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Abstract

Attributes of sound inherent to objects can provide valu-

able cues to learn rich representations for object detection

and tracking. Furthermore, the co-occurrence of audiovisual

events in videos can be exploited to localize objects over the

image field by solely monitoring the sound in the environ-

ment. Thus far, this has only been feasible in scenarios where

the camera is static and for single object detection. Moreover,

the robustness of these methods has been limited as they pri-

marily rely on RGB images which are highly susceptible to

illumination and weather changes. In this work, we present

the novel self-supervised MM-DistillNet framework consist-

ing of multiple teachers that leverage diverse modalities in-

cluding RGB, depth and thermal images, to simultaneously

exploit complementary cues and distill knowledge into a sin-

gle audio student network. We propose the new MTA loss

function that facilitates the distillation of information from

multimodal teachers in a self-supervised manner. Addition-

ally, we propose a novel self-supervised pretext task for the

audio student that enables us to not rely on labor-intensive

manual annotations. We introduce a large-scale multimodal

dataset with over 113,000 time-synchronized frames of RGB,

depth, thermal, and audio modalities. Extensive experiments

demonstrate that our approach outperforms state-of-the-art

methods while being able to detect multiple objects using

only sound during inference and even while moving.

1. Introduction

Human perception is deceptively effortless, we can sense

people behind our backs and in the dark, although we cannot

remotely see them. This elucidates that perception is inher-

ently a complex cognitive phenomenon that is facilitated by

the integration of various sensory modalities [11]. “There is

More than Meets the Eye” aptly summarizes this complexity

of our visual perception system. Modeling this ability us-

ing learning algorithms is, however, far from being solved.
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Figure 1. Our proposed cross-modal MM-DistillNet distills knowl-

edge exploiting complementary cues from multimodal visual teach-

ers into an audio student. During inference, the model detects and

tracks multiple objects in the visual frame using only audio as input.

The natural co-occurrence of modalities such as images and

audio in videos provides strong cues for supervision that

can be exploited to learn more robust perception models in

a self-supervised manner. Attributes of sound inherent to

objects in the scene also contain rich time and frequency

domain information that is valuable for grounding sounds

within a visual scene. In this sense, the characteristics of

sound are complementary and correlated to the visual infor-

mation [40]. Cross-modal learning from images and sound

exploits this natural correspondence between audio-visual

streams that represent the same event. As a result, the inte-

gration of sound with vision enables us to use one modality

to supervise the other as well as to use both modalities to

supervise each other jointly [8, 6, 58].

Generally, training models to detect objects requires large

amounts of groundtruth annotations for supervision. How-

ever, we can train models to recognize objects that produce

sound without relying on labeled data by jointly leveraging

audio-visual learning using the teacher-student strategy [22].

With this approach, numerous works [1, 49, 8] have used the

audio-visual correlation to localize sounds sources. More-

over, recent work [46] has shown that we can exploit this

111612



audio-visual synchronicity to detect and track an object over

the visual frame. Thus far, this promising capability has only

been shown to be feasible in scenarios where the camera is

static and for detecting a single object at a time using stereo

sound and metadata containing camera pose information as

input. Moreover, it distills knowledge only from models

trained with RGB images, which are highly susceptible to

perceptual changes such as varying types, scales, and vis-

ibility of objects, domain differences in terms of weather,

illumination, and seasonality, among many others. Address-

ing these challenges will enable us to employ the system for

detection and tracking in a wide variety of applications.

In this work, we present the novel self-supervised Multi-

Modal Distillation Network (MM-DistillNet) that provides

effective solutions to the aforementioned problems. Our

framework illustrated in Fig. 1 consists of multiple teacher

networks, each of which takes a specific modality as input,

for which we use RGB, depth, and thermal to maximize the

complementary cues that we can exploit (appearance, geom-

etry, reflectance). The teachers are first individually trained

on diverse pre-existing datasets to predict bounding boxes in

their respective modalities. We then train the audio student

network to learn the mapping of sounds from a microphone

array to bounding box coordinates of the combined teachers’

prediction, only on unlabeled videos. To do this, we present

the novel Multi-Teacher Alignment (MTA) loss to simultane-

ously exploit complementary cues and distill object detection

knowledge from multimodal teachers into the audio student

network in a self-supervised manner. During inference, the

audio student network detects and tracks objects in the visual

frame using only sound as an input. Additionally, we present

a self-supervised pretext task for initializing the audio stu-

dent network in order to not rely on labor-intensive manual

annotations and to accelerate training.

