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Abstract

We propose a novel technique for producing high-quality

3D models that match a given target object image or scan.

Our method is based on retrieving an existing shape from

a database of 3D models and then deforming its parts to

match the target shape. Unlike previous approaches that in-

dependently focus on either shape retrieval or deformation,

we propose a joint learning procedure that simultaneously

trains the neural deformation module along with the embed-

ding space used by the retrieval module. This enables our

network to learn a deformation-aware embedding space, so

that retrieved models are more amenable to match the tar-

get after an appropriate deformation. In fact, we use the

embedding space to guide the shape pairs used to train the

deformation module, so that it invests its capacity in learn-

ing deformations between meaningful shape pairs. Further-

more, our novel part-aware deformation module can work

with inconsistent and diverse part-structures on the source

shapes. We demonstrate the benefits of our joint training

not only on our novel framework, but also on other state-

of-the-art neural deformation modules proposed in recent

years. Lastly, we also show that our jointly-trained method

outperforms various non-joint baselines.

1. Introduction

Creating high-quality 3D models from a reference im-

age or a scan is a laborious task, requiring significant ex-

pertise in 3D sculpting, meshing, and UV layout. While

neural generative techniques for 3D shape synthesis hold

promise for the future, they still lack the ability to create

3D models that rival the fidelity, level of detail, and overall

quality of artist-generated meshes [38]. Several recent tech-

niques propose to directly retrieve a high-quality 3D model

from a database and deform it to match a target image or

point cloud, thereby approximating the target shape while

preserving the quality of the original source model. These

prior methods largely focus on one of two complementary

subproblems: either retrieving an appropriate mesh from a

database [26, 6], or training a neural network to deform a

source to a target [14, 43, 49, 36]. In most cases, the static

database mesh most closely matching the target is retrieved,
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Figure 1. Given an input target we use jointly-learned retrieval and

deformation modules to find a source model in a heterogeneous

database and align it to the target. We demonstrate that our joint

learning outperforms static retrieval and non-joint baselines.

and then deformed for a better fit [19]. The retrieval step

is not influenced by the subsequent deformation procedure,

and thus ignores the possibility that a database shape with

different global geometry nevertheless possess local details

that will produce the best match after deformation.

Only a few works explicitly consider deformation-aware

retrieval [34, 41]. However, in these works the deforma-

tion module is a fixed, non-trainable black box, which re-

quires complete shapes (and not e.g., natural images or par-

tial scans) as targets, does not handle varying shape struc-

tures across the database, may necessitate time-consuming,

manually-specified optimization of a fitting energy, exhaus-

tive enumeration of deformed variants, and does not support

back-propagating gradients through it for directly translat-

ing deformation error to retrieval error.

In this paper, we argue that retrieval and deformation

should be equal citizens in a joint problem. Given a

database of source models equipped with some parametric

representation of deformations, our goal is to learn how to

retrieve a shape from the database and predict the optimal

deformation parameters so it best matches a given target. A

key feature of our method is that both retrieval and defor-

mation are learnable modules, each influencing the other

and trained jointly. While the benefit of deformation-aware

retrieval has been explored previously, we contribute the no-

tion of retrieval-aware deformation: our learnable deforma-
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tion module is optimized for fitting retrieved shapes to target

shapes, and does not try to be a general-purpose algorithm

for arbitrary source-target pairs. Thus, the retrieval module

is optimized to retrieve sources that the deformation module

can fit well to the input target, and the deformation module

is trained on sources the retrieval module predicts for the

input target, thereby letting it optimize capacity and learn

only meaningful deformations.

The robustness of the joint training enables us to devise

a more elaborate deformation space. Specifically, we de-

vise a differentiable, part-aware deformation function that

deforms individual parts of a model while respecting the

part-to-part connectivity of the original structure (Figure 1).

Importantly, it accommodates varying numbers of parts and

structural relationships across the database, and does not re-

quire part labels or consistent segmentations. It can work

with automatically-segmented meshes and even multiple

differently segmented instances of the same source shape.

We propose a way to encode each part in each source and to

enable a general MLP to predict its deformation regardless

of the part count. This holistic view of joint retrieval and de-

formation is especially important when considering hetero-

geneous collections of shapes “in the wild” that often vary

in their part structure, topology, and geometry. These re-

quire different deformation spaces for different source mod-

els, which the retrieval module must be aware of.

