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Abstract

As neural networks are increasingly being applied
to real-world applications, mechanisms to address dis-
tributional shift and sequential task learning without
forgetting are critical. Methods incorporating network
expansion have shown promise by naturally adding model
capacity for learning new tasks while simultaneously
avoiding catastrophic forgetting. However, the growth
in the number of additional parameters of many of these
types of methods can be computationally expensive at
larger scales, at times prohibitively so. Instead, we pro-
pose a simple task-specific feature map transformation
strategy for continual learning, which we call Efficient
Feature Transformations (EFTs). These EFTs provide
powerful flexibility for learning new tasks, achieved with
minimal parameters added to the base architecture. We
further propose a feature distance maximization strat-
egy, which significantly improves task prediction in class
incremental settings, without needing expensive genera-
tive models. We demonstrate the efficacy and efficiency
of our method with an extensive set of experiments
in discriminative (CIFAR-100 and ImageNet-1K) and
generative (LSUN, CUB-200, Cats) sequences of tasks.
Even with low single-digit parameter growth rates, EFTs
can outperform many other continual learning methods
in a wide range of settings.

1. Introduction

While deep learning has led to impressive advances
in many fields, neural networks still tend to struggle in
sequential learning settings, largely due to catastrophic
forgetting [31, 39]: when the training distribution of
a model shifts over time, neural networks overwrite
previously learned knowledge if not repeatedly revisited
during training. Pragmatically, this typically means
that data collection must be completed before training
a neural network, which can be problematic in settings
like reinforcement learning [34] or the real world [44],

which is constantly evolving. Otherwise, the model
must constantly be re-trained as new data arrives. This
limitation significantly hampers building and deploying
intelligent systems in changing environments.

A variety of continual learning methods [37]
have been proposed to address this shortcoming.
Regularization-based methods [18, 62, 36, 1, 41] pre-
vent forgetting by constraining model parameters from
drifting too far away from previous solutions, but they
can also restrict the model’s ability to adapt to new
tasks, often resulting in sub-optimal solutions. Addi-
tionally, regularization methods commonly make the
assumption that each weight’s importance for a task
is independent, which may explain why they have dif-
ficulty scaling to more complex networks and tasks.
Replay methods [27, 46, 36, 42] retain knowledge by
rehearsing on data saved from previous tasks. While
effective at preventing forgetting, the performance of
replay-based approaches is highly dependent on the size
and contents of the memory buffer, and in certain strict
settings, saving any data at all may not be an option.
The nature of this replay buffer also tends to highly
bias the model toward recently learned tasks. As the
number of tasks grows, performance degrades quickly,
especially in large-scale settings [38, 40].

As an alternative to regularization or replay, ex-
pansion methods [43, 59, 58, 32] combat forgetting by
growing the model with each task. Expansion alleviates
catastrophic forgetting by design, and additional nec-
essary capacity can be easily added to accommodate
new knowledge needed for new tasks. This ability to
scale arbitrarily without needing to save any data gives
expansion methods the best chance to succeed in large-
scale settings. However, added capacity to model future
tasks needs to be carefully balanced against the number
of parameters added, especially since the number of
tasks the model must learn is often unknown ahead of
time. Too inefficient of an approach can easily exceed
computational resources even after a moderate number
of tasks. Moreover, many previous expansion methods
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Figure 1. Left: EFT transforms global feature map F to a task-specific feature map H with parameters τt. Right: Parameter
growth for the 10 task on the LeNet architecture, EFT shows significantly lower growth than other expansion models.

are either computationally inefficient or inflate model
size by a significant amount.

To overcome these limitations, we propose a com-
pact, task-specific feature map transformation for large-
scale continual learning, which we call Efficient Feature
Transformation (EFT). In particular, we partition the
model into global parameters (θ) and task-specific local
parameters (τt), with the pair (θ, τt) as the optimal
parameters for a particular task t (see Figure 1). In
constructing these local transforms, we leverage effi-
cient convolution operations [14, 49, 56], maintaining
expressivity, while keeping model growth small. We also
minimize the impact on the global base architecture, al-
lowing us to use pre-existing architectures, which can be
critical for achieving strong performance in large-scale
settings. This compact nature of the added transforma-
tions also makes EFTs faster to train than comparable
methods because we have to update only task-specific
parameters. Finally, we propose a strategy for max-
imizing feature distance to improve task prediction,
a critical component for continual learning methods
operating in class incremental settings.