To facilitate this work, we collected a large-scale driv-

ing dataset with over 113,000 time-synchronized frames

of RGB, depth, thermal, and multi-channel audio modali-

ties. We present extensive experimental results comparing

the performance of our proposed MM-DistillNet with exist-

ing methods as well as baseline approaches, which shows

that it substantially outperforms the state-of-the-art. More

importantly, for the first time, we demonstrate the capabil-

ity to detect and track objects in the visual frame, from

only using sound as an input, without any meta-data and

even while moving in the environment. We also present

detailed ablation studies that highlight the novelty of the

contributions that we make. Finally, we make our dataset,

code and models publicly available at http://rl.uni-

freiburg.de/research/multimodal-distill.

2. Related Work

In recent years, several deep learning methods [6, 45, 23]

have exploited the natural relationship between the co-

occurrent vision and sound events found in video sequences.

Some of these works rely on groundtruth annotations and pro-

pose supervised approaches to learn joint audio-visual em-

beddings by transferring knowledge between the modality-

specific networks. Various tasks such as audio classifica-

tion [34], lip reading [2], face recognition [31], and speaker

identification [30] have been tackled using these techniques.

Another set of approaches exploit self-supervision and they

do not rely on any manual annotations. These methods ex-

ploit audio-vision synchronicity and learn representations of

one modality while using the other counterpart modality. For

example, Hershey et al. [21] use audio data as a supervision

signal to learn visual representations, and Aytar et al. [8]

propose SoundNet that uses visual imagery as supervision

for acoustic scene classification.

More related to our work are methods that use audio-

visual correspondence and vision data as a supervisory sig-

nal for localizing sound in a given visual input. This task

is typically tackled using a pre-trained visual network as

supervision [3, 6], by generating a common audio-visual

representation [56, 32, 7, 35] or by using an attention mech-

anism [40, 37]. StereoSoundNet [19] performs object detec-

tion and tracking of a single-vehicle using a stereo micro-

phone and camera pose information as the input. While on

the other hand, Adanur et al. [1] and Ma et al. [28] demon-

strate the advantages of using multiple microphones for spa-

tial detection. Our proposed MM-DistillNet also performs

object detection and tracking in the visual frame using only

sound from a microphone array, allowing the system to detect

multiple vehicles at the same time without using any camera

pose information and while moving in the environment.

Given the low spatial resolution of sound, it is ex-

tremely complex and arduous to manually label audio for

object localization over the visual domain. Recent tech-

niques [56, 32, 19, 29, 45] address this problem by leverag-

ing a vision-teacher’s knowledge to supervise and generate

the labels to train an audio-student network. Similarly, to

reduce the groundtruth label dependency, our approach ex-

ploits the co-occurrence of modalities as a self-supervised

mechanism to obtain groundtruth annotations. However, all

of the aforementioned methods only use RGB images from

the visual domain, which are highly susceptible to illumi-

nation and weather changes. To address this issue, several

approaches have been proposed to leverage multiple modal-

ities such as RGB, depth, and thermal images to exploit

complementary cues by fusing them at the input or at the

feature level [20, 44, 10]. Although these methods have

substantially improved the performance of object detection

and semantic segmentation in challenging perceptual con-

ditions, they are still constrained by modality limitations

such as range-of-vision or occlusions. Moreover, adding

new modalities also increases the labeling effort and these

fusion techniques typically require all the modalities to be
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present during inference time, both of which increase the

overall system overhead. As opposed to these techniques, we

propose a methodology to incorporate the knowledge from

multiple pre-trained modality-specific teacher networks into

an audio student network that learns from unlabeled videos

and only uses audio during inference. Our approach exploits

complementary features from the alternate modalities while

training, in an effort to improve the robustness of the overall

system without increasing the overhead at inference.

Besides for generating pseudo groundtruth labels, we

employ the modality-specific teacher networks to guide the

training of the audio student network via knowledge distil-

lation. Previous works [43, 48, 13, 55] use the knowledge

from the output logits by softening the labels. Our approach

is more related to [38, 52, 51, 4], which transfers the knowl-

edge from intermediate layers through an alignment loss

function. Similar to [33, 57], our approach distills knowl-

edge from multiple teachers. However, our framework does

not merely average a dual loss among the teachers, rather it

aligns the features of the intermediate teacher-student layers

using a probabilistic approach. We show that the condi-

tional knowledge given a synchronized set of modalities can

improve the student network’s performance.

In our approach, each modality-specific teacher distills

object detection knowledge to the audio student, which

can be categorized as cross-modal knowledge distillation.

Salem et al. [39] proposes to distill the knowledge from the

logits of a group of different visual modalities. Do et al. [15]

and Zhang et al. [53] employ attention maps to combine

the different modalities. These approaches require all the

modalities, both during training and inference. Whereas our

framework aims to disentangle the need for all the modalities

during inference time. Alayrac et al. [5] recently propose

to address this problem by creating an embedding with a

contrastive pairwise loss that facilitates the downstream task.