We evaluate our method by matching 2D image and

3D point cloud targets. We demonstrate that it outper-

forms various baselines, such as vanilla retrieval [26], or

deformation-aware retrieval using direct optimization for

deformation [41], or a fixed, pre-trained, neural deforma-

tion module (i.e. omitting joint training). We also show

that our method can be used even with imperfect and incon-

sistent segmentations produced automatically. Finally, we

show that even with a different deformation module (e.g.,

Neural Cages [49]), our joint training leads to better results.

2. Related Works

Deep Learning for Shape Generation. Many neural

techniques have been proposed recently for learning gener-

ative latent representations for 3D shapes, modeling geome-

try as implicit functions [31, 27, 5], atlases [13], volumetric

grids [8, 45], point clouds [1, 48, 9], and meshes [42, 44].

These models tend to under-perform on topologically com-

plex objects with intricate part structures. Thus, other

techniques focus on factorized representation, where vari-

ations in structure are modeled separately from the geome-

try [25, 11, 28]. These generative techniques are commonly

used jointly with 2D CNNs [33] or shape encoders [51] to

enable creating a shape based on some partial observations,

such as a natural image [12] or a point scan [7]. A sim-

ple shape retrieval [26] could also be viewed as the simplest

version of such a shape generator, where the system simply

returns the nearest neighbor in the latent space, in fact, of-

fering a strong baseline to other generative techniques [38].

Deformation-Aware Retrieval. Direct retrieval has the

advantages of producing stock-quality meshes [39, 40],

however, unless the database contains all possible objects,

might not produce a good fit for an encoded target. Prior

works [30, 34, 41] address this issue by additionally de-

forming, i.e. fitting, the retrieved shape to the desired tar-

get. One approach is to exhaustively deform all shapes in

the database to the target and select the best fit [30], but is

however computationally expensive. Schulz et al. [34] alle-

viates this by retrieving parametric models by representing

each as a set of points and bounded tangent planes, thus

enabling retrieval before the fitting process. Leveraging on

deep networks, Uy et al. [41] use a deep embedding to re-

trieve a shape and then separately deform it to the target by

directly optimizing the ARAP [18] loss. Their method is

limited to full shapes as targets as direct optimization is not

possible with partial scans [2] or natural images. They fur-

ther observe that the retrieval network needs to be aware of

the deformation step to retrieve a more appropriate source.

We extend their approach in several ways. First, we demon-

strate that one can use retrieve-and-deform method with a

neural deformation technique, allowing us to handle natural

images as inputs. Second, we propose a novel joint training

process, which enables us to train our deformation module

to be more suitable for the kind of pairs of shapes that are

being retrieved. And third, we propose a novel neural defor-

mation module that is especially suitable for heterogeneous

shape collections with topological and structural variations.

3D Deformation. Deforming a source 3D model to a tar-

get is one of the fundamental problems in geometry pro-

cessing. If target is a full shape, direct optimization tech-

niques can be employed [17, 35, 22], as well as human-

made [23, 10, 46, 52] shapes. One can only directly opti-

mize if a target is a full shape, however if it of a different

modality, such as image or partial scan, one needs to employ

priors [15]. Neural techniques have been used to learn such

deformation priors from collections of shapes, representing

deformations as volumetric warps [20, 24, 50], cage defor-

mations [49], vertex-based offsets [43, 14] or flow-based

approaches [21]. To make learning easier, these techniques

typically assume homogeneity in the sources and represent

the deformation with the same number of parameters for

each source, i.e. grid control points [20], cage mesh [49]

or number of vertices [43]. These assumptions make them

less suitable for heterogeneous databases of sources with

significant structural variations at the part level. We extend

the part-level reasoning that proved to be effective for other

problems [29, 47, 4] to neural deformation, by proposing a

novel module that can learn source-specific deformations,

and handle cases when sources can have different number

of deformation parameters to account for part variability.
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Figure 2. During training, given a target image or a point cloud and a database of deformable sources, we retrieve a subset of source models

based on their proximity in the retrieval space, and use the structure-aware deformation module (right) to fit each source. Our deformation

module uses encoded target, global and per-part source codes to predict per-part deformation parameters.

3. Method

Overview. We assume to possess a database of parametric

source models s ∈ S, and we aim to jointly train a deforma-

tion and retrieval module to choose a source and deform it to

fit a given target t (an image or a point cloud), with respect

to a fitting metric Lfit (we use chamfer in all experiments).