To show the efficacy and efficiency of the proposed
approach, we extensively evaluate our model on a vari-
ety of datasets and architectures. In class incremental
and task incremental sequential classification settings,
EFTs achieve significant performance gains on CIFAR-
100 [19] and ImageNet [6] with only a minor growth in
parameter count and computation. We also evaluate
our approach for continual generative modeling, demon-
strating a 22.7% relative improvement in FID [12] on
the LSUN [60], CUB-200 [52], and ImageNet [6] cat
datasets compared to recent state-of-the-art models.

2. Methods

2.1. Efficient Feature Transforms

Commonly used modern vision and language archi-
tectures can be quite large, sometimes having tens to
hundreds of millions of parameters [11, 7]. This can
make them incompatible with many previous contin-
ual learning methods: if one must add entire parallel

columns [43] or regularize the entirety of a model’s
weights [18] per task t, it can very easily exceed system
capacity. Additionally, many of large-scale networks
have been carefully engineered through years of manual
architecture search, resulting in structures with specific
hyperparameter settings or inductive biases that make
them especially effective [3]. Modifications to these
design may lead to unintentional degradation of the
model’s overall effectiveness. Many previous continual
learning methods significantly alter the base network in
a way that may be detrimental to overall performance.

With these considerations in mind, we propose par-
titioning the network into a global base network pa-
rameterized by θ and task-specific transformations τt.
During a task t, only the task-specific parameters τt
are trained; previous local parameters τ<t and global
parameters θ remain unchanged. Under this set-up,
the global network can be any architecture, preferably
an effective one for the problem at hand. Of particu-
lar note, this means that pre-trained weights can also
be employed, if available and appropriate. Because
attempting to transform parameters θ in its entirety
can be expensive, we instead propose task-specific lo-
cal transformations of the features at various layers
within the network. We aim to keep the task-specific
transformations minimal. In particular, using efficient
operations, our approach can keep the number of param-
eters in τt very small without degrading performance.
To ensure network compatibility, we also ensure that
the dimensionality of each transformed feature tensor
remains the same as the original, meaning that this
operation can be inserted into any architecture without
any changes. We outline here how this can be done for
2D convolutional and fully connected layers. We focus
on these two operations as they comprise the backbone
of many deep architectures, but these concepts can be
generalized to other types of layers as well.

2.1.1 2D Convolutional Layer

Convolutional neural networks (CNNs) [22] play a major
role in many modern computer vision algorithms, with
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the 2D convolutional layer being one of the primary
building blocks. Let I be the input to a convolutional
layer. In the typical formulation, each convolution layer
is composed of K convolutional filters W; each filter
Wk in W has size (m× n× c), with m and n being the
filter’s spatial dimensions and c the number of channels
in I. Each filter Wk convolved with I produces an
output feature map Fk ∈ R

M×N . The whole operation
can be summarized as

F = W ∗ I (1)

with ∗ being the 2D convolution operator and F ∈
R

M×N×K being all feature maps Fk stacked into a
tensor. Generally, this operation includes an additive
bias, which we omit here for notational convenience.

Rather than adjusting W directly, we instead pro-
pose appending a small convolutional transformation
to change the features F . As this operation needs to
be done for each task t, we seek to do so efficiently,
more so than existing expansion-based methods. We do
this by leveraging groupwise [20, 56] and depthwise [14]
convolutions, producing new features for a specific task.
We use two types of convolutional kernels: ωs ∈ R

3×3×a

for capturing spatial features within groups of channels
and ωd ∈ R

1×1×b for capturing features across channels
at every pixel in F , where a and b are hyperparameters
defining the group size. For the former case, we per-
form a groupwise convolution with cardinality a using
depth-a convolutions. In other words, we split convo-
lutional feature maps F into K/a groups, and for each
spatially convolve a unique set of a filters ωs

i over the
group of feature maps. The resulting K/a groups of
a feature maps Hs

i , are all concatenated into a single
tensor Hs ∈ R

M×N×K . Importantly, this is the same
dimensions as the original feature map F , keeping with
our goal of keeping the architecture unchanged after
inserting this transformation. A similar operation is
done for filters ωd, but with cardinality b and depth
b, to constitute feature maps Hd ∈ R