Nevertheless, their approach tackles cross-modal representa-

tions that are significantly different. Whereas, our approach

distills knowledge from modality-specific teachers that are

aligned at the object level, so the information from a com-

mon task is distilled into a complementary modality using

our proposed MTA loss and the focal loss. We evaluate the

performance of existing multi-teacher distillation losses with

our proposed strategy in the ablation study.

3. Technical Approach

In this section, we detail our MM-DistillNet framework

for distilling the knowledge from a set of pre-trained mul-

timodal teachers into a single student that employs an un-

labeled modality as input. We choose RGB, depth, and

thermal images as the teacher modalities, and audio from

an 8-channel monophonic-microphone array for the student.

Specifically, our goal is to learn a mapping from spectro-

grams of ambient sounds to bounding box coordinates that

 

Non-maximum 
Suppression

P5

P4

P3

Class

Bbox, score

Audio Student

P5

P4

P3

Class

Bbox, score

Thermal Teacher

P5

P4

P3

Class

Bbox, score

Depth Teacher

P5

P4

P3

Class

Bbox, score

RGB Teacher

Focal
Loss

MTA 
Loss

EfficientNet BackBone
Input

BiFPN

Class Pred Net

Bbox Pred Net

Conv Conv

Conv Conv

Legend

RGB Input

Thermal Input

Depth Input

Audio Input Detection Output

3 x 768 x 768

1 x 768 x 768

3 x 768 x 768

8 x 768 x 768 768 x 768

P3(48 x 96 x 96)

P4 (120 x 48 x 48)

P5 (352 x 24 x 24)

(c x 768 x 768)

Figure 2. Our proposed MM-DistillNet framework consists of three

pre-trained modality-specific teachers built upon EfficientDet-D2

that predict bounding boxes in the visual space and an audio student

network that takes spectrograms of sound from a microphone array

as input. By exploiting the co-occurrence of the modalities, we train

the audio student to regress the bounding boxes predicted by the

teachers using focal loss and our proposed MTA loss that aligns the

intermediate network layers. During inference, the student detects

multiple moving vehicles in the visual frame using only sound.

indicate the vehicle location in the visual space. In our frame-

work illustrated in Fig. 2, each pre-trained modality-specific

teacher predicts bounding boxes that indicate where the vehi-

cles are located in their respective modality space. These pre-

dictions are fused to obtain a single multi-teacher prediction,

which is then used as a pseudo label for training the audio stu-

dent network. To effectively exploit the complementary cues

from the modality-specific teachers, we employ our proposed

Multi-Teacher Alignment (MTA) loss to align the interme-

diate representations of the student with that of the teachers.

In the rest of this section, we first describe the architecture of

the teacher-student networks and the teacher pre-training pro-

cedure, followed by the novel pretext task that we propose

for better initializing the audio student. We then describe the

methodology that we propose for distilling knowledge from

multimodal teachers to a single student and finally, the ap-

proach we employ to track vehicles over successive frames.

3.1. Network Architecture

We build upon the EfficientDet [42] architecture for the

modality-specific teacher networks. EfficientDet has three

main components: an EfficientNet [41] backbone, followed

by a bidirectional feature pyramid network, and a final regres-
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sion and classifier branch. The EfficientNet architecture uses

multiple stages of mobile inverted bottleneck units [50] to

extract relevant features from the input data. There are eight

variants of this backbone, ranging from B0 to B7 on increas-

ing capacity demand. This allows for trade-off performance

and prediction speed, which is achieved through a compound

scaling coefficient that uniformly scales the network’s depth

and width along with the input image resolution. To select

from which stages of EfficientNet the features are extracted

(and how such features are fused together), EfficientDet in-

troduces a weighted bidirectional feature pyramid through a

combination of automatic machine learning and manual tun-

ing. The last stage of the network is a classifier and regressor

branch that consist of a sequence of separable convolutions,

batch normalization, and a memory-efficient swish [36].

For this work, we find that EfficientDet-D2 gives us the

best speed versus performance trade-off, as demonstrated in

the additional experiments in the supplementary material. It

is important to note that our framework is not dependent on a

specific teacher architecture, as alternate object detection net-

works can be readily incorporated as drop-in replacements.

We use an input image resolution of 768×768 pixels, with 5

BiFPN cell repetitions, with 112 channels each. We illustrate

the EfficientDet architecture in the legend shown in Fig. 2.