Each source also has parameters defining its individual de-

formation space, that are optimized during training.

Our deformation module is designed to enable a differ-

ent deformation function Ds for each source s, based on its

parts. The retrieval module uses embeddings of the sources

and the target into a latent space R, where it retrieves based

on a distance measure dR, which enables the retrieval of the

source shape that best fits to the target after deformation.

The training consists of optimizing the latent retrieval

space R and the deformation functions {Ds}:

minLfit (Ds0(t), ttrue) ,

where s0 is the closest source to target t in latent space, w.r.t

the distance measure dR(s0, t), and ttrue is the correspond-

ing true shape.

We progress by first explaining in Section 3.1 how we

design our framework and optimization in a way that is dif-

ferentiable and enables the deformation and retrieval mod-

ules to propagate information from one to the other. We

then detail our novel deformation module and how it en-

ables source-specific deformations in Section 3.2, and con-

clude by describing the retrieval module in Section 3.3.

3.1. Joint Deformation and Retrieval Training

It is critical for our approach to optimize the parameters

of R and {Ds} jointly. First, it enables the deformation

module of each source to efficiently utilize its capacity and

specialize on relevant targets that it could fit to. Second, it

allows the retrieval module to create a deformation-aware

latent space where sources are embedded closer to the tar-

gets they can deform to.

Soft Retrieval for Training. The retrieval module em-

beds the sources and the target in the latent retrieval space

R. The proximity in latent space is used to define a biased

distribution that can be loosely interpreted as the probability

of source s being deformable to t:

PR(s, t) = p(s; t,S, dR,σ0), (1)

where

p(s; t, S̃, d̃, σ̃) =
exp(−d̃2(s, t)/σ̃2(s))

P

s02S̃
exp(−d̃2(s0, t)/σ̃2(s))

,

d̃ : (S×T) → R is a distance function between a source

and a target (T is the target space), and σ̃ : S → R is

a potentially source-dependent scalar function. Though,

σ0(·) = 100 is a constant set for all experiments.

Instead of choosing the highest-scoring source according

to the probability PR, we perform soft retrieval and sample

K = 10 retrieval candidate sources from the distribution:

si ∼ PR(s, t), ∀i ∈ {1, 2, ...,K}.

The candidates St = {s1, ..., sK} sampled via our soft

retrieval are then used to train both our retrieval module to

learn R and deformation module for source-depedent de-

formation functions {Ds}.

The soft retrieval is crucial for our training: 1) adding

randomness to the retrieval ensures that the latent space is

optimized with respect to both high-probability instances

and low-probability ones, that may reverse roles as the de-

formation module improves. 2) On the other hand, train-

ing the deformation module with a bias towards high-

probability sources and not random ones ensures it is aware

of the retrieval module and expands its capacity on mean-

ingful matches.

Training. We train the two modules jointly in an alter-

nating fashion, keeping one module fixed when optimizing

the other, and vice versa, in successive iterations. To train

the retrieval module, we deform the candidate sources and

compute their fitting losses to the target. We update our la-

tent space R by penalizing the discrepancy between the dis-

tances in the retrieval space dR and the post-deformation fit-

ting losses Lfit using softer probability measures estimated

from the distances of the sampled candidates:
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Lemb =
K
X

k=1

| p(sk, t,St, dR,σ0)− p(sk, t,St, dfit,σk)|,

(2)

where
dfit(s, t) = Lfit(Ds(t), ttrue), (3)

and σk is a source-dependent scalar representing the pre-

dicted range of variations of each source model s ∈ S,

which is also learned. For the deformation module, we

update the deformation functions {Dsk
} for the K biased

samples by minimizing the post-deformation fitting losses

weighted by their soft probability measures:

Ldef =

K
X

k=1

p(sk, t,St, dR,σ0)Lfit(Dsk
(t), ttrue). (4)

This weighting scheme puts greater weight on sources

that are closer to the target in the embedding space, thus fur-

ther making the deformation module aware of the retrieval

module, and allowing it to specialize on more amenable

sources with respect to the training target.

