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Abstract

Face detection is a fundamental problem for many down-

stream face applications, and there is a rising demand for

faster, more accurate yet support for higher resolution face

detectors. Recent smartphones can record a video in 8K

resolution, but many of the existing face detectors still fail

due to the anchor size and training data. We analyze the

failure cases and observe a large number of correct pre-

dicted boxes with incorrect confidences. To calibrate these

confidences, we propose a confidence ranking network with

a pairwise ranking loss to re-rank the predicted confidences

locally within the same image. Our confidence ranker is

model-agnostic, so we can augment the data by choosing

the pairs from multiple face detectors during the training,

and generalize to a wide range of face detectors during the

testing. On WiderFace, we achieve the highest AP on the

single-scale, and our AP is competitive with the previous

multi-scale methods while being significantly faster. On 8K

resolution, our method solves the GPU memory issue and

allows us to indirectly train on 8K. We collect 8K resolution

test set to show the improvement, and we will release our

test set as a new benchmark for future research.

1. Introduction

Face detection is a long-standing research topic in com-

puter vision. Many important downstream applications

need to build on top of it, including face reconstruction,

face tracking and face recognition, etc. Thanks to Convo-

lution Neural Network, face detection has been improved

significantly in the past few years. However, as the camera

hardware is evolving, the demand for an even faster, more

accurate, and support for higher resolution in face detector

is rising. Recent smartphones (Samsung Galaxy S20 Ultra,

Xiaomi MI 10 Pro) can capture a 108MP image and record

a video in 8K resolution. We believe that 8K resolution will

be practical in the near future, but a lot of existing works

[40, 13, 33, 72] still fail on many 8K resolution inputs.

The main reasons for failure are anchor size and training

data. Most of the anchors are designed for the most pop-

ular face detection dataset, WiderFace [63] which only has

an image width of 1024. The common largest anchor size

is 512 [40, 13, 33, 72], so the detector has to predict up to

7K residuals. While predicting such large residuals is hard,

but possible, the classifier has never seen such large reso-

lution in the training set and it will almost always suppress

all these boxes. Collecting 8K training data is expensive be-

cause a single image could contain hundreds of faces (Fig.

1). Designing a large anchor requires the network to be

deep enough to output multiple scales up to 8K, but BFBox

[39] shows that the average precision (AP) decreases when

the network becomes deeper. While down-sampling the im-

age allows the detector to find a large face, the small face

could be reduced to just 1 pixel (Fig. 1). We also found that

48GB GPU memory is not enough to train RetinaFace [13]

on 8K resolution. As there are many challenges in 8K face

detection, multi-scale [26] is perhaps the most reasonable

workaround by predicting the small faces in 8K, and the

large faces in the smaller resolution, then fuse them together

with box voting [16]. However, this approach still relies on

the correct confidence as the majority of the high confidence

boxes will determine the result. Multi-scale also decreases

the 8K prediction speed (which is already severely slow) to

become much slower than a single-scale.

We analyze the fail cases and found that most of the cor-

rect box locations have already existed because many detec-

tors predict a large number of boxes, but the confidences are

very low. To systematically test these boxes, we replace the

prediction confidence with the intersect-over-union (IoU)

between the predicted box and the closest ground truth box

and call it: oracle confidence. Fig. 2 shows that the oracle

prediction has a consistently high AP on WiderFace valida-

tion set across multiple resolutions, and by testing only on

a single-scale, it can outperform the state-of-the-art [40] by

a large margin (AP Hard: 93.3% vs 98.4%). On our col-

lected FFHQ [30] dataset, AP could even be increased from

16.2% to 96.5%. We saw the possibility of closing the gap

between the predicted and oracle confidence. Since we can

use the oracle confidence as ground truth, we formulate this

confidence refinement problem as supervised learning.

We initially try to learn a regressor that takes an image

and face detector’s output as input to predict the new con-
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Figure 1. (Best viewed electronically) Examples of our 8K test set. The first two images contain both large and small faces. Detecting on

the large resolution will fail the large face due to the small anchor size and the training data. Down-sampling will cause the small faces to

be too small to detect. Last two images contain a large amount of small faces that are expensive to label.

fidence, then pass them into NMS. This, however, does not

improve AP because regressing to the exact floating point

is challenging. The confidences of the boxes around the

face boundary could be only 10−4 different from each other,

and a very small regression error can significantly change

the confidence order, and thus changing the outcome of the

non-maximal suppression (NMS). Since NMS is a greedy

technique that is only affected by the order of the confi-

dence, we propose to relax the problem from regression to

local ordinal ranking where we only need to rank the re-

fined confidences within the same image and we can ignore

the magnitude of the confidence. We use a pairwise ranking

loss to enforce such constraint, and we show that our ranker

learns to preserve the order of confidence and improve AP.

We propose a confidence ranking network by taking the

bounding box and confidence prediction from a face detec-

tor to output new refined confidences. On top of Feature

Pyramid Network (FPN [36]), we add a Box Processing

Network (BPN) to extract features from the face detector’s

output and interpolate them to concatenate with the image

feature, then pass them into our confidence module. Fig.