M×N×K . The
construction of both feature maps can be expressed as:

Hs
ai:(ai+a−1) = [ωs

i,1 ∗ Fai:(ai+a−1) | . . . |

ωs
i,a ∗ Fai:(ai+a−1)], i ∈ {0, . . . ,

K

a
− 1}

(2)

Hd
bi:(bi+b−1) = [ωd

i,1 ∗ Fbi:(bi+b−1) | . . . |

ωd
i,b ∗ Fbi:(bi+b−1)], i ∈ {0, . . . ,

K

b
− 1}

(3)

where | is the concatenation operation, Hs
ai:(ai+a−1) ∈

R
M×N×a, and Hd

bi:(bi+b−1) ∈ R
M×N×b. Generally, a ≪

Figure 2. Illustration of the proposed parameter-efficient
transformation of convolutional features.

K and b ≪ K, so this operation is far more parameter
efficient than simply using another convolutional layer
with K filters. The latter requires at least as many
parameters as the original network itself for each task,
the same as learning separate models per task.

We combine the features from the spatial and depth
convolutions Hs and Hd additively:

H = Hs + γHd (4)

where γ ∈ {0, 1} is an indicator indicating if the point-
wise convolutions ωd are employed. Note, if γ = 0, we
do not perform convolutions with ωd; this sacrifices
some expressivity, but further reduces the number of
added parameters per task. For example, the extreme
case of a = 1 and γ = 0 results in a small 0.17% increase
in parameters per task in ResNet-18 while still achieving
state-of-the-art performance on the ImageNet-1K/10
continual learning task.

2.1.2 Fully Connected Layer

Fully connected layers are common in many architec-
tures, typically to project from one dimensionality to
another. In convolutional neural networks, they are fre-
quently used to project to the number of output classes
to produce the final prediction. A fully connected layer
is implemented as a matrix multiply between a weight
matrix W and an input vector v, producing an output
feature vector f = Wv; the bias vector is again omitted
for convenience.

As with the convolutional layer, where we transform
the convolutional features F to a task-specific feature
H with additional convolutional operations, we also
transform output vector f with another fully connected
layer (parameterized by E) to a task-specific feature
vector h. Like in the convolutional case, we must put
restrictions on the form of E to prevent this operation
from being overly costly. In particular, we constrain E
to be diagonal, which significantly reduces the number
of parameters. This operation can be expressed as
h = Ef . In practice, since E is diagonal, this operation
can be implemented as a Hadamard product.
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2.1.3 Parallel Adaption

We have thus far introduced our approach as an efficient,
sequential feature transformation, adapting the features
to each task after its computation in the base network.
An alternative parameterization is to compute these fea-
ture calibrations in parallel (Figure 1, center), making
the transformation additive rather than compositional:

H ′ = (W ∗ I)⊕ (τ lt ∗ I) (5)

= F ⊕H (6)

where ⊕ is element-wise addition and τ lt is the task
specific parameter at layer l. Empirically we find that
both sequential and parallel models achieve similar per-
formance. Unless otherwise mentioned, we report our
results with sequential transformations. A comparison
of the two types is shown in the supplementary material.

2.2. Task Prediction

Knowing which task t an inference-time input corre-
sponds to is a common implicit assumption in continual
learning, but in some settings this information is un-
available, necessitating predicting the task t alongside
the class; such a setting has been referred to as class
incremental learning (CIL) [15]. Predicting the task ID
can be challenging, especially when data from previous
tasks is not saved. We choose to predict t by selecting
the task-specific set of parameters τt that produces the
maximum confidence prediction for the input. However,
a naive, direct measurement of the post-softmax pre-
diction entropy often performs poorly, as the typical
cross-entropy training objective tends to produce high
confidence in deterministic neural networks, even for
out-of-distribution (OoD) samples [10]. To remedy this,
we propose feature distance maximization, a simple
regularization to increase task prediction ability.