Inner Deformation Optimization. To enforce the defor-

mation module to perform more significant deformations,

at each training iteration we use the deformation network’s

current output for the given source and target that consists

of parameters for the deformation, and directly run SGD

on the deformation parameters until convergence of the fit-

ting loss. We then measure the least-square error between

the deformation network’s output and the optimized param-

eters, and train the module by backpropagating this error,

hence enabling the network to learn stronger deformations

and getting a better estimate for how well the source could

be aligned to the target after the deformation. See the sup-

plementary for the full details.

3.2. Structure-Aware Neural Deformation

While our joint training approach described in Sec-

tion 3.1 is generic and can work well with different param-

eterization of deformations, its greatest advantage is that it

enables our deformation space to vary greatly between each

source without having the deformation module learn subpar

deformations. We thus devise a deformation module with a

heterogeneous space of part-based deformations as shown

in Figure 1, which vary per each source, a necessary fea-

ture if one wants to tailor the deformations to be restricted

to preserve and adjust part structures.

To get meaningful parts, we use manual segmentations

from PartNet [29] or automatic segmentations (preprocess-

ing) of ComplementMe [37], produced by grouping con-

nected components in raw meshes. Our deformation mod-

ule predicts a simple deformation consisting of translation

and axis-aligned scaling for each part in a source model.

See supplementary for the details on the prediction. The

number of parts for different sources vary, making the de-

formation functions source-dependent {Ds}. We abuse the

notation a bit and let D denote our deformation module.

We propose to use a neural network which can be

applied to each part separately, thus making it applicable

to models with varying part-constellations, as opposed

to previous methods. Namely, we assign to each source

a global code s
glob
D

∈ R
n1 , and for each part within the

shape, we assign a local code si=1...Ns

D
∈ R

n2 . The

target is encoded via an encoder (PointNet [32] for point

clouds and ResNet [16] for images) into a latent vector

tD = ED(t) ∈ R
n3 . We set n1 = n3 = 256 and n2 = 32

for all experiments. The global, local, and target codes

are concatenated and fed to a lightweight 3-layer MLP

(512, 256, 6), P , which outputs the deformation parameters

of the corresponding part. The deformation parameters

of all parts are then used to obtain the final deformed

source shape. Each source’s global and local codes are

optimized in an auto-decoder fashion during the training

of the deformation module. Figure 2 (right) illustrates our

module. We additionally add a symmetry loss in training

our deformation module to enforce bilateral symmetry of

the output deformed shapes as regularization, more details

are found in the supplementary.

Connectivity Constraints. We further take advantage of

our joint-training’s robustness to heterogeneous deforma-

tion spaces, and add part-connectivity constraints. We

achieve this by introducing a layer that receives a deforma-

tion and projects it onto the space of contact-preserving de-

formations, via a simple linear transformation. Contacts are

defined between pairs of connected parts where each pair

introduces a set of constraints. The source models have dif-

ferent sets of connected parts, and hence a different number

and set of constraints, as illustrated in Figure 1, making the

deformation functions {Ds} even more source-dependent.

More details are found in the supplementary.

3.3. Retrieval in Latent Space

The retrieval space R is defined similarly to Uy et

al. [41], and we provide relevant technical details in this

section for completeness. We use a PointNet or ResNet en-

coder to get the latent code of the target: tR = ER(t) ∈

R
n4 with n4 = 256. The sources are represented as regions

in the latent space, defined by a center code sR ∈ R
n4 and

a variance matrix sv
R

∈ R
n4⇥n4 that defines the egocentric

distance field. The variance matrix is diagonal positive def-

inite, with the positivity enforced by the sigmoid activation

function. We define the distances in the retrieval space as:

d(s, t)R =
q

(sR − tR)T sv
R
(sR − tR). (5)

During training we optimize the parameters of the en-

coder ER(t) as well as latent codes and variances for each
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Figure 3. We test our trained method on online product images.

source, sR, sv
R

. sR is obtained by feeding the default shape

of source model s to encoder ER(t). Different from Uy et

al. [41], we optimize sv
R

in an auto-decoder fashion, since

we want to represent the deformation space of the source

rather than its geometry. This allows us to handle sources

with similar geometry but different parameterizations.

4. Results

In this section we discuss our data sources and evalua-

tion metric and provide thorough experiments with image

(Sec 4.1) and point cloud (Sec 4.2) targets.

Datasets and Evaluation Metric. We evaluate our

method on the three furniture categories in the ShapeNet

dataset [3] chairs (6531), tables (7939) and cabinets (1278).