3 demonstrates our pipeline. We design our network to be

model-agnostic, so in theory, it can be used with any object

detector, as long as the outputs are bounding boxes and their

corresponding confidence values, and we show the gener-

alization on three face detectors including HAMBox [40],

RetinaFace [13], and HRNet [61]. Model-agnostic design

is important for a fair comparison with multi-scale which

is the de facto post-processing for modern face detectors in

order to get high AP, with the cost of slow speed. Since

our network only needs a single-scale to run, we are a few

times faster than those state-of-the-arts [40, 13] with multi-

scale, while still retain a competitive AP on WiderFace. On

a single-scale, our method is the new state-of-the-art. Fur-

thermore, our method allows us to solve the GPU memory

issue and indirectly train on 8K (it would otherwise not be

possible even with 48GB GPU memory) by backpropagat-

ing up until the 8K prediction from the face detector. We

then collect 8K test set to demonstrate the effectiveness of

our method and set up a new benchmark for future camera

hardware. To summarize, our main contributions are:

1. We propose to refine confidence in a local relative set-

ting with our ranking loss, in contrast to existing works

that regress to the absolute value in a global manner,

inspired by the failure case analysis on WiderFace val-

idation set and our collected FFHQ dataset.

2. We propose a confidence ranking network to achieve

the new state-of-the-art on the single-scale face detec-

tor. Our AP is competitive with the previous multi-

scale state-of-the-art [40] while remaining a few times

faster. Our network is model-agnostic and we show the

generalization on HAMBox [40], RetinaFace [13], and

HRNet [61] respectively.

3. Our method solves the GPU memory issue and allows

us to indirectly train on 8K resolution to further in-

crease AP. We collect 8K resolution test set to show

the improvement, and we will release our test sets as a

new benchmark for future camera hardware.

2. Related Work

Object Detection has been advanced significantly by deep

learning and there are many types of deep learning based

detectors. Two-stage detectors [18, 17, 53, 21, 5, 12]

generate region proposals in the first stage, then refine them

in the second stage. One-stage detectors [51, 52, 38, 37, 71]

remove the first stage and run directly on the predefined

anchors. Anchor-free detectors [31, 32, 59, 65, 74, 75]

remove anchor to reduce design parameters. Although each

type is different, we design our network to only use the box

and confidence from the input detector, so in theory, our

work is compatible with these wide ranges of detectors.

Face Detection is a special case of object detection and

they can leverage each other. On top of a generic object

detector, past works propose to change the anchor matching

[72, 9, 43, 76, 33, 40] or change the anchor sampling [46] to

detect small faces, add context module [26, 57, 35] to learn

contextual features, add face alignment task [69, 8, 13] to

leverage different dataset, search for face-specific backbone

[39] to increase network capacity, or train progressively

[77] to handle multi-scale. While training strategies are
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Figure 2. AP of predicted vs oracle box from HRNet [61, 55] face detector. We resize the image height of WiderFace validation set (left

figure) to multiple resolutions (x-axis), test on the single-scale, and observe a large consistent gap across all resolutions. We double verify

the gap in a more controlled test set by labeling 1,875 images from FFHQ dataset (right figure). We tested on resized face resolution and

the conclusion remains the same. This shows that most of the corrected boxes are already predicted, but the confidences are incorrect.

varied, recent face detectors focus on the one-stage design

[72, 45, 8, 13, 77, 57, 35, 40] due to the benefit of dense

anchor sampling and scale variation from feature pyramid.

Our network is inspired by these works and we add extra

layers to process the box and output the new confidence.

Many state-of-the-arts [13, 77, 40] consistently see im-

provement when applying multi-scale [26]. We found

that the detector can predict most of the corrected box,

but the confidences are incorrect, so we propose to speed

up by refining the confidence and only run on a single-scale.

Detection Refinement is commonly used in object detec-

tion [71, 6, 44, 19, 1, 54]. The idea is to detect the object

multiple times to refine the prediction. In face detection,

previous works [15, 42, 69, 41] propose to iteratively

regress the box, or use cascade networks [48, 50, 49, 66]

to refine the prediction. Our approach is a form of refine-

ment where we propose a second network to only refine

the confidence with extra supervision from the oracle

confidence. While IoU-Net [28] has proposed the oracle

confidence for object detection before, we are the first to

introduce the oracle confidence to face detection through

the observation from Fig. 2. For face detection, confidence

is the bottleneck for the prediction error, so we can bypass

the box refinement step in IoU-Net, which is a heavy

optimization process. We also show the importance of

changing from Smooth L1 loss in IoU-Net to our ranking

loss. Lastly, our design is model-agnostic, in contrast to

IoU-Net’s dependency on the PrRoiPooling [28] layer.

Ranking Loss is a well-studied loss function, especially in

information retrieval, and is grouped into Pointwise ([34,

11, 23], Pairwise ([3, 2, 4]), and Listwise ([7, 62, 60]). In

this paper, we show the issue with the existing regression

losses, and with such a simple pairwise ranking loss, we

were able to achieve significant improvement.