Without intervention, the pre-output layer feature
distributions learned by the parameters τt for each task
t may show overlap, which may hinder attempts to
discriminate task features. To mitigate this, we add
a regularizer to create a margin between the features
produced by each task’s τt for a given task’s data:

LM =

t−1∑

i=1

max(∆−KL(Pt||Qi), 0) (7)

where Pt = N (µt,Σt) and Qi = N (µi,Σi) are the
distributions of the current task t and earlier task i < t.
This regularizer helps the model learn representations
for τt such that the current task data (Dt) has at least
∆ separability in the feature space from the features
encoded by previous tasks’ parameters τ<t.

2.3. Summary

The joint loss for Efficient Feature Transforms (EFTs)
is defined as:

LEFT = L(ŷ, y) + λLM (8)

where L(ŷ, y) is the standard cross-entropy loss between
the predicted class ŷ and ground truth y, and λ is a
weighting hyperparameter. At test time, for a given
input x, we measure the output entropy with each τt and
predict the task ID as argmaxt(x|θ, τt). Once we have
the task ID, we can choose the task-specific parameter
τt to predict a class.

In summary, we recognize that if one adjusts the
original model parameters in a given layer (what we
call “global” model parameters), this leads to an adjust-
ment in the features output from the layer. However,
the number of layer-dependent global parameters may
be massive, and adjustment of them may cause loss
of information accrued from prior datasets and tasks.
Since layer-wise adjustment of global parameters sim-
ply adjusts the output feature map, we leave the global
layer-dependent features unchanged, and introduce a
new set of lightweight task-specific parameters, that di-
rectly refine the feature map itself. These task-specific
parameters may adjust to new tasks, while maintain-
ing the knowledge represented in well-training global
model parameters. We have developed methods to ap-
ply this concept to convolutional and fully-connected
layers. Additionally, we make the model more amenable
to task ID prediction by maximizing a margin between
task-specific feature distributions.

3. Related Work

The continual learning literature is vast [5, 37].
Broadly, continual learning (CL) methods can be
grouped into three categories, by strategy: replay, regu-
larization, and expansion. We focus here primarily on
expansion-based methods, as they are the most closely
related to our work.

A number of previous works [66, 59, 43, 57, 8, 45, 29,
30, 51, 58] have proposed methods for expanding a neu-
ral network to learn a sequence of tasks. For example,
Progressive Neural Networks (PNNs) [43] adds a new
neural network column for each new task; weights for
previous tasks are frozen in place, and lateral connec-
tions are added for forward knowledge transfer. Side-
tuning [66] takes an approach similar to but simpler
than PNNs: they propose learning small task-specific
networks whose outputs are fused to the larger base
network. Dynamically Expandable Network (DEN) [59]
optimizes three sub-problems of selective training, net-
work expansion, and network duplication, while Rein-
forced Continual Learning RCL [57] using reinforcement
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Table 1. Average accuracy on CIFAR-100 in class incremental learning setting when trained on 10 tasks sequentially.

Dataset / #Tasks Methods 1 2 3 4 5 6 7 8 9 Final

CIFAR-100/10

Finetune 88.5 47.1 32.1 24.9 20.3 17.5 15.4 13.5 12.5 11.4
FixedRep 88.5 45.9 30.1 22.4 17.7 15.2 12.3 11.1 9.8 8.8
LwF [25] 88.5 70.1 54.8 45.7 39.4 36.3 31.4 28.9 25.5 23.9
EWC [18] 88.5 52.4 48.6 38.4 31.1 26.4 21.6 19.9 18.8 16.4
EWC+SDC [61] 88.5 78.8 75.8 73.1 71.5 60.7 53.9 43.5 29.5 19.3
SI [62] 88.5 52.9 40.7 33.6 31.8 29.4 27.5 25.6 24.7 23.3
MAS [1] 88.5 42.1 36.4 35.1 32.5 25.7 21.0 19.2 17.7 15.4
RWalk [2] 88.5 55.1 40.7 32.1 29.2 25.8 23.0 20.7 19.5 17.9
DMC [65] 88.5 76.3 67.5 62.4 57.3 52.7 48.7 43.9 40.1 36.2

EFT-a4b0 (+1.7%) 90.2 75.7 68.6 62.6 58.1 53.9 51.6 48.7 46.7 44.4

EFT-a4b8 (+2.0%) 90.1 75.5 68.9 63.6 58.7 54.6 52.4 49.8 47.3 45.1

EFT-a8b16 (+3.9%) 90.2 76.2 70.1 63.1 57.9 53.6 52.1 49.6 47.6 45.5

learning to determine the growth of the architecture.
Alternatively, some recent works leverage Bayesian non-
parametrics to let the data dictate expansion [32, 21, 23],
but the benchmarks considered in Bayesian methods
have been limited to MNIST and CIFAR-10.

