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Abstract

Satellite imagery analytics have numerous human de-

velopment and disaster response applications, particularly

when time series methods are involved. For example, quan-

tifying population statistics is fundamental to 67 of the 231

United Nations Sustainable Development Goals Indicators,

but the World Bank estimates that over 100 countries cur-

rently lack effective Civil Registration systems. To help ad-

dress this deficit and develop novel computer vision meth-

ods for time series data, we present the Multi-Temporal

Urban Development SpaceNet (MUDS, also known as

SpaceNet 7) dataset. This open source dataset consists of

medium resolution (4.0m) satellite imagery mosaics, which

includes ≈ 24 images (one per month) covering > 100
unique geographies, and comprises > 40, 000 km2 of im-

agery and exhaustive polygon labels of building footprints

therein, totaling over 11M individual annotations. Each

building is assigned a unique identifier (i.e. address), which

permits tracking of individual objects over time. Label fi-

delity exceeds image resolution; this “omniscient labeling”

is a unique feature of the dataset, and enables surpris-

ingly precise algorithmic models to be crafted. We demon-

strate methods to track building footprint construction (or

demolition) over time, thereby directly assessing urban-

ization. Performance is measured with the newly devel-

oped SpaceNet Change and Object Tracking (SCOT) met-

ric, which quantifies both object tracking as well as change

detection. We demonstrate that despite the moderate reso-

lution of the data, we are able to track individual building

identifiers over time.

1. Introduction

Time series analysis of satellite imagery poses an inter-

esting computer vision challenge, with many human devel-

opment applications. We aim to advance this field through

the release of a large dataset aimed at enabling new methods

in this domain. Beyond its relevance for disaster response,

disease preparedness, and environmental monitoring, time

series analysis of satellite imagery poses unique technical

challenges often unaddressed by existing methods.

The MUDS dataset (also known as SpaceNet 7) consists

of imagery and precise building footprint labels over dy-

namic areas for two dozen months, with each building as-

signed a unique identifier (see Section 3 for further details).

In the algorithmic portion of this paper (Section 5), we fo-

cus on tracking building footprints to monitor construction

and demolition in satellite imagery time series. We aim to

identify all of the buildings in each image of the time series

and assign identifiers to track the buildings over time.

Timely, high-fidelity foundational maps are critical to a

great many domains. For example, high-resolution maps

help identify communities at risk for natural and human-

derived disasters. Furthermore, identifying new building

construction in satellite imagery is an important factor in

establishing population estimates in many areas (e.g. [8]).

Population estimates are also essential for assessing burden

on infrastructure, from roads[4] to medical facilities [28].

The inclusion of individual building identifiers is a

unique feature of the MUDS dataset, and enables potential

improvements upon existing course population estimates.

Without unique identifiers building tracking is not possible;

this means that over a given area one can only determine

how many new buildings exist. By tracking unique build-

ing identifiers one can determine which buildings changed

(whose properties such as precise location, area, etc. can

be correlated with features such as road access, distance to

hospitals, etc.), thus providing a much more granular view

into population growth.

Several unusual features of satellite imagery (e.g. small

object size, high object density, dramatic image-to-image

difference compared to frame-to-frame variation in video

object tracking, different color band wavelengths and

counts, limited texture information, drastic changes in shad-

ows, and repeating patterns) are relevant to other tasks and

† This work was completed prior to Nicholas Weir, Ryan Lewis joining Amazon.
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data. For example, pathology slide images or other mi-

croscopy data present many of the same challenges [41].

Lessons learned from this dataset may therefore have broad-

reaching relevance to the computer vision community.

SpaceNet 7 is both a dataset and a NeurIPS 2020 com-

petition. This paper details the dataset, metric, and baseline

algorithm. See [9] for details on the SpaceNet 7 Challenge.