For our database of deformable source models, we use

manually- and automatically-segmented shapes from two

different datasets. Manually-segmented shapes come from

the finest level of PartNet hierarchy [29], and we select

random 10% of the data as our sources. Automatically-

segmented shapes come from two pre-analyzed classes in

ComplementMe [37] (chairs and tables), and we pick 200

random models for each. We remove the selected sources

from the database, and use remaining models as training

(80%) and testing (20%) targets. To demonstrate the practi-

cal utility of our method, we also test our trained networks

on product images and 3D scans.

We represent the shapes by uniformly sampling 2048

points. For the image experiments, we render 24 uniformly-

sampled viewpoints, and pick a random view at each itera-

tion during training. In all cases our true targets and de-

formed sources are represented as point clouds, and points-

to-points distances are used for training and evaluation.

4.1. Image-to-Mesh

We first test our system on product images “in the wild”

as well as images from our test set and show qualitative re-

sults for retrieval and deformation in Figures 3 and 4. Note

Chair Table Cabinet

R 1.926 2.235 2.228

R+DF 1.969 2.705 2.035

DAR (Retrieval Only) 1.345 2.058 3.489

DAR+DF 1.216 1.621 1.333

Uniform Sampling 1.118 1.486 1.318

Ours 1.005 0.970 1.220

Ours w/ IDO 0.976 0.935 1.141

Table 1. Comparing our method to various baselines and ablations

on image-to-mesh benchmark (chamfer distances, ×10
−2).

how retrieved results have compatible structure to the in-

put, which then enables the deformation technique to match

the source to the target. We quantitatively evaluate perfor-

mance of our method and report chamfer distances in Ta-

ble 1 (Ours) together with the chamfer distances with the

inner deformation optimization (Ours w/ IDO). Since IDO

step described significantly increases training time, we do

not use it in ablations and comparisons.

Retrieval Baselines. We compare our method to a vanilla

image-to-shape retrieval technique [26] (denoted by R).

This baseline first constructs the latent space by projecting

shape-to-shape chamfer distance matrix to 256-dimensional

space via MDS, and then trains a ResNet [16] encoder to

map images to that latent space with L2-loss. Since any

retrieval baseline can also work with a pre-trained neural

deformation, we also train our structure-aware deformation

module on random pairs of shapes (i.e., ablating the joint

training procedure) and report results with neural defor-

mation applied to the retrieved results (R+DF). Since this

vanilla baseline retrieves only based on geometric similarity

and does not account for deformation, the retrieved shapes

may not deform to targets well. Hence, there is no im-

provement when deforming with the pre-trained deforma-

tion function.

The second retrieval baseline is the deformation-aware

retrieval [41], where we also use our structure-aware de-

formation module pre-trained on random pairs. For this

baseline we report results for retrieval (DAR) as well

as deformation (DAR+DF). Our results show that being

deformation-aware is not sufficient, and it is important for

deformation module to be trained with retrieved shapes.

Biased Sampling Ablation. Our joint training benefits

from biasing sampling of retrieval targets (Eq. 1). To ab-

late this, we sample from a uniform distribution, i.e., each

source is sampled with equal probability during training. In

this setting, while the retrieval and deformation modules are

still trained together, they are less aware of which samples

are most relevant at inference time and thus yield higher

errors (see Uniform Sampling in Table 1).

Improvement in Deformation Module. In addition to

holistic improvement to the final output, we would like to
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R+DF DAR+DF

Figure 4. Comparison between our approach and baselines for the image-to-mesh experiment.

Chair Table Cabinet

DF 0.748 0.702 0.706

Uniform Sampling 0.755 0.690 0.701

Ours 0.681 0.584 0.675

Ours w/ IDO 0.669 0.533 0.689

Table 2. Improvement in deformation module for image-to-mesh

task with oracle retrieval due to joint training (chamfer ×10
−2).

evaluate the effect of joint training on deformation module.

To do this, we use oracle retrieval where for each test target,

we deform all sources and pick the one with the smallest fit-

ting error. Our joint training allows the deformation module

to specialize on targets that are a good fit. Thus, as shown

in Table 2, our method achieves the lowest fitting error for

the best-fit sources with respect to the deformation mod-

ule trained on all pairs (DF), and the deformation module

trained without the biased sampling (Uniform Sampling).