An iterative training and pruning strategy [29, 28, 16]
has also been proposed for expansion-based continual
learning, with the pruning incorporated to reduce model
growth; however, PackNet [29] still requires saving
masks to recover networks of previous models, which
can take up storage space as the number of tasks grows.
Other mask-based approaches have proven popular in
recent years. HAN [45] proposes hard attention masks
for the each task. TFM [30] applies ternary masks to the
feature maps, which results in less memory per mask,
as the feature maps are often smaller in size than the
number of weights in the model. Additive Parameter
Decomposition (APD) [58] uses masks to decompose
the model parameters into task-shared and task-specific
parameters; however, the significant changes made to
architecture makes it harder to scale and precludes the
use of pre-trained weights. SupSup [54] proposes su-
permasks [67] for each task, storing the supermask in
a fixed size Hopfield network network [13]. Masking
approaches work well for task-incremental settings, but
the task prediction required for class incremental learn-
ing to select the appropriate mask can be challenging
and costly; replay is sometimes relied upon [29]. By
contrast, our proposed method shows promising results
in both scenarios, without relying on replay.

4. Experiments
We demonstrate our approach’s performance for

multiple base architectures (ResNet [11], VGG [47],
AlexNet [20]) and datasets (ImageNet-1K [6], CIFAR-
100 [19], Tiny-ImageNet) in class and task incremen-
tal learning scenarios.1 We use the nomenclature

1https://github.com/vkverma01/EFT

[DATASET]-C/T throughout this section to denote a
continual learning set-up with C total classes evenly di-
vided into T tasks, meaning each task involves learning
C

T
new classes. We also explore generative continual

learning on the StackGAN-v2 [64] architecture for the
four sequential task (cats, birds, church and tower), and
run several ablation studies. In all scenarios, we achieve
a significant improvement compared to the base model.

4.1. CIFAR­100

CIFAR-100 [19] is commonly among the most chal-
lenging datasets considered by many previous contin-
ual learning methods. We break down the 100 classes
into three different class sequence splits: CIFAR-100/5,
CIFAR-100/10 and CIFAR-100/20. With more classes
per tasks, CIFAR-100/5 requires the model to learn
a harder problem for each task, while CIFAR-100/20
increases the length of the task sequence, testing a
continual learning method’s retention. We run our CI-
FAR experiments in the class incremental setting, which
means task information is unknown at test time, thus
requiring task prediction. In our CIFAR experiments,
we utilize the ResNet-18 [11] architecture for CIFAR
datasets as our base architecture. We report the av-
erage top-1 accuracy of all previously seen tasks up
to t, for each t, averaged over 5 random permutations
of task order. We compare EFT with several other
popular continual learning methods for CIFAR-100/10
in Table 1, and plot performance over time (tasks seen)
for CIFAR-100/5 and CIFAR-100/20 in Figure 3.

If simply training on each task dataset in sequence,
finetuning the model on each incoming dataset without
any continual learning measures, we observe severe
catastrophic forgetting. Because of the diversity and
complexity of the classes in each task, previous tasks
are forgotten almost entirely in order to specialize the
model for the current task. While other methods show
improvements over the finetuning baseline, all still show
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Figure 3. CIFAR-100/5 and CIFAR-100/20 result in the class incremental learning setup.

Table 2. Comparison with the state-of-the-art. ImageNet-1K/10 on AlexNet and Tiny-ImageNet-200/10 on VGG-16 from
scratch. Accuracy of each task after learning all tasks.