The teacher networks in our framework are comprised of:

• RGB teacher that we train on COCO [26], PAS-

CAL VOC [16], and ImageNet [14] for the car labels.

• Depth teacher that we train on the Argoverse [12]

dataset using 3D vehicle bounding boxes mapped

to 2D. Note that Argoverse does not provide direct

depth/disparity data. Therefore, we generate it from

stereo images using the Guided Aggregation Net [54].

• Thermal teacher that we train on the FLIR ADAS [18]

dataset for the car and other vehicle labels.

The audio student network in our MM-DistillNet frame-

work learns to detect vehicles as a regression problem. We

adopt the same EfficientDet-D2 topology for the audio stu-

dent network, which takes eight spectrograms concatenated

channel-wise representing the ambient sounds from an 8-

channel monophonic-microphone array, as input and predicts

bounding boxes localizing vehicles in the visual reference

frame. To do so, we first obtain an RGB, depth, and ther-

mal image triplet at a given timestamp, each of which has

a resolution of 1920×650 pixels. Subsequently, we select

one second ambient sound clips from the microphone ar-

ray, centered on the image timestamp and we generate a

80× 173 pixels spectrogram for each of the eight micro-

phones using Short-Time Fourier Transform (STFT). We

further detail this procedure in Sec. 4.2. We then resize the

spectrograms to a resolution of 768× 768 pixels to match

the input scale of the teachers. Given this 8-channel con-

catenated spectrograms as input, the audio student yields 4

coordinates (xmin,ymin,xmax,ymax) for each of the Efficient-

Net layers at different aspect ratios and scales (EfficientDet

uses by default 3 aspect ratios (1.0,1.0),(1.4,0.7),(0.7,1.4)
at 3 different scales [2∗∗0,2∗∗(1.0/3.0),2∗∗(2.0/3.0)].

3.2. Self­Supervised Pretext Task for Audio Student

As the input to our audio student network is an 8-channel

spectrogram, we cannot leverage pre-trained weights for ini-

tializing the EfficientDet architecture, such as from models

trained for image detection, which typically take a 3-channel

image as the input. It has consistently been shown that mod-

els initialized with pre-trained weights from large datasets

perform significantly better than models trained from scratch.

More recently, self-supervised pretext tasks that learn seman-

tically rich representations by exploiting the supervisory sig-

nal from the data itself have shown promising results, even

outperforming models initialized with pre-trained weights.

Inspired by this recent progress, we propose a simple

pretext task for the audio student that counts the number

of cars present in the scene. This task aims at enabling the

student to learn audio representations depicting the number

of vehicles in the visual field, only using an 8-channel spec-

trogram as input. To do so, we first use the predictions of

multiple pre-trained teachers to identify the number of cars

present in the image. Subsequently, we use the correspond-

ing 8-channel spectrogram as the input to EfficientNet with

an MLP classifier at its output and we train the network with

the cross-entropy loss function to predict the number of cars

in the scene. We then use the weights from the model trained

on this pretext task to initialize the audio student network in

our MM-DistillNet framework while training to detect cars

in the visual frame from spectrograms of sound as input.

3.3. Knowledge Distillation from Multiple Teachers

To train the audio student network to detect vehicles in

the visual frame, given the sound input, we use two different

loss functions. First, we employ an object detection loss

function at the final prediction of the networks, as shown

in Fig. 2. Second, we use our Multi-Teacher Alignment

(MTA) loss function to align and exploit complementary

cues from the intermediate layers of the modality-specific

teachers with the audio student. Given that we use multiple

teachers, we also obtain multiple sets of bounding box predic-

tions. Each teacher network receives only its input modality

and predicts a tuple of bounding boxes, which correspond

to their best individual estimation of where the vehicles are

located in the visual space. There are often scenes in which

each modality-specific teacher predicts a different number

of bounding boxes. Therefore, we need to consolidate such

predictions. To do so, we obtain three sets of tuples coming

from the RGB, depth and thermal teachers, which are con-

solidated using non-maximum suppression with intersection

over union IoU = 0.5. This generates a unified prediction

from the modality-specific teachers, which is enforced on the
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student using the Focal loss (FL) [25]. Focal loss is a form of

cross-entropy loss with a penalizing parameter that reduces

the relative loss for well-classified examples, allowing the

network to focus on the training examples that are hard to

classify. The Focal loss is given by

L f ocal =−α(1− pt)γ ∗ log(pt), (1)

where α is the weight assigned to hard examples (set to

α = 0.25) and, γ is a focusing hyperparameter to balance

how much effort to put on hard to classify examples against

easy background cases (set to γ = 2.0).