2. Related Work

Past time series computer vision datasets and algorith-

mic advances have prepared the field to address many of the

problems associated with satellite imagery analysis, allow-

ing our dataset to explore additional computer vision prob-

lems. The challenge built around the VOT dataset [17] saw

impressive results for video object tracking (e.g. [39]), yet

this dataset differs greatly from satellite imagery, with high

frame rates and a single object per frame. Other datasets

such as MOT17 [19] or MOT20 [7] have multiple targets

of interest, but still have relatively few (< 20) objects per

frame. The Stanford Drone Dataset [25] appears similar

at first glance, but has several fundamental differences that

result in very different applications. That dataset contains

overhead videos taken at multiple hertz from a low eleva-

tion, and typically have ≈ 20 mobile objects (cars, people,

buses, bicyclists, etc.) per frame. Because of the high frame

rate of these datasets, frame-to-frame variation is minimal

(see the MOT17 example in Figure 1D). Furthermore, ob-

jects are larger and less abundant in these datasets than

buildings are in satellite imagery. As a result, video compe-

titions and models derived therein provide limited insight in

how to manage imagery time series with substantial image-

to-image variation and overly-dense instance annotations of

target objects. Our data and research will address this gap.

To our knowledge, no existing dataset has offered a deep

time series of satellite imagery. A number of previous

works have studied building extraction from satellite im-

agery ([10], [6], [42], [29]), yet these datasets were static.

The closest comparison is the xView2 challenge and dataset

[12], which examined building damage in satellite image

pairs acquired before and after natural disasters (i.e. only

two timestamps) in < 20 locations; however, this task fails

to address the complexities and opportunities posed by anal-

ysis of deep time series data such as seasonal vegetation and

lighting changes, or consistent object tracking on a global

scale. Another related dataset is Functional Map of the

World [5], which is hosted by SpaceNet. This dataset con-

tains some temporal information, though time series are ir-

regular (a plurality of locations have only a single obser-

vation), and the task is static satellite scene classification

rather than dynamic object tracking as in SpaceNet 7.

Other competitions have explored time series data in

the form of natural scene video, e.g. object detection [7]

and segmentation [2] tasks. There are several meaning-

ful dissimilarities between these challenges and the task

described here. Firstly, frame-to-frame variation is very

small in video datasets (see Figure 1D). By contrast, the ap-

pearance of satellite images can change dramatically from

month to month due to differences in weather, illumination,

and seasonal effects on the ground, as shown in Figure 1C.

Other time series competitions have used non-imagery data

spaced regularly over longer time intervals [11], but none

focused on computer vision tasks.

The size and density of target objects are very different

in this dataset than past computer vision challenges. When

comparing the size of annotated instances in the COCO

dataset [20], there’s a clear difference in object size dis-

tributions (see Figure 1A). These smaller objects intrinsi-

cally provide less information as they comprise fewer pix-

els, making their identification a more difficult task. Finally,

the number of instances per image is markedly different in

satellite imagery from the average natural scene dataset (see

Section 3 and Figure 1B). Other data science competitions

have explored datasets with similar object size and density,

particularly in the microscopy domain [23, 13]; however,

those competitions did not address time series applications.

Taken together, these differences highlight substantial nov-

elty for this dataset.

3. Data

The Multi-Temporal Urban Development SpaceNet

(MUDS) dataset consists of 101 labelled sequences of satel-

lite imagery collected by Planet Labs’ Dove constellation

between 2017 and 2020, coupled with building footprint la-

bels for every image. The image sequences are sampled at

the 101 distinct areas of interest (AOIs) across the globe,

covering six continents (Figure 2). These locations were

selected to be both geographically diverse and display dra-

matic changes in urbanization across a two-year timespan.

The MUDS dataset is open sourced under a CC-BY-

4.0 ShareAlike International license‡ to encourage broad

use. This dataset can potentially be useful for many other

geospatial computer vision tasks; for example, it can be eas-

ily fused or augmented with any other data layers that are

available through web tile servers. The labels themselves

can also be applied to any other remote sensing image tiles,

such us high resolution optical or synthetic aperture radar.

3.1. Imagery

Images are sourced from Planet’s global monthly

basemaps, an archive of on-nadir imagery containing vi-

sual RGB bands with a ground sample distance (GSD) (i.e.

pixel size) of ≈ 4 meters. A basemap is a reduction of

all individual satellite captures (also called scenes) into a

spatial grid. These basemaps are created by mosaicing

‡https://registry.opendata.aws/spacenet/
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Figure 1: A comparison between our dataset and related

datasets. A. Annotated objects are very small in this dataset.

Plot represents normalized histograms of object size in pix-

els. Blue is our dataset, red represents all annotations in the

COCO 2017 training dataset [20]. B. The density of annota-

tions is very high in our dataset. In each 1024×1024 image,

our dataset has between 10 and over 20,000 objects (mean:

4,600). By contrast, the COCO 2017 training dataset has at

most 50 objects per image. C. Three sequential time points

from one geography in our dataset, spanning 3 months of

development. Compare to D., which displays three sequen-

tial frames in the MOT17 video dataset [19].