3. Methodology

We built our baseline by re-implementing HAMBox

[40], and to simplify the baseline, we do not use Pyramid

Anchor [57], Deep Head [37], or regression-aware focal

loss [40]. We instead change the backbone of HAMBox

from ResNet-50 [22] to HRNet-W48 [61, 55] to further

close the AP gap. With the new baseline, we analyze the

failure case, propose a ranking loss, and design a model-

agnostic confidence ranking network to further improve AP.

3.1. Oracle Confidence

We first look at the failure cases from our baseline, and

we found multiple reasons such as occlusion, small face,

large pose, etc. While we could tackle one failure case at a

time, we found a common behavior that the correct bound-

ing boxes are predicted, but the predicted confidences are

incorrect. Out of the 4,062 false negative faces on Wider-

Face validation set, only 531 faces can not be predicted by

the detector. If we can correct these confidences, 87% of

the false negatives will be fixed, and all of the false posi-

tives will be suppressed by setting their confidences to zero.

To achieve better confidences, we first consider optimiz-

ing new confidences based on the predicted box as the in-

put, and AP as the cost function. This optimization is too

heavy as our baseline detector can predict >5k boxes and

we need to rerun NMS and recompute AP on every iter-

ation. By definition, the new confidence should be a dis-

tance metric between the predicted and ground truth box,

so although not the most optimal solution, we replace the

predicted confidence with the IoU between a predicted box

and the closest ground truth box, and call it: oracle con-

fidence. We tested our oracle prediction across multiple

scales of WiderFace validation set and we see AP>99% on

the Easy and Medium set. On Hard set, if we resize the res-

olution down to 784 (almost half), we start to see the AP

drop to 97.7% because some of the faces are being resized

to <5 pixels (could be 1 pixel). The missing boxes are the

limitation of our method, but there is no alternative solu-

tion that can detect a 1-pixel face. By testing on WiderFace,

one could argue that the challenging image condition causes

the confidence prediction to be less accurate, and the oracle

prediction improvement came from using the ground truth
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Figure 3. An overview of our pipeline. We use FPN with 3 scales to extract features from the image. We pass the face detector’s output into

our Box Processing Network (BPN, denoted in green) and interpolate BPN’s feature dimension to concatenate with the image features. Our

confidence module applies global average pooling and fully-connected layer to the features from each scale, then averages them to output

the refined confidence (c′). The final prediction is the bounding box from the face detector and the new confidence from our network.

to overcome these issues. Therefore, we labeled 1,875 im-

ages from FFHQ, which only has high quality, single face

with minimal background, to double verify our oracle con-

fidence. Fig. 2 shows the AP comparisons.

3.2. Ranking Loss

After obtaining the oracle confidence, we can train to re-

fine confidence in a supervised learning fashion. We first

formulate the problem as regression and test multiple loss

functions. While the regressor is powerful enough to move

the new confidence towards the oracle confidence distribu-

tion, it is not accurate enough to preserve the order, espe-

cially for boxes around the face. This is due to the small

IoU difference between them and it results in a very small

loss. To relax this problem, we observe a few priors from

NMS. First, the confidence magnitude does not change the

NMS output, as long as the order remains the same within

an image. Second, the order across different images does

not change the outcome of NMS, which means these confi-

dences do not have to be globally ranked across the entire

dataset. We just need to focus on the order of the confi-

dence within the same image, so we propose to use a pair-

wise ranking loss. We first define the relationship between

the ground truth pair as a binary classification problem.

Y (cgt,1, cgt,2) =

{

0 if cgt,1 > cgt,2

1 if cgt,1 <= cgt,2
(1)

where cgt is the oracle confidence or the IoU between the

predicted and ground truth box. Y is the class label from

a pair of oracle confidences. We then subtract a pair of

predicted confidences to obtain a linear difference between

them and pass it into a Sigmoid cross entropy loss.

L(c′, cgt) = −(c′
1
− c′

2
) ∗ log(Y (cgt,1, cgt,2))

− (1− (c′
1
− c′

2
)) ∗ log(1− Y (cgt,1, cgt,2)) (2)

where c′
1

and c′
2

are the predicted confidence pair. We con-

sider using the margin rescaling technique [29, 58] and this

loss can push the confidences away from each other (Fig.

4), but the AP is about the same as our simpler ranking loss.

We select the pair by sorting the predicted confidences in

descending order and pick the neighbor pair. This pair se-

lecting strategy exposes the pair that the detector struggles

with the most, but we also would like to include an easy

pair as well, not just the pair with a subtle difference. We

add n-pair to the original neighbor pair by skipping n con-

fidences and divide the loss by n, for example, 2-pairs are

the neighbor pair and the odd and even pair. We observe

that the number of pairs can affect AP. Fig. 4 shows the

comparison of the confidence distributions from each loss.

