, 2 and 3. We use SNMN and MAC as our base-

lines. These VQA systems take a question with image-

based holistic features as input and generate answers with

interpretable attention maps. Visual capsules module has

the same number of capsules in both layers i.e., we set

C1 = C2 = C in all our experiments (C = no. of capsules).

CLEVR-Answers: We first evaluate the performance of

both systems on the CLEVR-Answer benchmark. We

extract 14x14x1024 dimensional features from the conv4

layer of a ResNet-101 backbone pretrained on ImageNet,
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Figure 4. Attention visualizations for MAC on GQA dataset. Column 1 shows results for MAC, column 2 shows results for MAC-Caps

and the same order is followed onwards. Row 1 shows input image, rows 2-5 are attention visualizations for each reasoning step (T=4)

with ground truth (green boxes) and detected grounding objects (red boxes), followed by attention on question words for each step. See

how MAC-Caps attends to the correct boxes. The attention on question words is also improved. Refer to section 6.3 for further details and

discussion. Best viewed in color.

which are referred to as spatial features in [17]. We pass

them through conv layers by MAC and SNMN to generate

14x14x512 dimensional features. We train the models for

25 epochs, using the model with best VQA accuracy for

grounding evaluation. The original MAC baseline reports

their best VQA accuracy with T=12 system [16]. However,

it is recommended to use four to six reasoning steps to get

interpretable attention maps. Thus, we train both, MAC and

MAC-Caps for T=4, 6, and 12 (α is set to 1 for MAC).

Table 1 shows the difference of both systems, the MAC

and the MAC-Caps with respect to visual grounding. The

MAC baseline achieves best IOU F1-score of 19.73 with

T=4 whereas MAC-Caps achieves the best IOU F1-score

of 36.07 (19.41% ↑) using T=6 without hurting VQA accu-

racy. Note that for MAC-Caps, the best Overlap F1-score

is reached at T=12, which is an indicator that larger atten-

tion maps are produced, which are not rated by the Overlap

measurement. Overall, we see a significant and constant

increase across all evaluated scores of the proposed MAC-

Caps compared to the MAC baseline. For the evaluation of

SNMN and SNMN-Caps, we train both systems with input

features as described above and choose the hyperparameters

as mentioned in [13]. Note that SNMN, opposed to MAC,

uses an expert layout setting, i.e, question graph layouts are

used and learned during training. We get our best results

with 24 capsules for SNMN-Caps as further evaluated in

Method Validity Plausibility Consistency Distribution Grounding

MAC 95.14 91.34 84.90 6.44 41.68 (30.34)

MAC-Caps 95.17 91.48 80.90 5.67 45.54 (38.82)

Table 3. Results on GQA validation set for other evaluation met-

rics. Grounding results are shown for attention maps from the last

(mean) reasoning step(s). Numbers are reported in percentages.

Overlap IOU

Method Acc. P R F1 P R F1

(1) masked conv. 95.69 59.71 71.13 64.92 42.28 49.24 45.49
(2) hard masking 88.48 63.24 72.76 67.67 43.35 48.29 45.69
(3) shared mask layer 95.76 70.40 76.13 73.15 48.01 49.77 48.87

(4) w/mask (C=8) 95.34 63.12 74.38 68.29 42.08 47.61 44.67
(5) w/mask (C=16) 95.79 73.72 76.27 74.97 50.82 50.02 50.42
(6) w/mask (C=24) 96.66 73.81 78.13 75.91 50.58 51.80 51.18

Table 4. Ablations over the design choices for the proposed ar-

chitecture on CLEVR-Answers val set with SNMN as base ar-

chitecture. Rows 1-3 show the influence of masking (with 16

capsules), where, masked conv.= masking of convolutional layer,

hard masking=one hot masking, shared mask layer=weights for

masking layer are shared among reasoning modules; w/mask=soft

weights are used to mask the capsules (rows 4-6). The lower part

shows the impact of number of capsules: C = no. of capsules.

section 6.2. Using α = 7 gives us best grounding results for

SNMN. Overall, we see a similar increase in performance

as for MAC and MAC-Caps, with an IOU F1-score of 42.11
for SNMN and an IOU F1-score of 51.18 for SNMN-Caps.