With our proposed MTA loss, we aim to exploit comple-

mentary cues contained in the intermediate layers of each

modality-specific teacher. In order to achieve this, we train

the student network in a manner such that the distribution

of activations in specific layers of both the student and the

multiple teachers are aligned. Particularly, we enforce the

alignment of the (p3, p4, p5) layers of the EfficientNet back-

bone, as shown in Fig. 2. To do so, we compute the distri-

bution of activations using the attention map of each layer

normalized to a [0,1] range. We compute the student at-

tention map as Q
j
s = Fr

avg(As), where Favg is a function that

collapses the activation tensor A in its channel dimension

through the average of the neuron’s output at the given layer

j ∈ {P3,P4,P5}, and r is the exponential over each of the

i− th elements of the vector, a hyperparameter that trades-

off how much importance to give to high valued activations

versus low-valued activations at a given layer.

In the case of the teacher networks, the activation distribu-

tions of each modality P(Ati |mi) indicates the confidence of

each teacher that given an input modality mi, the intermediate

representations have a high likelihood of detecting a relevant

key indicator of a vehicle. With this in mind, we propose to

leverage the attention maps of the multiple teachers by means

of the product of the modality-specific activation distribu-

tions at the selected layers. We assume that the modalities are

independent and we use the chain rule of probability so that

P(Ati , ...,AtN |mi, ...,mN) = P(Ati |mi) ∗ ... ∗P(AtN |mN). We

believe this assumption is reliable as the teachers have been

trained on disjoint datasets, with modalities extracted us-

ing different sensor hardware. The intuition behind this

idea is to incorporate the knowledge of each modality-

specific teacher in an incremental approach. We can consider

each pre-trained teacher as a vehicle-sensor engine, and our

loss, a mechanism of integrating new measurements in the

Bayesian’s context. If multiple modalities agree on a bound-

ing box, the probability of this proposal is encouraged. Nev-

ertheless, a modality can also propose a disjoint bounding

box with a small probability, allowing the student to learn

bounding boxes exclusive to a particular modality. We effec-

tively estimate the probability of detecting a car in a scene,

given the privileged knowledge of each modality. This al-

lows for the flexibility to also incorporate other knowledge as

confidence scores for each bounding box, so that we reduce

the occurrence of false predictions. Therefore, we compute

the multi-teacher attention map as Q
j
t = ∏

N
i Fr

avg(Ati), where

i denotes each of the N considered modalities. Formally, we

define our Multi-Teacher Alignment (MTA) loss as

LMTA = β ∗∑
j

KLdiv





Q
j
s

∥

∥

∥Q
j
s

∥

∥

∥

2

,
Q

j
t

∥

∥

∥Q
j
t

∥

∥

∥

2



 , (2)

where the summation iterates over each of the selected Ef-

ficientNet layers from the inverted pyramid (e.g., p3, p4,

and p5 layers), s and t stand for student and teacher, and

β = 0.5 is used for loss balancing. We denote this loss

function as Multi-Teacher Alignment loss, as it integrates

different modalities privileging the agreement of different

inputs while still considering vehicle predictions proposed

by one modality. Finally, we optimize our MM-DistillNet

framework with the weighted summation of the focal loss

and our proposed MTA loss as

Ltotal = δ ∗L f ocal +ω ∗LMTA, (3)

where Ltotal enforces knowledge transfer from the teachers

at the output, as well as at the intermediate network layers.

3.4. Tracking

We adopt an approach similar to that of Gan et al. [19]

for object tracking. Specifically, we leverage the detected

bounding boxes, and we use the IoU values between boxes of

consecutive frames to relate the objects to the same tracklet.

We set the IoU threshold to 0.5 to assign two bounding boxes

from different timesteps to the same object. We initialize a

tracklet each time an object is detected with a confidence

score higher than 0.8. The next bounding box related to that

tracklet is selected by comparing it to the current frame’s

detection. The association process between the tracklet and

a bounding box is made so that it maximizes the IoU. The

tracklet is set as inactive if there are no bounding boxes with

IoU > 0.5 in the subsequent frames. Given that our contri-

bution with multiple modality-specific teachers improves the

quality of the bounding boxes and the number of detected ob-

jects, we also expect to enhance the tracking accuracy with

this method that primarily relies on IoU object matching.

4. Experimental Evaluation

In this section, we first describe the data collection

methodology that we employ, followed by the protocol that

we use for training the MM-DistillNet framework. We then

present quantitative results comparing our approach to sev-

eral strong baselines as well as the state-of-the-art. Subse-

quently, we present detailed ablation studies and qualitative

evaluations to demonstrate the novelty of our contributions.
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Figure 3. Example images from our MAVD dataset showing

diverse scenes with multiple moving vehicles and low-illumination

conditions captured with a camera mounted on a moving car.