3.3. Model­Agnostic Design

We consider multiple types of inputs for our confidence

ranking network. Our design principle is to make our net-

work be compatible with as many face detectors as possible

so that we can increase the number of training data by com-

bining the predictions from all these detectors. Our model-

agnostic design can be viewed as a plug-in module for an

existing face detector. In this paper, we use this refinement

to tackle the 8K resolution input, but the same idea can also

be applied for other scenarios, and since we do not change

the predicted box, we are preserving the original face de-

tector’s behavior as much as possible. This could be a good

design for a personalized face detector where we can train

a specialized confidence refinement module for each sce-

nario, but it is out of scope for this paper.

To simplify the design, we take the predicted box and

confidence from a face detector as an Nx5 matrix and feed

them together with an image into our network. It is possible

to further simplify by only refining the confidence without

the image input, but this is overfitting to a specific detec-

tor. We do not take the feature from the detector’s backbone

due to the design complication. Choosing the feature is not
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Figure 4. Confidence distribution visualization for each loss func-

tion. Smooth L1 loss has the closest distribution to the oracle

(ground truth), but the order is not preserved. Ranking loss does

not respect the confidence magnitude, but performs better at pre-

serving the order. Margin rescaling technique [29, 58] can push the

distribution further but does not change the order much. Selecting

the number of pairs (10 pairs) can also change the order.

trivial because of the diversity of network architectures, for

example, there are multiple feature scales to be chosen from

HRNet, or a large expand layer in MobileNet V3 [24] or

EfficientDet [56] will subsequently increase the refine net-

work size due to the large number of channels in the input.

We would like our design to be easily plugged into as many

detectors as possible.

Our design avoids the insufficient GPU memory issue in

order to train on 8K resolution images. We attempt to re-

size WiderFace training set to 8K resolution, and train Reti-

naFace [13] on Nvidia Quadro 8000 (48GB memory), but

this is still not enough for 8K images. Forwarding an 8K

image, on the other hand, does not require as much mem-

ory, and it is much faster. We forward all the 8K images

to obtain 8K boxes and their confidences, then use them

to train our confidence ranking network with the original

WiderFace resolution. This allows our network to indirectly

learn from the 8K images through the 8K prediction of the

face detector, and we do not back-propagate to the face de-

tector, so we do not require the large GPU memory.

3.4. Confidence Ranking Network

Confidence refinement problem is a sub-task of the de-

tection problem where the region proposal is fixed, and the

network learns to predict new confidences. We follow a

popular detector design, feature pyramid network (FPN), to

inherit the scale variation feature. We then add a box pro-

cessing network (BPN) by expanding the channel size to 64

(expand Nx5 to 64xNx5) and pass the box feature through

multiple convolutions and leaky ReLU layers. We use the

convolution with 5x3 kernel to guarantee enough field of

view to cover the face detector output (5 numbers: x, y,

w, h, confidence). We add paddings to keep the 64xNx5

dimension throughout BPN and we add skip connections

between them to preserve the original face detector infor-

mation. We only interpolate these features with the nearest

neighbor before concatenating with the image feature from

Figure 5. Face height distribution of our 8K resolution test set.

The X-axis denotes the size range, for example, 40 is the face with

20 < height <= 40. We cover a wide range of face resolution and

has a good balance of the number of faces in each resolution bin.

FPN. The concatenated features are then passed into the re-

maining FPN layers, and we modify SSH [45] from a de-

tection module to a confidence module. We first use global

average pooling to force the feature dimension to 256 then

apply fully connected layers to change the output dimen-

sion to the number of confidence from the face detector. We

then average all the features across all the scales from FPN

to obtain the confidence residual and we sum it back with

the predicted confidence from the face detector. We found

that learning the new confidence directly (without using the

residual) is possible, but the training is less stable, and it

takes longer to train. The newly refined confidences are

then passed into the ranking loss in Eq.2 during the train-

ing. During the testing, we pass the refined confidences and

the boxes from the face detector into NMS to obtain the re-

sult. Fig. 3 demonstrates our pipeline.

4. Experimental Setup

4.1. Datasets

We train our network on WiderFace [63] training set and

test on WiderFace validation set. WiderFace has 32,203

images with an image width of 1024. This dataset fo-

cuses on small faces, where half of all faces are <=50 pix-

els, and there are 393,703 labeled faces (on average: >10

faces/image). We collect our 8K resolution test set from

Div8K [20] and YouTube. We remove the duplicate frames

by computing image similarity with the threshold greater

50%, which ends up with 1,428 images and they cover the

full spectrum of face heights from 9 pixels to 4,130 pixels.

Fig. 1 shows example images, and Fig. 5 shows the face

size distribution of our 8K resolution test set.

4.2. Training Configurations

Our network is implemented in PyTorch [47] and trained

using Adam optimizer with batch size 32 for 100K itera-

tions. The initial learning rate is 10−3 and it decays ex-

ponentially until 10−6. Training takes about a day on an
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Loss
AP (%)

Easy Med Hard

Baseline 95.8 95.2 91.5

Cross Entropy 95.0 94.0 89.7

L1 95.1 94.4 90.0

L2 95.1 94.3 90.4

Smooth L1 95.2 94.5 90.7

Rank 96.9 96.2 92.7
Table 1. Ablation study on each loss function. The baseline is

HRNet on a single-scale. Regression losses are worse than the

baseline, but our ranking loss can improve AP Hard by +1.2%.