Figure 2: Location of MUDS data cubes.

the best scenes over a calendar month, selected according

to quality metrics like image sharpness and cloud cover-

age. Scenes are stack-ranked with best on top, and spa-

tially harmonized to smoothen scene boundary discontinu-

ities. Monthly basemaps are particularly well suited for the

computer vision analysis of urban growth, since they are rel-

atively cloud-free, homogeneous, and represented in a con-

sistent spatio-temporal grid. The monthly cadence is also a

good match to the typical timescale of urban developments.

The size of each image is 1024 × 1024 pixels, corre-

sponding to ≈ 18 km2, and the total area of the images

in the dataset is 41, 250 km2. See Table 1 or spacenet.ai

for additional statistics. The time series contain imagery

of 18 − 26 months, depending on AOI (median of 24).

This lengthy time span captures multiple seasons and at-

mospheric conditions, as well as the commencement and

completion of multiple construction projects. See Figure 3

for examples. Images containing an excessive amount of

clouds or haze were fully excluded from the dataset, thus

causing minor temporal gaps in some of the time series.

3.2. Label Statistics

Each image in the dataset is accompanied by two sets

of manually created annotations. The first set of labels

are building footprint polygons defining the outline of each

building. Each building is assigned a unique identifier (i.e.

address) that persists throughout the time series. The second

set of annotations are “unusable data masks” (UDMs) de-

noting areas of images that are obscured by clouds (see Fig-

ure 4) or that suffer from image geo-reference errors greater

than 1 pixel. Geo-referencing is the process of mapping pix-

els in sensor space to geographic coordinates, performed

via an empirical fitting procedure that is never exact. In

rare cases, the scenes that compose the basemaps have spa-

tial offsets of 5-10 meters. Accounting for such spatial dis-

placements in the time series would make the modeling task

significantly harder. Therefore, we decided to eliminate this

complexity by including these regions in the UDM.

Each image has between 10 and ≈ 20, 000 building an-

notations, with a mean of ≈ 4, 600 (the earliest timepoints

in some geographies have very few buildings completed).

This represents much higher label density than natural scene

datasets like COCO [20] (Figure 1B), or even overhead

drone video datasets [37]. As the dataset comprises ≈ 24
time points at 101 geographic areas, the final dataset in-

cludes > 11M annotations, representing > 500, 000 unique

buildings. (Compare the training data quantities shown for

other datasets in Table 1.) The building areas vary between

approximately 0.25 and 13,000 pixels2 (median building

area of 193 m2 or 12.1 pix2), markedly smaller than most

labels in natural scene imagery datasets (Figure 1A).

Seasonal effects and weather (i.e. background variation)

pervade our dataset given the low frame rate of 4×10−7 Hz

(Figure 1C). This “background” change adds to the change

detection task’s difficulty. This frame-by-frame background

variation is particularly unique and difficult to recreate via

simulation or video re-sampling.
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Figure 3: Time series of two data cubes. Left column (e.g. 1a) denotes the start of the times series, the middle column (e.g.

1b) the approximate midpoint, and the right column (e.g. 1c) shows the final image. The top row displays imagery, while the

bottom row illustrates the labeled building footprints.

Table 1: Comparison of Selected Time Series Datasets

MUDS VOT-ST2020 MOT20 Stanford Drone DAVIS 2017 YouTube-VOS

Property [16] [7] [25] [3] [44]

Scenes 101 60 4 60 90 4,453

Total Frames 2,389 19,945 8,931 522,497 6,208 ∼603,000

Unique Tracks 538,073 60 2,332 10,300 216 7,755

Total Labels 11,079,262 19,945 1,652,040 10,616,256 13,543 197,272

Median Frames/Scene 24 257.5 1,544 11,008 70.5 ∼135 (mean)

Ground Sample Dist. 4.0m n/a n/a ∼2cm n/a n/a

Frame Rate 1/month 30fps 25fps 30fps 20fps 30fps (6fps labels)

Annotation Polygon Seg. Mask BBox BBox Seg. Mask Seg. Mask

Objects Buildings Various Pedestrians, Pedestrians & Various Various

etc. Vehicles

3.3. Labeling Procedure

We define buildings as static man-made structures where

an individual could take shelter, with no minimum footprint

size. The uniqueness of the dataset presents distinct label-

ing challenges. First, small buildings can be under-resolved

to the human eye in a given image, making it difficult to

locate and discern from other non-building structures. Sec-

ond, in locations undergoing building construction, it can

be difficult to determine what point in time the structure be-

comes a building per our definition. Third, variability in

image quality, atmospheric conditions, shadows, and sea-

sonal phenology can introduce additional confusion. Mit-

igating these complexities and minimizing label noise was

of paramount importance, especially along the temporal di-

mension. Even though the dataset AOIs were selected to

contain urban change, construction events are still highly

imbalanced compared to the full spatio-temporal volume.