4.1. Multimodal Audio­Visual Detection Dataset

As there are no publicly available datasets that consist

of synchronized audio, RGB, depth, and thermal images,

we collected a large-scale Multimodal Audio-Visual Detec-

tion (MAVD) dataset in autonomous driving scenarios. The

dataset was gathered from 24 car drives during 3 months and

at 20 different locations. Each drive has an average of half

hour duration. We recorded data on diverse scenarios ranging

from highways to densely populated urban areas and small

towns. The recordings consist of high traffic density, freeway

driving, and multiple traffic lights (involving transition from

static to driving conditions). To capture diverse noise condi-

tions, we recorded sounds not only during conventional city

driving but also near trams and while going through tunnels.

We provide two types of scenarios, static condition in

which the car is motionless and nearly 300 km of driving

data. Our dataset contains three cars on average for every

image (ranging from 1 to a maximum of 13 cars per scene).

We only retained the images with at least one car in the

scene. The subset that we use for training the detection stage

contains 24589 static day images, 26901 static night images,

26357 day driving images, and 35436 night driving images,

amounting to a total of 113283 synchronized multi-channel

audio, RGB, depth, and thermal modalities. Additionally,

the dataset also contains GPS/IMU data and LiDAR point

clouds. An image showing the data collection vehicle and

the sensor setup is shown in the supplementary material.

The sensors that we used include an RGB stereo camera rig

(FLIR Blackfly 23S3C), a thermal stereo camera rig (FLIR

ADK), and eight monophonic microphones in an octagon

array. The audio was recorded and stored in the 1-channel

Microsoft WAVE format with a sampling rate of 44100 Hz.

All the sensor data, including the microphone recordings

were synchronized to each other via the GPS clock. Example

scenes from the dataset are shown in Fig. 3.

4.2. Training Protocol

Data Split: We use a 60/20/20% split for training, vali-

dation, and testing. The validation split was used to perform

hyperparameter optimization with Hyperband [17].

Evaluation Metric: We use the standard mean average

precision metric for evaluating object detection performance

and the center distance proposed by Gan et al. [19]. Mean

average precision is the mean over classes of the interpo-

lated area under each class’s precision and recall curve. The

Center distance CDx and CDy metrics indicate the predic-

tion accuracy because the spatial information is not directly

available for the audio (possible error between the predicted

bounding box center and the groundtruth).

Training Setup: We train for 50 epochs with ReduceL-

RonPlateau learning rate scheduler and an initial learning

rate of 1e−5 , weight decay of 5e−4, betas = (0.9,0.999),
and Adam optimizer. For the MTA loss, we use r = 2.0
and temperature = 9.0 as this selection of hyperparameters

provided the best results for individual modalities. We pro-

vide additional details in the Supplementary Material. For

our loss calculation, we set δ = 1.0 and ω = 0.05 as these

settings provided the best performances (more details can

be found in the Supplementary Material). The original reso-

lution of all RGB/depth/thermal images is 1920×650. We

resize them to be 768×768 as per [42] D2 variant. For the

audio, we extract 0.5 seconds before and 0.5 seconds after

the registered timestamp, an RGB image was taken. We

normalize this 1-second raw waveform and further resam-

ple it on a Mel-frequency scale with 80 bins resulting in

8 (80,173) arrays. This is further normalized to [0-1] and

re-scaled to 768×768×8 dimensionality.

4.3. Quantitative Results

In order to evaluate the performance of multi-teacher

distillation from different modalities, we compare the per-

formance of our MM-DistillNet with StereoSoundNet [19]