4.2. Points-to-Mesh

We also test our method on point cloud targets. We first

show qualitative results with real noisy and partial 3D scans

in Scan2CAD dataset [2]. Figure 5 show some examples,

and more are in the supplementary. As shown, given an in-

complete scan, with missing parts and a noise, our approach

still correctly retrieves and deforms a source database model

to output a clean and complete mesh to match the scan. Our

structure-aware neural deformation leverages learned shape

priors to complete missing regions.

We also provide qualitative and quantitative results on

our test set of point clouds sampled from ShapeNet meshes

in Table 3 and Figure 6. As in the previous section, we

report our results (Ours) along with our method with the

inner direct optimization step (Ours w/ IDO). Since our

input are point clouds, similar to prior work [41] we can

Input Retrieved Deformed Input Retrieved Deformed

Figure 5. Our results on real scans from the Scan2CAD dataset [2].

also directly optimize the chamfer distance to make our

output fit better to the inputs, and we report results with

this post-process as well (Ours + DO, Ours w/ IDO + DO).

Deformation-Aware Retrieval Baseline. We compare

to deformation-aware retrieval [41] (DAR) followed by

either directly optimizing with respect to our per-part

parameters (DAR+DO), or using our neural deformation

module pre-trained on random pairs (DAR+DF). Note that

the direct optimization step is only possible with complete

inputs and cannot be employed with partial data such as

3D scans or images. Our method outperforms this baseline
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DAR+DO Ours+DO Ours w/ IDO + DO

Input Retrieved Deformed Retrieved Deformed Retrieved Deformed

Figure 6. Comparison between our approach and baselines for the

point-cloud-to-mesh experiment.

Chair Table Cabinet

Classif.+DO 1.826 2.192 1.144

DAR+DO 0.584 0.452 0.633

Ours+DO 0.504 0.414 0.494

Ours w/ IDO+DO 0.484 0.407 0.485

Classif.+DO 3.199 4.518 1.661

DAR+DF 0.965 1.561 0.829

Uniform Sampling 0.998 1.502 0.767

Ours 0.763 0.696 0.715

Ours w/ IDO 0.691 0.670 0.696

Table 3. Comparing our method to various baselines and ablations

on points-to-mesh benchmark (chamfer distances, ×10
−2).

with and without the direct optimization step (Table 3).

Qualitative results in Figure 6, also demonstrate that our

method retrieves structurally similar shapes and deforms

them to a better fit for the target. Even if retrieved shape

is identical (chair in the first row), the deformation learned

with our method is superior (e.g., see seat alignment).

Template-Classification Baseline. We also compare to a

template-classification-based approach mimicked from [10]

(Classif). Instead of using a non-learnable defomation

module via direct optimization of handcrafted templates as

in [10], we use our pre-trained neural deformation module

(DF) to make the baseline computationally feasible. We

treat every source shape as a template, deform it to each

training target, and train a classifier based on the best

match. We use this classifier instead of the retrieval module

at inference time, and show the fitting error in Table 3. Note

that this baseline is worse than our method and even [41].

Biased Sampling Ablation. As in the image target case,

we demonstrate the importance of biased sampling (Equa-

tion 3.1) in joint training (Table 3, Uniform Sampling).

Input Retrieved Deformed Input Retrieved Deformed

Figure 7. Fitting results using auto-segmented sources [37].

DAR+DF Uniform

Sampling

Ours

Chair 1.118 1.077 0.990

Table 1.409 1.502 1.166

Table 4. Using auto-segmented models as the source database [37]

(chamfer distance (×10
−2).

Chair Table Cabinet

DAR+NC 0.480 0.575 0.589

Ours NC 0.476 0.411 0.538

Table 5. Using our joint training with Neural Cages [49] deforma-

tion module (chamfer distances, ×10
−2).

Performance on Auto-Segmented Data. Since manually

segmenting a collection of source shapes is an expensive

process, we test our method on automatically-segmented

models. We use a heuristic method proposed in Comple-

mentMe [37] grouping connected components of meshes.

As shown in Figure 7, even though the models have

inconsistent segmentations, our method can still success-

fully learn a meaningful deformation module. We also

outperform the baseline (DAR+DF, Uniform Sampling)

in the quantitative benchmark (Table 4).