Thus, temporal consistency was a fundamental area of focus

in the labeling strategy. In cases of high uncertainty with a

particular building candidate, annotators examined the full

time series to gain temporal and contextual information of

the precise location. For example, a shadow from a neigh-

boring structure might be confused as a building, but this

becomes evident when inspecting the full data cube. Tem-

poral context can also help identify groups of objects. Some

regions have structures that resemble buildings in a given

image, but are highly variable in time. Objects that appear

and disappear multiple times are unlikely to be buildings.

Once one type of such ephemeral structures is identified as

a confusion source, all other similar structures are also ex-

cluded (Figure 5). Labeling took 7 months by a team of 5;

each data cube was annotated by one person, reviewed and

corrected by another, with final validation by the team lead.

Annotators also used a privately-licensed high resolution

imagery map to help discriminate uncertain cases. This high

resolution map is useful to gain contextual information of

the region and to guide the precise building outlines that

are unclear from the dataset imagery alone. Once a build-

ing candidate was identified in the MUDS imagery, the high

resolution map was used to confirm the building geometry.
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(a) Raw Image (b) UDM overlaid

(c) Masked image + labels (d) Zoomed labels

Figure 4: Single image in a data cube. (a) Image with cloud

cover. (b) Image with UDM overlaid. (c) Masked image

with building labels overlaid. (d) Zoom showing the high

fidelity of building labels.

Figure 5: Example of how temporal context can help with

object identification. If the middle image were to be la-

beled in isolation, objects A and B could be annotated as

buildings. However, taking into account the adjacent im-

ages, these objects exist only for one month and therefore

are unlikely to be buildings. Object C is also unlikely to be

a building, just by group association.

In other words, labels were not created on the high resolu-

tion imagery first. While the option of labeling on high res-

olution might seem attractive, it poses labeling risks such as

capturing buildings that are not visible at all in the MUDS

imagery. In addition, the high resolution map is static and

composed of imagery acquired over a long range of dates,

thus making it difficult to perform temporal comparisons

between this map and the dataset imagery.

The procedure to annotate each time series can be sum-

marized as follows:

Figure 6: Zoom in of one particularly dense region illustrat-

ing the very high fidelity of labels. (a) Raw image. (b) Foot-

print polygon labels. (c) Footprints overlaid on imagery.

1. Start with the first image in the series. Identify the

location of all visible structures. If the building lo-

cation and outline are clear, draw a polygon around

it. Otherwise, overlay a high resolution optical map

to help confirm the presence of the building and draw

the outline. Assign a unique integer identifier to each

building. In addition, identify any regions in the im-

age with impaired ground visibility or defects and add

their polygons to the UDM layer of this image.

2. Copy all the building labels onto the next image (not

the UDM). Examine carefully all buildings in the new

image, and edit the labels with any changes. Edits are

only be made when there is significant confidence that

a building appeared or disappeared. If a new build-

ing appeared, assign a new unique identifier. Toggle

through multiple images in the time series to ensure:

(a) there is a true building change and (b) that it is ap-

plied to the correct time point. Also, create a UDM.

3. Repeat step 2 for the remaining time points.

This process attempts to enforce temporal consistency

and reduce object confusion. While label noise is appre-

ciable in small objects, the use of high resolution imagery

to label results in labels of significantly higher fidelity that

would be achievable from the Planet data alone, as illus-

trated in Figure 6. This “omniscient labeling” is one of the

key features of the MUDS dataset. We will show in Sec-

tion 5 that the baseline algorithm does a surprisingly good

job of extracting high-resolution features from the medium-

resolution imagery. In effect, the labels are encoding infor-

mation that is not visible to humans in the imagery, which

the baseline algorithm is able to capitalize upon.