which uses a single RGB teacher with the Ranking loss to

distill the information into an audio student network. We

also compare with several strong baselines: 2M-DistillNet

Audio employs a single RGB teacher with our proposed

MTA loss to train an audio student network. The comparison

with this baseline enables us to evaluate the performance

of our proposed MTA loss over the Ranking loss. In or-

der to evaluate the performance of using other modalities

representing an object in the student network, we compare

with 2M-DistillNet Depth and 2M-DistillNet Thermal that

use an RGB teacher to train a depth student or a thermal

student, respectively using our MTA loss. The comparison

with these two models shows the significance of using the

audio modality in the student network. Finally, we compare

with MM-DistillNet Avg that uses a straightforward approach

to combine the predictions from RGB, depth, and thermal

teachers by averaging the individual modality-specific net-

work activations. Here, we assume that all bounding boxes

predicted by any of the modalities are valid (after applying

non-maximum suppression with IoU=0.5). The comparison

with this baseline demonstrates the utility of our MTA loss

function to effectively distill multimodal knowledge from the

teaches. All the aforementioned baselines use the 8-channel

611617



Network mAP@ mAP@ mAP@ CDx CDx

Avg 0.5 0.75

StereoSoundNet [19] 44.05 62.38 41.46 3.00 2.24

2M-DistillNet RGB 57.25 68.01 59.15 2.67 2.13

2M-DistillNet Depth 55.41 66.83 57.30 2.60 2.10

2M-DistillNet Thermal 56.70 69.15 58.63 2.43 1.98

MM-DistillNet Avg 51.63 66.14 52.24 2.14 1.80

MM-DistillNet (Ours) 61.62 84.29 59.66 1.27 0.69

Table 1. Comparison of cross-modal multi-object detection perfor-

mance with several baselines. ’2M-DistillNet Teacher’ refers to

2-modal distillation approach to train the audio student using our

MTA loss. ’MM-DistillNet Avg’ refers to averaging individual

modality-specific teacher activations.

spectrogram from the microphone array as input and are

trained to perform multi-object detection.

We present quantitative comparisons using the same

EfficientDet-D2 topology with pre-trained weights as de-

tailed in Sec. 3 for all the baselines, as well as our MM-

DistillNet model. Results from this experiment is shown

in Tab. 1. We can observe how the knowledge of different

teachers improves the performance over the previous state-

of-the-art StereoSoundNet [19], using the same input (audio

only). Furthermore, our baseline 2M-DistillNet Audio, which

also uses an RGB-teacher to train an audio student, yields su-

perior performance than StereoSoundNet. This demonstrates

that our MTA loss function outperforms the Ranking loss.

Tab. 1 also elucidates that audio is a valuable modality to

detect moving vehicles. We also observe that combining the

prediction of individual RGB, depth, and thermal teachers

using averaging does not improve the performance. Never-

theless, we can see that our proposed MM-DistillNet with

our MTA loss function exploits complementary cues from

the multimodal teachers and facilitates effective distillation.

We also evaluate the performance of our MTA loss against

other knowledge distillation techniques. Tab. 2 compares

the baseline loss used by [19], as well as the pairwise loss

conventionally used for similar embedding task [5] and an at-

tention based loss with learnable parameters [47]. We use the

audio student and a single RGB teacher. Our loss is intended

to distill knowledge from multiple teachers into a single stu-

dent, yet, in the individual teacher case, it provides appealing

results in the object detection task. In the supplementary

material, we provide further comparisons against different

modalities. Additionally, for multiple teachers, previous

methods such as [57] proposed to average the predictions

of multiple teachers. Tab. 2 shows the effect of integrating

the prediction of the teachers rather than computing an av-

erage. Furthermore, Fig. 4 provides an intuition on how the

predictions of multiple teachers are integrated into the stu-

dent by visualizing the activations. We obtain the activation

using Score-CAM [46] from the P5 layer of EfficientNet. In

Loss Function KD mAP@

Avg

mAP@

0.5

mAP@

0.75

CDx CDx

Ranking loss [19] RGB 44.05 62.38 41.46 3.00 2.24

Pairwise loss [27] RGB 40.45 59.72 36.73 2.98 2.20

AFD loss [47] RGB 44.27 62.00 41.90 3.19 2.28

Avg. Ranking loss R,D,T 56.16 80.03 52.96 1.46 0.80

Avg. AFD loss R,D,T 58.50 82.18 55.48 1.30 0.70

Avg. MTA loss R,D,T 59.46 82.29 56.94 1.35 0.73

MTA loss (Ours) RGB 44.58 62.66 42.39 2.94 2.17

MTA loss (Ours) R,D,T 61.62 84.29 59.66 1.27 0.69

Table 2. Comparison of various loss functions for Knowledge Dis-

tilation (KD). All the models were trained with the same MM-

DistillNet architecture but with different loss functions. ‘R,D,T’

refers to RGB, Depth, and Thermal teachers. Avg. Loss averages

the individual modality-specific teacher activations.

Approach MOTA↑ ID Sw.↓ Frag.↓ FP↓ FN↓

StereoSoundNet [19] 16.94% 1327 1077 3696 3349

MM-DistillNet (Ours) 26.96% 1078 1076 2758 3524

Table 3. Comparison of tracking performance.