GQA: To assess the performance on real world data, we

evaluate our system in context of MAC on the GQA dataset.
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GQA provides grounding labels for question, single word

answer and sentence-based answer. We compare both se-

tups, MAC and MAC-Caps, using the proposed grounding

score based on overlap and IOU (see table 2), as well as

the metrics proposed by Hudson et al. [17] where, for each

question-image pair, the grounding score is the sum of at-

tention over ground truth region(s) r, averaged over all data

samples (see table 3). We use T=4 for both the MAC base-

line and MAC-Caps, showing the best performance on this

dataset. We report results on the GQA validation set.

We again observe that MAC-Caps consistently outper-

forms the MAC baseline on all metrics in table 2. We

notice significant improvement (23.91% ↑ on F1-score) in

terms of Overlap with 3.45% improvement in F1-score in

terms of IOU for full answer grounding. Note that the

scores, especially in context of IOU, are much lower on this

dataset compared to the CLEVR benchmark, which can be

attributed to the complexity of the natural images in this

context. Regarding the comparison to the metrics proposed

by [17] shown in table 2, we see the increase with respect to

the grounding abilities of the MAC-Caps compared to the

MAC baseline as well as compared to the reported spatial

feature baseline of 43% in [17]. Overall, both evaluations

show that the proposed capsule module allows for a better

learning of visual grounding from weak VQA supervision

even in a challenging real world setting given with GQA.

6.2. Ablations and Analysis

Convolutional layers vs. Capsules. To investigate how

much capsules contribute compared to convolutional layers,

we mask convolutional features instead of using capsules.

We add a convolutional layer on top of image features re-

sulting in C × (4 × 4 + 1) features to keep same number

of channels as in capsules (here, C=16). Similar to soft

masking in capsules, these convolutional features are also

masked before performing the reasoning operation. We find

that masked convolutional features perform 3.38% better

than the SNMN baseline in terms of IOU, but capsules still

outperform them with a large margin (45.49% vs. 50.42%)

for convolutional masking (see table 4 (1)=masked con-

volutions and (5)=baseline). This shows that query-based

masking of capsules performs superior when compared to

masked convolutional features .

Hard Masking vs. Soft Masking. There are two possi-

ble ways to mask capsules based on the query input. The

first is masking them using softmax scores which we call

soft masking; the second is keeping the capsule with high-

est probability and mask out the rest of the capsules (using

one hot vector as mask), which we call hard masking. We

find that using soft masking gives best results. When using

hard masking of capsules (C=16), it hurts VQA accuracy

(88.07%), although giving comparable results on grounding

metrics (see table 4 (2)=hard masking and (5)=baseline).

Therefore, we use soft masking for all our experiments.

Shared masking vs. separate masking. For SNMN, our

final architecture uses a separate masking layer for each rea-

soning module. We also experiment with using a single

masking layer with shared weights for all reasoning mod-

ules. While shared masking layer yields good results, we

get the best grounding scores using separate masking layer

(see table 4 (3)=shared mask layer and (5)=baseline).

Performance analysis w.r.t. no. of capsules. We finally

analyze the system with varying number of capsules. We

train the SNMN-Caps model with C=8, 16, and 24. All

of them perform superior to the original SNMN in terms

of grounding while achieving comparable VQA accuracy.

With 24 capsules, SNMN-Caps outperforms the baseline

SNMN on both VQA and grounding task (table 4 (4-6)).

6.3. Qualitative Results

Figure 4 shows qualitative analysis on GQA dataset with

MAC-Caps. For samples, where both systems give the cor-

rect answer (columns 1-4), we observe that MAC often at-

tends to corners in the image during the intermediate rea-

soning steps and attends to the region(s) of interest only

at the final stage. For instance, on first sample (columns

1-2), MAC never attended to the correct object yet some-

how produces the correct answer. MAC-Caps, on the other

hand, pays attention correctly to relevant regions on ear-

lier stages even for the case where the final answer is in-

correct (columns 7-8). Additionally, MAC-Caps produces

more precise attention than the baseline system. Attention

on question words also seems to be improved for MAC-

Caps (last row). Columns 5-6 show the case where, better

grounding leads the model to predict the answer correctly.

7. Conclusion

This work proposes a novel approach for the weakly su-

pervised grounding of VQA tasks. The proposed capsule-

based module can be integrated into current VQA systems.

To allow a combination of capsules with VQA based text

processing, we proposed a soft masking function that fur-

ther improves weakly supervised answer grounding. We

show by evaluating the system on two challenging datasets,

GQA and CLEVR-Answers, the impact of the proposed

idea to learn a weakly supervised grounding in VQA tasks.
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