4. Evaluation Metrics

To evaluate model performance on a time series of

identifier-tagged footprints such as MUDS, we introduce a

new evaluation metric: the SpaceNet Change and Object

Tracking (SCOT) metric [15]. As discussed later, existing

metrics have a number of shortcomings that are addressed

by SCOT. The SCOT metric combines two terms: a track-

ing term and a change detection term. The tracking term
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evaluates how often a proposal correctly tracks the same

buildings from month to month with consistent identifier

numbers. In other words, it measures the model’s ability

to characterize what stays the same as time goes by. The

change detection term evaluates how often a proposal cor-

rectly picks up on the construction of new buildings. In

other words, it measures the model’s ability to characterize

what changes as time goes by.

For both terms, the calculation starts the same way: find-

ing “matches” between ground truth building footprints and

proposal building footprints for each month. A pair of foot-

prints (one ground truth and one proposal) are eligible to be

matched if their intersection over union (IOU) exceeds 0.25,

and no footprint may be matched more than once. We se-

lect an IOU of 0.25 to mimic Equation 5 of ImageNet [27],

which sets IOU < 0.5 for small objects. A set of matches

is chosen that maximizes the number of matches. If there is

more than one way to achieve that maximum, then as a tie-

breaker the set with the largest sum of IOUs is used. This is

an example of the unbalanced linear assignment problem in

combinatorics.

If model performance were being evaluated for a sin-

gle image (instead of a time series), a customary next step

might be calculating an F1 score, where matches are con-

sidered true positives (tp) and unmatched ground truth and

proposal footprints are considered false negatives (fn) and

false positives (fp) respectively.

F1 =
tp

tp+ 1

2
(fp+ fn)

(1)

The tracking term and change detection term both gen-

eralize this to a time series, each in a different way.

The tracking term penalizes inconsistent identifiers

across time steps. A match is considered a “mismatch”

if the ground truth footprint’s identifier was most recently

matched to a different proposal ID, or vice versa. For the

purpose of the tracking term, mismatches (mm) are not

counted as true positives. So each mismatch decreases the

number of true positives by one. This effectively divorces

the ground truth footprint from its mismatched proposal,

creating an additional false negative and an additional false

positive. This yields the following transformations:

tp → tp−mm

fp → fp+mm

fn → fn+mm

(2)

Applying these to the F1 expression above gives the formula

for the tracking term:

Ftrack =
tp−mm

tp+ 1

2
(fp+ fn)

(3)

The second term in the SCOT metric, the change detec-

tion term, incorporates only new footprints. That is, ground
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(a) Tracking Term (b) Change Term

Figure 7: (a) Example of SCOT metric tracking term. Solid

brown polygons are ground truth building footprints, and

outlines are proposal footprints. Each footprint’s corre-

sponding identifier number is shown. (b) Example of SCOT

metric change detection term, using the same set of ground

truth and proposal footprints. This term ignores all ground

truth and proposal footprints with previously-seen identi-

fiers, which are indicated in a faded-out gray color.

truth or proposal footprints with identifier numbers making

their first chronological appearance. Letting the subscript

new indicate the count of tp’s, fp’s, and fn’s that persist

after dropping non-new footprints:

Fchange =
tpnew

tpnew + 1

2
(fpnew + fnnew)

(4)

One important property of this term is that a set of static

proposals that do not vary from one month to another will

receive a change detection term of 0, even for a time series

with very little new construction. (In the MUDS dataset,

the construction of new buildings is by far the most com-

mon change; the metric could be generalized to accommo-

date building demolition or other changes by any of several

straightforward generalizations.)

To compute the final score, the two terms are combined

with a weighted harmonic mean:

Fscot = (1 + β2)
Fchange · Ftrack

β2Fchange + Ftrack

(5)

We use a value of β = 2 to emphasize the part of the task

(tracking) that has been less commonly explored in an over-

head imagery context. For a dataset like MUDS with multi-

ple AOIs, the overall SCOT score is the arithmetic mean of

the scores of the individual AOIs.

Figure 7a is a cartoon example of calculating the tracking

term on a row of four buildings imaged over five months

(during which time two of the four are newly-constructed,

and two are temporarily occluded by clouds). Figure 7b

illustrates the change detection term for the same case.