Model Teacher Student mAP@ AP@ AP@

Modalities Pretext Avg 0.5 0.75

M1 RGB - 44.58 62.66 42.38

M2 RGB, Depth - 42.89 62.07 39.67

M3 RGB, Thermal - 55.81 79.84 54.67

M4 Depth, Thermal - 44.79 65.14 41.82

M5 RGB, Depth, Thermal - 61.10 83.81 59.07

M6 RGB, Depth, Thermal X 61.62 84.29 59.66

Table 4. Ablation study on influence of various modality-specific

teachers and self-supervised pretext task of audio student.

particular, we show that the baseline’s activations are linked

only to the RGB teacher, whereas our method’s activation

is the product of the activation of the RGB, depth and ther-

mal teachers. Furthermore, the thermal teacher in this night

setting is the privileged modality which is able to predict

cars under poor light conditions. In Tab. 3, we report the

multiple object tracking accuracy (MOTA), identity switches

(ID Sw.), fragment (Frag.), false positive (FP) and false neg-

ative (FN) as evaluation metrics [9, 24] on a subset of our

test dataset. We excluded scenes that involved tracking of

multiple cars for a fair comparison with StereoSoundNet.

4.4. Ablation Studies

In Tab. 4, we ablate the effect of incrementally adding

modalities and the impact of our pretext task. It can be

seen that RGB and thermal are the main contributors to

performance improvement. This can be attributed to the

performance of modalities in the day and night, respectively.

Nevertheless, integrating depth improves performance, there-
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RGB Teacher Depth Teacher Thermal Teacher StereoSoundNet [46] MM-DistillNet (Ours)

Figure 4. Comparison of activations visualization from modality-specific teachers with the previous state-of-the-art StereoSoundNet [46],

and our proposed MM-DistillNet. High activations (in red) indicate regions where a vehicle is likely to be detected.

RGB Teacher Depth Teacher Thermal Teacher StereoSoundNet [46] MM-DistillNet (Ours)

Figure 5. Qualitative comparisons of the predictions from individual modality-specific teachers with the previous state-of-the-art Stere-

oSoundNet [46], and our MM-DistillNet. Our network consistently detects moving vehicles even in scenes where the baselines fail.

fore we still employ a depth teacher. Moreover, our pretext

task shows an improvement of 0.52. Additionally, there is

an average reduction of 27.55% in the loss value, indicating

that the proposed weight initialization accelerates training.

We refer to the supplementary material for more details.

4.5. Qualitative Evaluations

In this section, we qualitatively evaluate the performance

of our proposed MM-DistillNet framework. The audio

modality is able to overcome certain limitations of visual

sensors, as demonstrated in Fig. 5. The first row highlights

how our approach enables us to use the knowledge of the

pre-trained teachers to improve the audio student’s predic-

tions. The baseline fails to predict a car that the RGB only

teacher cannot see. As our model distills knowledge from all

the teachers, our MM-DistillNet proactively detects the cars

that are not visible to the RGB camera, in this case, coming

from the thermal teacher. Our framework also facilitates

better student learning, which is highlighted in the second

row of Fig. 5. Even though the RGB teacher detects two

cars in the image, the baseline does not learn enough cues to

predict two cars. Our model uses the RGB and depth teacher

to re-enforce the fact that there are two cars in the scene. Our

work is not limited to two cars in the scene as in [19]. We

attribute this capability to the incorporation of audio from

the microphone array. Finally, the last row of Fig. 5 shows

how our model can predict cars that are not visible in any of

the modalities, such as occluded cars entering the scene.

5. Conclusions

This paper proposed a self-supervised framework to distill

the knowledge from different expensive sensor modalities

into a more accessible one. We do so by leveraging the

co-occurrence of modalities and the fact that there exist pre-

trained networks for object detection in the visual domain.

We use a self-supervised scheme to label audio spectrograms

for object detection. During training, we use RGB, depth,

and thermal teachers to improve the training of a student net-

work; this enables us to require only audio during inference

time. Our results demonstrates how audio is a robust alter-

native to traditional sensor modalities used in autonomous

driving, particularly in overcoming visual limitations. We

also publicly released our large-scale MAVD dataset. We

compared our approach to different baselines, including dif-

ferent numbers and combinations of modalities, losses, and

configurations. We presented qualitative results that high-

light the ability of our models to overcome visual limitations

such as occlusions and thereby facilitate new applications.
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and Ismail Kaya. Deep learning for audio signal source po-

sitioning using microphone array. In Seventh International

Conference on Digital Information Processing and Communi-

cations (ICDIPC), 2019. 1, 2

[2] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisser-

man. Asr is all you need: Cross-modal distillation for lip read-

ing. In IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2020. 2

[3] Triantafyllos Afouras, Andrew Owens, Joon Son Chung, and

Andrew Zisserman. Self-supervised learning of audio-visual

objects from video. arXiv preprint arXiv:2008.04237, 2020. 2

[4] Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing

Fan, and Chenlei Guo. Knowledge distillation from internal

representations. In AAAI, 2020. 3

[5] Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider,
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