Pair
AP (%)

Easy Med Hard

Baseline 95.8 95.2 91.5

1 96.7 95.8 91.9

2 96.8 95.9 92.2

3 96.7 95.9 92.1

5 96.8 96.0 92.3

10 96.9 96.2 92.7

20 96.8 96.0 92.4

50 96.8 95.9 92.1

100 96.7 95.8 91.9
Table 2. Ablation study on the number of pairs for pairwise rank-

ing loss. A single pair only includes hard pairs, and 100-pairs

focuses on easy pairs. Ten pairs yield the best trade-off.

Nvidia RTX 2080. For data augmentation, we randomly

crop, scale, mirror, and change brightness, contrast, hue,

and saturation. When we transform the image, we use the

same transformation on the predicted box from the face

detector directly, without rerunning the augmented image.

This is not perfectly accurate, but it is very close and much

faster. We normalize the predicted box by the image width

and height to keep the input range between 0 to 1. We also

clip the refined confidence (c′) to be within 0 to 1 to keep

the same output range as the standard confidence probabil-

ity. We use 5K face detection outputs (N=5000). We sort

the boxes descendingly by face detector’s confidences and

remove the boxes if the number exceeds 5K, or we fill the

matrix with 0 if there are less than 5K boxes. We combine

face detector outputs from RetinaFace, HAMBox, and HR-

Net, then randomly pick the output from a single face de-

tector on each iteration. The same confidence ranker with

NMS (IOU 0.4) is used across all detectors during testing.

4.3. Network Architecture

We follow FPN design to extract the image feature with

ResNet-50 backbone. BPN consists of 9 convolutions with

64 channels and kernel size 3x5 with padding 1x2 to pre-

serve the same Nx5 dimensions throughout the entire net-

work. We add skip connections on every layer except the

first layer. Every 3 layers, we interpolate BPN’s features

Model Scale
AP (%) Speed

Easy Med Hard (ms)

RetinaFace

single 95.2 94.5 84.3 52

multi 96.4 95.5 90.3 1048

rank 96.1 95.3 88.7 107

HAMBox

single 95.1 94.2 89.1 70

multi 96.2 95.3 90.9 1383

rank 96.1 95.4 91.7 126

HRNet (ours)

single 95.8 95.2 91.5 91

multi 96.9 96.1 92.1 1886

rank 96.9 96.2 92.7 149
Table 3. Results on WiderFace validation set. Our confidence

ranker (rank) improves AP on top of the single-scale (single)

across all backbones. On HRNet, confidence ranker’s AP Hard

outperforms multi-scale (multi) by +0.6%, and runs 12.7x faster.

Model Scale AP (%)
Speed

(ms)

RetinaFace

single 24.1 428

multi 38.8 1579

rank 40.7 988

HAMBox

single 21.8 495

multi 34.9 1875

rank 37.3 1060

HRNet (ours)

single 22.5 705

multi 34.8 2690

rank 37.0 1261

rank 8k 42.5 1263
Table 4. Results on 8K test set. Our confidence ranker (rank) on the

single-scale (scale) outperforms multi-scale (multi) on all back-

bones, and runs 1.7-2.1x faster. Training confidence ranker on 8K

face detection outputs further increases AP by +5.5%.

into the image feature dimension and concatenate with the

intermediate features from the backbone. The concatenated

features are then passed into FPN layers which is a 3x3 con-

volution with 256 channels and perform the merge on each

scale. Each of the FPN features is then passed into a 3x3

convolution with 256 channels, global average pooling, and

fully-connected layers (FC) to change into 5000 numbers.

FC outputs are then summed up with the face detector’s

confidence (c) to output the refined confidence (c′).

5. Results

5.1. Ablation Studies

Importance of Ranking Loss. We attempt to compare our

method with existing detection refinement works, but it is

unclear how to change their designs to be model-agnostic,

for example, MS R-CNN [27] relies on mask head output

and RoiAlign features, IoU-Net [28] relies on PrRoiPooling

features. All these layers do not exist in most face detectors

and ignoring these layers will break the refinement because
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the refiner was trained for these specific features. Loss

functions, on the other hand, can be swapped to compare

fairly. We use HRNet as the baseline to study the loss

functions, and test the AP on WiderFace validation set. Tab.

1 shows a significant improvement between the ranking

loss and all of the other commonly used losses (Cross

Entropy is used in [41, 42, 49, 50, 48, 69], L2 [27], Smooth

L1 [28]). The improvement is because the regression losses

focus on bringing the confidence magnitude towards the

oracle confidence, but the small regression error can easily

change the confidence order (as observed in Fig. 4).