For geospatial work, the SCOT metric has a number

of advantages over evaluation metrics developed for object

6403



tracking in video, such as the Multiple Object Tracking Ac-

curacy (MOTA) metric [1]. MOTA scores are mathemati-

cally unbounded, making them less intuitively interpretable

for challenging low-score scenarios, and sometimes even

yielding negative scores. More critically, for scenes with

only a small amount of new construction, it’s possible to

achieve a high MOTA score with a set of proposal footprints

that shows no time-dependence whatsoever. Since under-

standing time-dependence is usually a primary purpose of

time series data, this is a serious drawback. SCOT’s change

detection term prevents this. In fact, many such approaches

to “gaming” the SCOT metric by artificially increasing one

term will decrease the other term.

5. Experiments

For object tracking, one could in theory leverage the re-

sults of previous challenges (e.g. MOT20 [7]), yet the sig-

nificant differences between MUDS and previous datasets

such as high density and small object size (see Figure 1)

render previous approaches unsuitable. For example, ap-

proaches such as TrackR-CNN [38] are untrainable as each

instance requires a separate channel resulting in a mem-

ory explosion for images with many thousands of objects.

Other approaches such as Joint Detection and Embedding

(JDE) [40] are trainable; however inference results are ul-

timately incoherent due to the tiny object size and density

overwhelming the YOLOv3 [24] detection grid. Despite

these challenges, the spatially static nature of our objects of

interest somewhat simplifies tracking objects between each

observation. Consequently, this dataset should incentivize

the development of new object tracking algorithms that can

cope with a lack of resolution, spatial stasis, minimal size,

and dense clustering of objects.

As a result of the challenges listed above, our baseline

model [36] applies segmentation plus novel post-processing

to detect and track buildings over time. The segmenta-

tion model is adapted from prize winning approaches for

the SpaceNet 4 and 6 Building Footprint Extraction Chal-

lenges [43, 30]. Our architecture comprises a U-Net [26]

with different encoders. The first “baseline” approach uses

a VGG16 [32] encoder and a custom loss function of L =
J + 4 · BCE, where J is Jaccard distance and BCE de-

notes binary cross entropy. The second approach uses a

more advanced EfficientNet-B5 [34] encoder with a loss of

L = F +D where F is Focal loss [21] and D is Dice loss.

To ensure robust testing statistics, we train the model on

60 data cubes, testing on the remaining 41 data cubes. We

train the segmentation models with an Adam optimizer on

the 1424 images of the training set for 300 epochs and a

learning rate of 10−4 (baseline) or 100 epochs and a learn-

ing rate of 2× 10−4 (EfficentNet).

At inference time binary building prediction masks are

converted to instance segmentations of building footprints.

Figure 8: Baseline algorithm for building footprint extrac-

tion and identifier tracking showing evolution from T = 0

(top row) to T = 5 (bottom row). The input image is fed

into our segmentation model, yielding a building mask (sec-

ond column). This mask is refined into building footprints

(third column), and unique identifiers are allocated (right

column).

Figure 9: Example tracking performance of the baseline

algorithm. Note that larger, well-separated buildings are

tracked well between epochs, while denser regions are more

challenging for tracking.

Table 2: Building Tracking Performance

Metric
Approach

VGG-16 EfficentNet

F1 (IOU ≥ 0.25) 0.45± 0.13 0.42± 0.12

Tracking Score 0.40± 0.10 0.39± 0.10

Change Score 0.06± 0.05 0.07± 0.05

SCOT 0.17± 0.10 0.18± 0.09

Each footprint at t = 0 is assigned a unique identifier.

For each subsequent time step building footprints polygons

are compared to the positions of the previous time step.

Building identifier matching is achieved by an optimized

matching of polygons with a minimum IOU overlap of 0.25.

Matched footprintes are assigned the same identifier as the

previous timestep, while footprints without significant over-

lap with preceding geometries are assigned a new unique

identifier. The baseline algorithm is illustrated in Figure

8; note that building identifiers are well matched between

epochs. Performance is summarized in Table 2. For scoring

we assess only buildings with area ≥ 4 px2.
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Figure 10: Prediction in a difficult, crowded region. De-

spite the inherent difficulties in separating nearby buildings

at medium resolution, for this image F1 = 0.40.