Performance with Neural Cages [49]. Since our joint

training is not restricted to our structure-aware deforma-

tion, we further evaluate the performance of our framework

with an alternative neural deformation method. We pick

Neural Cages [49], a state-of-the-art technique that param-

eterizes global warping as a cage-based deformation. We

simply replace our structure-aware deformation with Neu-

ral Cages, without any other changes to our joint training

process (Ours NC). We further compare to the baseline of

running deformation-aware retrieval [41] with neural cage

module that is pre-trained on random pairs (DAR+NC).

Joint training offers an improvement with respect to our

benchmark on all categories of shapes (see Table 5). Quali-

tative results in Figure 8 show that our joint training scheme

can better retrieve shapes such as chairs with the right back

and seat shape (first two rows), and a cabinet with shelves.

We remark that our joint training does not constraint the
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Ours w/ IDO + DOOurs NCDAR+ NC

Input Retrieved Deformed Retrieved Deformed Retrieved Deformed

Figure 8. Using Neural Cages [49] as a deformation module in our

joint training.

Chair Table Cabinet

DF 0.712 0.703 0.549

Uniform Sampling 0.714 0.700 0.509

Ours 0.643 0.564 0.494

Ours w/ IDO 0.583 0.482 0.494

Table 6. Improvement in deformation module for points-to-mesh

(with oracle retrieval) due to joint training (chamfer ×10
−2).

choice of the neural deformation module. One can choose

any module based on its strengths and weaknesses. For in-

stance, Neural Cages module often provides a tighter fit to

the target, although it often results in bending/distortion of

shapes (e.g., legs of the chair in the first row and the seat

and legs of the chair in the third row of Figure 8). It also

lacks the ability to change the geometry of individual local

parts. In contrast, our deformation module allows thicken-

ing parts such as the seat of the chair in the second row of

Figure 8. This implies that Neural Cages can be used when

a tighter fit to the target is prioritized while our method can

be used when it is more desired to preserve and manipu-

late part-level structure of the object. Our method is also

more suitable for heterogeneous sources whose deforma-

tions need to be parameterized in different manners.

Improvement in Deformation Module. As in the image

target case, we demonstrate the improvement in the defor-

mation module alone using oracle retrieval with joint train-

ing (Ours), random pairs (DF), and without biased sam-

pling (Uniform Sampling), see Table 6. We demonstrate a

qualitative example in Figure 9 showing an example where

all methods retrieve the same source model for the given

target, but our joint approach achieves the best output as

shown by the differences in the legs of the chair.

Performance for Different Database Sizes. We further

evaluate the performance of different techniques while

varying the size of the database of source models. We ran-

domly sample 50, 100, 200, 400, and 800 chair models from

Input Retrieved

DAR+ DF
Uniform 

Sampling
Ours

Ours w/ 

IDO

Deformed

Figure 9. We pick an example where retrieved mesh is the same for

all methods, and show that joint training also improves the quality

of the neural deformation module on its own.

DAR+DF Uniform

Sampling

Ours

|S|=50 0.872 0.877 0.823

|S|=100 0.858 0.860 0.803

|S|=200 0.850 0.841 0.748

|S|=400 0.938 0.985 0.784

|S|=800 1.142 1.541 0.734

Table 7. Performance on of our method and various baselines with

different source database sizes (chamfer distances, ×10
−2).

PartNet to construct the source databases. Table 7 shows

that in all cases our joint training approach improves the

performance over the baselines. The boost in the perfor-

mance of our joint training is bigger in larger databases as

there are combinatorially more random source-target pairs

which may not be deformable.

5. Conclusion

To summarize, we propose a joint training for retrieval-

and-deformation problem, where the neural modules inform

one another, yielding better matching results with respect to

image and point cloud targets. Our joint training procedure

offers improvements regardless of the choice of the neural

deformation module. We further propose a novel structure-

aware deformation module that is especially suitable for

hetereogeneous datasets of source models with very diverse

parameterizations of deformations. Our method does not

require consistent manual segmentations or part labels and

can work with imprecise automatic segmentations.

Limitations and Future Work. Our method is only su-

pervised by chamfer distance, and thus might not favor se-

mantic and structural similarity between the target and re-

trieved sources. We believe that improving the loss func-

tion to leverage manual part annotations can further remedy

this issue. Our deformation module does not provide strong

links between parts, and does not favor capturing part-to-

part relations, which can be addressed by adding more con-

straints (e.g. symmetry) as well as improving our learning

module with a more advanced graph-based neural architec-

ture.
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