Importance of Pair Selection. We then tested the number

of pairs for our pairwise ranking loss. Since it is too compu-

tationally intensive to use all pairs (5K boxes = 12M pairs),

we select the pair by sorting the prediction confidence from

the face detector and use the neighbor pair. Tab. 2 shows

that when the number of pairs is too small, our network will

only focus on the hard pairs. On the other hand, when the

number of pairs is too large, the network will only focus

on the easy pairs. Empirically, using 10 pairs yields a good

trade-off between the hard and easy pairs, and thus achiev-

ing the highest AP. We use 10 pairs throughout the paper.

We show performance curves in the supplementary.

5.2. Internal Comparison

We show the comparisons of a single-scale, multi-scale,

and our confidence ranker on the single-scale on WiderFace

validation set. For single-scale testing, we use the image

as-is without any resizing (image width is 1024). For multi-

scale testing, we follow RetinaFace [13] by resizing the

short edge of the image to [500, 800, 1100, 1400, 1700],

as well as flipping the image on each scale, then fuse them

together with box voting [16] with an IoU threshold of 0.4.

Tab. 3 shows that on HRNet, our ranking network, de-

spite running on a single-scale, outperforms the AP hard

of the multi-scale prediction, and achieves 12.7x speed up.

We show the generalization on the open-source RetinaFace

[14] and our re-implement HAMBox [40] in Tab. 3. On

RetinaFace, the confidence ranker increases AP Hard on the

single-scale by 4.4%, and it is 9.8x faster than multi-scale.

On HAMBox, the confidence ranker allows the single-scale

to outperform multi-scale on AP hard by 0.8%, along with

11x speed up. Performance curves are in Fig. 6.

5.3. External Comparison

We externally compare our method on WiderFace vali-

dation set. Tab. 5 shows that we outperform RetinaFace’s

AP Hard by 0.5%, and we can estimate HAMBox’s AP.

We demonstrate in sec.5.2 that our method is compatible

with HAMBox, but the AP Hard of our re-implementation

is 2.4% behind HAMBox, so our final model is 0.6% lower.

We show the performance curves for external comparisons

Model
AP (%) Multi-

Easy Med Hard scale

S3FD [72] 92.8 91.3 84.0 Yes

SSH [45] 92.7 91.5 84.4 No

PyramidBox [57] 95.6 94.6 88.7 Yes

FA-RPN [46] 95.0 94.2 88.9 Yes

DSFD [33] 96.0 95.3 90.0 Yes

SRN [10] 96.4 95.3 90.2 Yes

VIM-FD* [73] 96.7 95.7 90.7 -

PyramidBox++* [35] 96.5 95.9 91.2 Yes

MaskFace* [64] 97.2 96.5 91.5 Yes

BFBox [39] 96.5 95.7 91.7 -

AInnoFace* [68] 97.0 96.1 91.8 Yes

ProgressFace [77] 96.8 96.2 91.8 Yes

RefineFace [70] 97.1 96.2 91.8 Yes

ASFD* [67] 97.2 96.2 92.0 Yes

RetinaFace [13] 96.9 96.3 92.2 Yes

HAMBox [40] 97.0 96.4 93.3 Yes

Ours 96.9 96.2 92.7 No
Table 5. External comparison on WiderFace validation set. Works

with * are not formally published. Our method is competitive with

multi-scale, and achieve the highest AP on single-scale.

in Fig. 7. Most of the previous works adopt multi-scale

which is significantly slower than the single-scale. Reti-

naFace reported the unofficial single-scale AP [14] as Easy:

96.5%, Medium: 95.6%, Hard: 90.4%. We outperform

RetinaFace by Easy: +0.4%, Medium: +0.6%, Hard:+2.3%,

and achieve the highest AP on the single-scale.

5.4. 8K Resolution

We study the impact of single-scale, multi-scale, and our

method on 8K resolution test set. For multi-scale, we fol-

low RetinaFace by down-sampling the smallest scale to ap-

proximately half of the original image dimension. We omit

the up-sampling scales because the 48GB GPU memory is

not enough to run them. We resize the long edge to [7680,

5760, 4096] and flip the image on each scale, then fuse

them together with box voting. Tab. 4 shows that our confi-

dence ranker on the single-scale outperforms the multi-scale

on all three detectors. The AP improvements are +1.9%,

+2.4%, +2.2%, and the speedups are 1.7x, 1.8x, 2.1x for

RetinaFace, HAMBox and HRNet respectively. This shows

the generalization of our method. By resizing the Wider-

Face training set to 8K resolution and feed them into all

three detectors, we can train our confidence ranker on 8K

face detector outputs (which is not possible to train on the

face detector directly due to GPU memory limitation). Our

confidence ranker, trained on WiderFace in 8K resolution,

can further increase AP on HRNet by 5.5% and the speed

remains unchanged. We show the visual comparison in Fig.

8 and the performance curve in the supplementary.
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Figure 6. Performance curves for internal comparison. We plot the single-scale, multi-scale (multi), and our confidence ranker (rank) across

multiple face detectors on WiderFace validation set. HRNet with confidence ranker achieves the highest AP across all settings.