Dataset / #Tasks Methods 1 2 3 4 5 6 7 8 9 10 Avg

Tiny ImageNet/10

Finetuning 38.1 36.0 43.2 44.1 45.5 54.5 50.3 50.5 51.0 61.2 47.4
Freezing 51.7 36.4 39.5 41.7 42.9 46.2 45.7 41.1 41.2 40.9 42.7
LfL [17] 32.4 35.4 43.4 44.1 45.0 55.9 49.4 51.1 58.6 61.4 47.7
LwF [25] 45.1 45.5 53.5 57.6 56.2 65.7 63.5 58.4 59.6 58.5 56.4
IMM-mode [24] 50.6 38.5 44.7 49.2 47.5 51.9 53.7 47.7 50.0 48.7 48.3

(VGG-16) EWC [18] 33.9 35.4 43.6 46.7 49.5 52.5 47.8 50.2 56.6 61.4 47.8
HAT [45] 46.8 49.1 55.8 58.0 53.7 61.0 58.7 54.0 54.6 50.3 54.2
PackNet [29] 52.5 49.7 56.5 59.8 55.0 64.7 61.7 55.9 55.2 52.5 56.4
TFM [30] 48.2 47.7 56.7 58.2 54.8 62.2 61.5 57.3 58.5 54.8 56.0

EFT-a8b16 (3.1%) 67.2 62.5 69.4 62.6 68.3 69.6 59.0 67.8 71.5 70.1 66.8

ImageNet-1K/10

Finetuning 25.8 32.2 31.4 37.8 39.1 43.7 46.0 50.0 53.4 63.7 42.3
Freezing 68.8 53.5 52.0 51.2 51.3 53.9 52.2 53.9 51.7 51.2 54.0
LwF [25] 27.6 37.2 42.0 44.4 50.5 56.6 57.9 61.2 62.0 62.7 50.2

(AlexNet) IMM-mode [24] 68.5 53.6 52.1 51.7 52.5 55.5 54.7 53.5 54.2 51.8 54.8
EWC [18] 21.8 26.5 29.5 32.9 35.6 40.4 40.0 44.7 47.8 61.1 38.0
PackNet [29] 67.5 65.8 62.2 58.4 58.6 58.7 56.0 56.5 54.1 53.6 59.1

EFT-a16b64 (0.6%) 69.0 63.2 60.1 62.5 53.6 57.2 55.1 52.8 55.7 62.5 59.4

major signs of forgetting. We show results for EFTs
with different convolutional group sizes {a, b}, using the
notation EFT-aαbβ to indicate EFT with a = α and b =
β. For CIFAR-100/10, EFT-a4b0, EFT-a4b8, and EFT-
a8b16 result in small 1.7%, 2.0%, and 3.9% increases in
parameters per task respectively, leading to 8.2%, 8.9%
and 9.3% absolute gain in final average accuracy in
comparison to recent regularization or expansion-based
models. We observe a similar pattern for CIFAR-100/20
and CIFAR-100/5: we see consistently better results
throughout the task sequence when there is a larger
number of tasks (CIFAR-100/20) and when individual
tasks are harder (CIFAR-100/5). More details about the
experimental setup and hyperparameters can be found
in the supplementary material, as well as additional
comparisons with SupSup [54] and CCLL [48].

4.2. ImageNet

The ImageNet-1K [6] classification dataset contains
1000 classes based on the WordNet [33] hierarchy. Tiny-
ImageNet is a smaller subset of the ImageNet dataset,
containing 200 classes downsampled to 64× 64× 3 res-
olution. For many years, ImageNet-1K served as a
measuring stick for deep computer vision progress, and
it still remains a very difficult and rarely tested setting
for continual learning. Our ImageNet experiments are
conducted in the task-incremental learning scenario, as-
suming the task-id at test time to choose τt for that task.
We use VGG-16 [47] and AlexNet [20] CNN architec-
tures for Tiny-ImageNet-200/10 and ImageNet-1K/10,
respectively. The results are shown in the Table 2. We
report the average top-1 accuracy across all encountered
tasks for three random task orders. Compared with the
baselines, we see significant performance improvements
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Table 3. Final test accuracies after heterogeneous dataset
sequence with VGG16. ↓ follow the SVHN → CIFAR-10 →

CIFAR-100 task order, while ↑ corresponds to CIFAR-100
→ CIFAR-10 → SVHN.

L2T PB [28] PNN [43] APD [58] EFT-a16b16

Task order ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

SVHN 10.7 88.4 96.8 96.4 96.8 96.2 96.8 96.8 96.8 95.5
CIFAR-10 41.4 35.8 83.6 90.8 85.8 87.7 90.1 91.0 89.2 90.4
CIFAR-100 29.6 12.2 41.2 67.2 41.6 67.2 61.1 67.2 64.6 71.5

Avg 27.2 45.5 73.9 84.8 74.7 83.7 83.0 85.0 83.5 85.8

Table 4. Expansion cost and
CIFAR-100/10 average ac-
curacy with the convolu-
tional architecture in [58].