Localizing and tracking buildings in medium resolu-

tion (≈ 4m) imagery is quite challenging, but surpris-

ingly achievable in our experiments. For well separated

buildings, building localization and tracking performs fairly

well; for example in Figure 9) we find a localization F1

score of 0.55, and a SCOT score of 0.31. For dense regions,

building tracking is far more difficult; in Figure 10 we still

see decent performance in building localization (F1 = 0.40),

yet building tracking and change detection is very chal-

lenging (SCOT = 0.07) since inter-epoch footprints overlap

poorly. The change term of SCOT is particularly challeng-

ing, as correctly identifying the origin epoch of each build-

ing is non-trivial, and spurious proposals are also penalized.

In an attempt to raise the scores of Table 2, we also en-

deavor to incorporate the time dimension into training. As

previously mentioned, existing approaches transfer poorly

to this dataset, so we attempt a simple approach of stacking

multiple images at training time. For each date we train on

the imagery for that date plus the four chronologically adja-

cent future observations [t = 0, t+1, t+2, t+3, t+4] for

five total dates of imagery. We find no improvement with

this approach (SCOT = 0.17± 0.08).

We also note no significant difference in scores between

the VGG-16 and EfficentNet architectures (Table 2), imply-

ing that older architectures are essentially as adept as state-

of-the-art architectures when it comes to extracting infor-

mation from the small objects in this dataset.

While not fully explored here, we also anticipate that

researchers may improve upon the baseline using models

specifically intended for time series analysis (e.g. Recur-

rent Neural Networks (RNNs) [22] and Long-Short Term

Memory networks (LSTMs) [14]) in addition to numerous

“classical” geospatial time series methods (e.g. [45]).

6. Discussion

Intriguingly, the score of F1 = 0.45 for our baseline

mode parallels previous results observed in overhead im-

agery. [31] studied object detection performance in xView

[18] satellite imagery for various resolutions and five dif-

ferent object classes. These authors used the YOLT [35]

object detection framework, which uses a custom network

based on the Googlenet [33] architecture. The mean extent

of the objects in this paper was 5.3 meters; at a resolution

of 1.2 meters objects have an average extent of 4.4 pixels.

The average building area for the MUDS dataset is 332

m2, implying an extent of 18.2 m for a square object. For

a 4 meter resolution, this gives an average extent of 4.5

pixels, comparable to the 4.4 pixel extent of xView. The

observed MUDS F1 score of 0.45 is within error bars of

the results of the xView results, see Table 3. Of particu-

lar note is that while the F1 scores and object pixel sizes of

Table 3 are comparable, the datasets stem from vastly differ-

ent sensors, and the techniques are wildly different as well

(a Googlenet-based object detection architecture versus a

VGG16-based segmentation architecture). Apparently, ob-

ject detection performance holds across sensors and algo-

rithms as long as object pixel sizes are comparable.

Table 3: F1 Performance Across Datasets

Dataset GSD (m) Object Size (pix) F1

xView 1.2 4.4 0.41± 0.03

MUDS 4.0 4.5 0.45± 0.13

7. Conclusions

The Multi-temporal Urban Development SpaceNet

(MUDS, also known as SpaceNet 7) dataset is a newly

developed corpus of imagery and precise labels designed

for tracking building footprints and unique identifiers. The

dataset covers over 100 locations across 6 continents, with

a deep temporal stack of 24 monthly images and over

11,000,000 labeled objects. The significant scene-to-scene

variation of the monthly images poses a challenge for com-

puter vision algorithms, but also raises the prospect of

developing algorithms that are robust to seasonal change

and atmospheric conditions. One of the key characteris-

tics of the MUDS dataset is exhaustive “omniscient label-

ing” with labels precision far exceeding the base imagery

resolution of 4 meters. Such dense labels present signifi-

cant challenges in crowded urban environments, though we

demonstrate surprisingly good building extraction, tracking,

and change detection performance with our baseline algo-

rithm. Intriguingly, our object detection performance of

F1 = 0.45 for objects averaging 4-5 pixels in extent is con-

sistent with previous object detection studies, even though

these studies used far different algorithmic techniques and

datasets. Higher performance models than the baseline al-

gorithm presented here can be found in the SpaceNet 7

Challenge [9] results. There are numerous avenues of re-

search beyond the scope of this paper that we hope the

community will tackle with this dataset: the efficacy of

super-resolution, adapting video time-series techniques to

the unique features of MUDS, experimenting with RNNs,

Siamese networks, LSTMs, etc. Furthermore, the dataset

has the potential to aid a number of humanitarian efforts

connected with population dynamics and UN sustainable

development goals.
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man Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih
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