Figure 7. Performance curves for external comparison on WiderFace validation set. All of the top 5 detectors (except ours) across all

settings use multi-scale. We can approximate multi-scale results with our confidence ranker on a single-scale.

Figure 8. (Best viewed electronically) Prediction examples on 8K test set. We show the predictions from HRNet with confidences >0.5

on the single-scale (left), multi-scale (mid), and confidence ranker trained on 8K (right). Single-scale misses multiple large faces, and

multi-scale is more prone to false positives. Our confidence ranker can mitigate both failure cases.

5.5. Computational Complexity

Our confidence ranker is 128MB and the speed on an

Nvidia RTX 2080, is 45ms/frame and 550ms/frame for

1024 and 8K respectively. Our confidence ranker is in this

size because face detectors are the bottleneck where HR-

Net and HAMBox run at 81ms/frame and 65ms/frame on

1024. To achieve a smaller footprint, we change the back-

bone from ResNet-50 to MobileNet v1 [25] and reduce the

channel size of the confidence module from 256 to 64 (this

will reduce the FC layer from 256=>5000 to 64=>5000).

Our small model is 8MB and it achieves AP Easy: 96.6%,

Medium: 95.7%, Hard: 91.7% on WiderFace validation set

with 6ms/frame on a 1024 and 59ms/frame on 8K.

6. Conclusion and Future Works

We propose a confidence ranking network with a pair-

wise ranking loss to re-rank the incorrect confidences. On

WiderFace, we achieve the highest AP on the single-scale,

and we can approximate the AP of the previous multi-scale

methods with a few times speed up. Our confidence ranker

is model-agnostic and supports training indirectly on 8K

resolution. For future work, it is possible to combine rank-

ing loss with other techniques, such as adversarial loss, for

improving challenging cases such as blurry, underexposed,

and heavily occluded faces. In theory, our approach can

also be applied for generic object detection and instance

segmentation. We leave them as future explorations.

81681



References

[1] Vijay Aroulanandam, Thamarai Latchoumi, Battula Bhavya,

and Shaik Sultana. Object detection in convolution neural

networks using iterative refinements. Revue d'Intelligence

Artificielle, 33(5):367–372, Nov. 2019. 3

[2] Christopher Burges, Robert Ragno, and Quoc Le. Learning

to rank with nonsmooth cost functions. In B. Schölkopf, J.

Platt, and T. Hoffman, editors, Advances in Neural Informa-

tion Processing Systems, volume 19. MIT Press, 2007. 3

[3] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt

Deeds, Nicole Hamilton, and Greg Hullender. Learning to

rank using gradient descent. In Proceedings of the 22nd

international conference on Machine learning, ICML ’05,

pages 89–96, New York, NY, USA, 2005. ACM. 3

[4] Christopher J. C. Burges. From RankNet to LambdaRank

to LambdaMART: An overview. Technical report, Microsoft

Research, 2010. 3

[5] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. computer vision and

pattern recognition, 2018. 2

[6] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018. 3

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang

Li. Learning to rank: from pairwise approach to listwise

approach. In ICML, pages 129–136, 2007. 3

[8] Bindita Chaudhuri, Noranart Vesdapunt, and Baoyuan Wang.

Joint face detection and facial motion retargeting for multiple

faces. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2019. 2,

3

[9] Cheng Chi, Shifeng Zhang, Junliang Xing, Zhen Lei, Stan Z.

Li, and Xudong Zou. Selective refinement network for high

performance face detection. Proceedings of the AAAI Con-

ference on Artificial Intelligence, 33:8231–8238, July 2019.

2

[10] Cheng Chi, Shifeng Zhang, Junliang Xing, Zhen Lei, Stan Z

Li, and Xudong Zou. Selective refinement network for high

performance face detection. In AAAI, volume 33, pages

8231–8238, 2019. 7

[11] Koby Crammer and Yoram Singer. Pranking with ranking.

In Advances in Neural Information Processing Systems 14,

pages 641–647. MIT Press, 2001. 3

[12] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. In

D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,

editors, Advances in Neural Information Processing Systems,

volume 29, pages 379–387. Curran Associates, Inc., 2016. 2

[13] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kot-

sia, and Stefanos Zafeiriou. Retinaface: Single-shot multi-

level face localisation in the wild. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 1, 2, 3, 5, 7

[14] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kot-

sia, and Stefanos Zafeiriou. Retinaface: Single-shot multi-

level face localisation in the wild. https://github.

com/deepinsight/insightface/tree/master/

detection/RetinaFace, 2020. 7

[15] Zhen-Hua Feng, Josef Kittler, Muhammad Awais, Patrik Hu-

ber, and Xiao-Jun Wu. Face detection, bounding box aggre-

gation and pose estimation for robust facial landmark local-

isation in the wild. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) Work-

shops, July 2017. 3

[16] Spyros Gidaris and Nikos Komodakis. Object detection via

a multi-region and semantic segmentation-aware cnn model.