Methods Cost Acc.

PNN [43] 1.71x 54.90
DEN [59] 1.81x 57.38
RCL [57] 1.80x 55.26
APD [58] 1.35x 60.74

EFT 1.04x 64.17

Table 5. Feature distance
maximization ablation
for CIFAR-100/10 with
ResNet-18: CIL and task
prediction (TP) accuracies
after 10 tasks.

Models CIL TP

a8b16 44.4 44.9
a8b16 + LM 45.5 46.1
a4b8 44.0 44.3
a4b8 + LM 45.1 45.7

with EFTs. Notably, with VGG-16 on Tiny-ImageNet-
200/10, we observe a 10.4% absolute gain on the 10-task
sequence. Please refer to the supplementary material
for more details about the model architecture and hy-
perparameter settings.

4.3. Heterogeneous Datasets

While the classes of ImageNet-1K and CIFAR-100
cover a diverse set of categories, tasks drawn solely from
CIFAR-100/10 or ImageNet-1K/10 ultimately share
many similarities: for example, they mostly consist of
natural images, and the total number of classes per
task are the same. It can also be of interest to evaluate
if continual learning methods can adapt to shifts in
domain or label space cardinality. To test this, we
evaluate our method on Street View House Numbers
(SVHN) [35], CIFAR-10, and CIFAR-100, using VGG-
16 [47]. Between SVHN and CIFAR-10, the model
must adapt from digits to animals and vehicles, and
between CIFAR-10 and CIFAR-100, the model must
adapt between a 10-class and a 100-class problem.

Results training on this sequence of tasks are shown
in Table 3, for both directions. Once again, compared to
the baselines, we observe that our approach does a sig-
nificantly better job retaining performance on old tasks
while also maintaining plasticity for learning new ones.
Additionally, previous work [58] has highlighted the po-
tential importance of task-order robustness in continual
learning, which can play a role in model fairness. We
observe that our method has low order sensitivity as
well, with similar accuracies on each dataset regardless
of the order the datasets are learned.

Figure 4. Accuracy after task t, with and without forward
transfer.

Table 6. Computation for CIFAR-100/10 with ResNet-18.

Models Paramater (↑) FLOPs (↑) Accuracy

Base 11.17M 1.11G –
a8b16 11.60M (3.87%) 1.21G (8.78%) 45.5
a4b8 11.39M (1.97%) 1.16G (4.44%) 45.1
a4b0 11.35M (1.59%) 1.15G (3.60%) 44.4
a0b64 11.48M (2.79%) 1.18G (6.36%) 43.2
a0b32 11.33M (1.42%) 1.15G (3.20%) 42.3

4.4. Forward Transfer

Positive forward knowledge transfer is an essential
ability in continual learning systems. Successful trans-
fer leverages previously learned knowledge, reducing
the amount of new data and training time necessary
to learn future tasks. EFTs achieve forward transfer
by initializing the task-specific parameters τt with the
previous task local parameters τt−1. We evaluate the
forward transfer of EFTs by comparing this forward
transfer approach with a random initialization strat-
egy for τt, plotting the performance of the model on
CIFAR-100/10 using ResNet-18 (a8b16) in Figure 4.
Empirically, we observe that initializing τt from τt−1 re-
sults in consistently better performance, verifying that
our approach results in positive forward transfer.

4.5. Expansion and Computation Cost

While expansion-based methods are able to effec-
tively scale to an arbitrary number of tasks, the number
of added parameters needed for each task is an impor-
tant consideration. At worst, the model growth per task
should not exceed the size of the original architecture,
as at that point, it is no more efficient than learning
a set of independent full models and then ensembling.
We compare our parameter-efficient formulation with
other expansion-based methods using the convolutional
architecture of [58], showing both final total parameter
expansion factor and average accuracy at the end of
the CIFAR-100/10 task sequence in Table 4. For these
experiments, we set a = 5 and b to the full channel
depth (20 and 50 for the first and second layers, re-
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Table 7. GAN FIDs evaluated after training on each dataset, sequentially