In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), December 2015. 1, 7

[17] Ross Girshick. Fast r-cnn. In ICCV, pages 1440–1448, 2015.

2

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In 2014 IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 580–587, 2014. 2

[19] Jicheng Gong, Z. Zhao, and Nic Li. Improving multi-stage

object detection via iterative proposal refinement. In BMVC,

2019. 3

[20] S. Gu, A. Lugmayr, M. Danelljan, M. Fritsche, J. Lamour,

and R. Timofte. Div8k: Diverse 8k resolution image dataset.

In 2019 IEEE/CVF International Conference on Computer

Vision Workshop (ICCVW), pages 3512–3516, 2019. 5

[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In 2017 IEEE International Conference on Computer Vision

(ICCV), pages 2980–2988, 2017. 2

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages

770–778. IEEE Computer Society, 2016. 3

[23] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large

margin rank boundaries for ordinal regression. In P. J.

Bartlett, B. Schölkopf, D. Schuurmans, and A. J. Smola, ed-

itors, Advances in Large Margin Classifiers, pages 115–132.

MIT Press, 2000. 3

[24] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. CoRR, abs/1905.02244,

2019. 5

[25] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications, 2017.

8

[26] Peiyun Hu and Deva Ramanan. Finding tiny faces. In CVPR,

pages 951–959, 2017. 1, 2, 3

[27] Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang

Huang, and Xinggang Wang. Mask Scoring R-CNN. In

CVPR, 2019. 6, 7

[28] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yun-

ing Jiang. Acquisition of localization confidence for accurate

object detection. In Proceedings of the European Conference

on Computer Vision (ECCV), September 2018. 3, 6, 7

91682

https://github.com/deepinsight/insightface/tree/master/detection/RetinaFace
https://github.com/deepinsight/insightface/tree/master/detection/RetinaFace
https://github.com/deepinsight/insightface/tree/master/detection/RetinaFace


[29] Thorsten Joachims, Thomas Hofmann, Yisong Yue, and

Chun-Nam Yu. Predicting structured objects with support

vector machines. Commun. ACM, 52(11):97–104, Nov.

2009. 4, 5

[30] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019. 1

[31] Tao Kong, Fuchun Sun, Huaping Liu, Yuning Jiang, Lei Li,

and Jianbo Shi. Foveabox: Beyond anchor-based object de-

tector. IEEE Transactions on Image Processing, pages 7389–

7398, 2020. 2

[32] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), September 2018. 2

[33] Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun

Qian, Jian Yang, Chengjie Wang, Jilin Li, and Feiyue Huang.

Dsfd: dual shot face detector. In CVPR, pages 5060–5069,

2019. 1, 2, 7

[34] Ping Li, Christopher J. C. Burges, and Qiang Wu. Mcrank:

Learning to rank using multiple classification and gradient

boosting. In John C. Platt, Daphne Koller, Yoram Singer,

and Sam T. Roweis, editors, NIPS, pages 897–904. Curran

Associates, Inc., 2007. 3

[35] Zhihang Li, Xu Tang, Junyu Han, Jingtuo Liu, and Ran He.

Pyramidbox++: High performance detector for finding tiny

face. arXiv preprint arXiv:1904.00386, 2019. 2, 3, 7

[36] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), July 2017. 2

[37] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

pages 2980–2988, 2017. 2, 3

[38] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In ECCV, pages

21–37. Springer, 2016. 2

[39] Yang Liu and Xu Tang. Bfbox: Searching face-appropriate

backbone and feature pyramid network for face detector. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), June 2020. 1, 2, 7

[40] Yang Liu, Xu Tang, Junyu Han, Jingtuo Liu, Dinger Rui, and

Xiang Wu. Hambox: Delving into mining high-quality an-

chors on face detection. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020. 1, 2, 3, 7

[41] Dazhi Luo, Guihua Wen, Danyang Li, Yang Hu, and Eryang

Huan. Deep-learning-based face detection using iterative

bounding-box regression. Multimedia Tools and Applica-

tions, 77(19):24663–24680, Feb. 2018. 3, 7

[42] Jingdong Ma and Yupin Luo. Iterative face detection from

the global to local. pages 320–331, 11 2019. 3, 7

[43] Xiang Ming, Fangyun Wei, Ting Zhang, Dong Chen, and

Fang Wen. Group sampling for scale invariant face detection.

In CVPR, pages 3446–3456, 2019. 2

[44] Mahyar Najibi, Mohammad Rastegari, and Larry S. Davis.

G-cnn: An iterative grid based object detector. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016. 3

[45] Mahyar Najibi, Pouya Samangouei, Rama Chellappa, and

Larry S Davis. Ssh: Single stage headless face detector. In

ICCV, pages 4875–4884, 2017. 3, 5, 7

[46] Mahyar Najibi, Bharat Singh, and Larry S. Davis. Fa-rpn:

Floating region proposals for face detection. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2019. 2, 7

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-

perative style, high-performance deep learning library. In H.

Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
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