Cats Birds Churches Towers Final
Task t 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Average

Finetune 29.0 156.9 189.6 182.8 - 21.2 174.5 161.5 - - 11.4 48.0 - - - 12.7 101.2
EWC [18] 29.0 147.3 190.7 186.2 - 65.9 165.4 155.9 - - 38.2 48.2 - - - 33.8 106.1
MeRGAN-RA [55] 29.0 56.4 58.2 61.3 - 50.9 53.7 65.9 - - 23.2 28.3 - - - 15.7 42.8

EFT-a32b16 (+4.8%) 29.0 29.0 29.0 29.0 - 44.1 44.1 44.1 - - 32.3 32.3 - - - 27.2 33.1

spectively). Notably, our proposed method requires
the least amount of expansion by a large margin (only
1.04× more parameters than the base network), while
also achieving the highest overall accuracy.

While the number of parameters is representative of
the amount of memory necessary for the model, mem-
ory is not the only computational consideration; the
number of floating point operations (FLOPs) is also
an important consideration. While the two are often
correlated, they are not necessarily one-to-one: for ex-
ample, convolutional layer weights take up only 10%
of the total parameters in VGG-16, but they represent
90% of the total FLOPs. Thus, we also calculate the
increase in FLOPs resulting from adding EFTs with
various values of {a, b} to a ResNet-18 architecture on
CIFAR-100/10 in Table 6. In terms of wall clock time,
we also observe minimal impact form EFTs. For ex-
ample, inference time per task (1K samples) requires
1.05 and 0.87 seconds for EFTs and the original model
respectively, for task incremental learning (TIL).

4.6. Task Inference Regularization

We proposed max-margin task-specific feature dis-
tribution regularization in Section 2.2 to improve task
prediction. We conduct an ablation study of the loss
term LM to demonstrate its effectiveness. We use 10%
of the training data as a validation set to tune hyper-
parameters, finding λ1 = 0.05 and ∆ = 1 to work well.
Our empirical study (Table 5) shows that the regu-
larization term LM boosts task prediction accuracy.

4.7. Generative Modeling

In addition to the discriminative models shown above,
we also apply our continual learning approach to deep
generative models. As in classification, if a generative
adversarial network (GAN) [9] is trained on a sequence
of different data distributions, it will experience catas-
trophic forgetting [26, 63, 4, 50], tending to forget how
to produce samples from previous distributions. We
train a StackGAN-v2 [64] on a sequence of different
image distributions: cats (ImageNet [6]), birds (CUB-
200 [52]), churches and towers (LSUN [60]).

After completing training on a dataset, we report
Fréchet Inception Distance (FID) [12] to quantify GAN
performance for each previously seen dataset (Table 7).

Figure 5. Generated samples from the cat, bird, church, and
tower distributions after training on each dataset. While
naive finetuning (top) forgets previously seen distributions,
EFT (bottom) effectively retains them.

A finetuning approach commits the entirety of the net-
work to learning each new dataset, without any restric-
tions or regard for previous tasks, and is thus able to
attain very low FID scores on each dataset directly
after training on them. However, as expected, we also
observe that finetuning directly results in severe catas-
trophic forgetting, leading to the generator completely
forgetting previous data distributions (see Figure 5,
top); for the finetune approach, each supercolumn in
Table 7 shows excellent performance for a task when
first trained on, followed by immediate degradation. Ap-
plying the popular regularization approach EWC [18]
does not mitigate this issue; we still see severe forget-
ting. On the other hand, we observe that EFT is able
to effectively learn multiple data distributions sequen-
tially without forgetting (see Figure 5, bottom), beating
MeRGAN-RA [55] in final average FID.

5. Conclusions

We propose Efficient Feature Transforms, balancing
the need for expressivity to model incoming tasks with
parameter efficiency, allowing the model to expand its
knowledge without ballooning its size and computa-
tion. We demonstrate the superiority of EFTs with
a thorough slate of varied experiments, including on
ImageNet-1K and CIFAR-100, demonstrating perfor-
mance gains while also being efficient, without having to
resort to saving data samples for replay. We also demon-
strate the success on complex generative modeling tasks,
demonstrating significant catastrophic forgetting mit-
igation. By demonstrating success and scalability in
challenging settings, we hope to bring continual learning
to more practical applications.
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