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Abstract

Face detection is a fundamental problem for many down-

stream face applications, and there is a rising demand for

faster, more accurate yet support for higher resolution face

detectors. Recent smartphones can record a video in 8K

resolution, but many of the existing face detectors still fail

due to the anchor size and training data. We analyze the

failure cases and observe a large number of correct pre-

dicted boxes with incorrect confidences. To calibrate these

confidences, we propose a confidence ranking network with

a pairwise ranking loss to re-rank the predicted confidences

locally within the same image. Our confidence ranker is

model-agnostic, so we can augment the data by choosing

the pairs from multiple face detectors during the training,

and generalize to a wide range of face detectors during the

testing. On WiderFace, we achieve the highest AP on the

single-scale, and our AP is competitive with the previous

multi-scale methods while being significantly faster. On 8K

resolution, our method solves the GPU memory issue and

allows us to indirectly train on 8K. We collect 8K resolution

test set to show the improvement, and we will release our

test set as a new benchmark for future research.

1. Introduction

Face detection is a long-standing research topic in com-

puter vision. Many important downstream applications

need to build on top of it, including face reconstruction,

face tracking and face recognition, etc. Thanks to Convo-

lution Neural Network, face detection has been improved

significantly in the past few years. However, as the camera

hardware is evolving, the demand for an even faster, more

accurate, and support for higher resolution in face detector

is rising. Recent smartphones (Samsung Galaxy S20 Ultra,

Xiaomi MI 10 Pro) can capture a 108MP image and record

a video in 8K resolution. We believe that 8K resolution will

be practical in the near future, but a lot of existing works

[40, 13, 33, 72] still fail on many 8K resolution inputs.

The main reasons for failure are anchor size and training

data. Most of the anchors are designed for the most pop-

ular face detection dataset, WiderFace [63] which only has

an image width of 1024. The common largest anchor size

is 512 [40, 13, 33, 72], so the detector has to predict up to

7K residuals. While predicting such large residuals is hard,

but possible, the classifier has never seen such large reso-

lution in the training set and it will almost always suppress

all these boxes. Collecting 8K training data is expensive be-

cause a single image could contain hundreds of faces (Fig.

1). Designing a large anchor requires the network to be

deep enough to output multiple scales up to 8K, but BFBox

[39] shows that the average precision (AP) decreases when

the network becomes deeper. While down-sampling the im-

age allows the detector to find a large face, the small face

could be reduced to just 1 pixel (Fig. 1). We also found that

48GB GPU memory is not enough to train RetinaFace [13]

on 8K resolution. As there are many challenges in 8K face

detection, multi-scale [26] is perhaps the most reasonable

workaround by predicting the small faces in 8K, and the

large faces in the smaller resolution, then fuse them together

with box voting [16]. However, this approach still relies on

the correct confidence as the majority of the high confidence

boxes will determine the result. Multi-scale also decreases

the 8K prediction speed (which is already severely slow) to

become much slower than a single-scale.

We analyze the fail cases and found that most of the cor-

rect box locations have already existed because many detec-

tors predict a large number of boxes, but the confidences are

very low. To systematically test these boxes, we replace the

prediction confidence with the intersect-over-union (IoU)

between the predicted box and the closest ground truth box

and call it: oracle confidence. Fig. 2 shows that the oracle

prediction has a consistently high AP on WiderFace valida-

tion set across multiple resolutions, and by testing only on

a single-scale, it can outperform the state-of-the-art [40] by

a large margin (AP Hard: 93.3% vs 98.4%). On our col-

lected FFHQ [30] dataset, AP could even be increased from

16.2% to 96.5%. We saw the possibility of closing the gap

between the predicted and oracle confidence. Since we can

use the oracle confidence as ground truth, we formulate this

confidence refinement problem as supervised learning.

We initially try to learn a regressor that takes an image

and face detector’s output as input to predict the new con-
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Figure 1. (Best viewed electronically) Examples of our 8K test set. The first two images contain both large and small faces. Detecting on

the large resolution will fail the large face due to the small anchor size and the training data. Down-sampling will cause the small faces to

be too small to detect. Last two images contain a large amount of small faces that are expensive to label.

fidence, then pass them into NMS. This, however, does not

improve AP because regressing to the exact floating point

is challenging. The confidences of the boxes around the

face boundary could be only 10� 4 different from each other,

and a very small regression error can significantly change

the confidence order, and thus changing the outcome of the

non-maximal suppression (NMS). Since NMS is a greedy

technique that is only affected by the order of the confi-

dence, we propose to relax the problem from regression to

local ordinal ranking where we only need to rank the re-

fined confidences within the same image and we can ignore

the magnitude of the confidence. We use a pairwise ranking

loss to enforce such constraint, and we show that our ranker

learns to preserve the order of confidence and improve AP.

We propose a confidence ranking network by taking the

bounding box and confidence prediction from a face detec-

tor to output new refined confidences. On top of Feature

Pyramid Network (FPN [36]), we add a Box Processing

Network (BPN) to extract features from the face detector’s

output and interpolate them to concatenate with the image

feature, then pass them into our confidence module. Fig.

3 demonstrates our pipeline. We design our network to be

model-agnostic, so in theory, it can be used with any object

detector, as long as the outputs are bounding boxes and their

corresponding confidence values, and we show the gener-

alization on three face detectors including HAMBox [40],

RetinaFace [13], and HRNet [61]. Model-agnostic design

is important for a fair comparison with multi-scale which

is the de facto post-processing for modern face detectors in

order to get high AP, with the cost of slow speed. Since

our network only needs a single-scale to run, we are a few

times faster than those state-of-the-arts [40, 13] with multi-

scale, while still retain a competitive AP on WiderFace. On

a single-scale, our method is the new state-of-the-art. Fur-

thermore, our method allows us to solve the GPU memory

issue and indirectly train on 8K (it would otherwise not be

possible even with 48GB GPU memory) by backpropagat-

ing up until the 8K prediction from the face detector. We

then collect 8K test set to demonstrate the effectiveness of

our method and set up a new benchmark for future camera

hardware. To summarize, our main contributions are:

1. We propose to refine confidence in a local relative set-

ting with our ranking loss, in contrast to existing works

that regress to the absolute value in a global manner,

inspired by the failure case analysis on WiderFace val-

idation set and our collected FFHQ dataset.

2. We propose a confidence ranking network to achieve

the new state-of-the-art on the single-scale face detec-

tor. Our AP is competitive with the previous multi-

scale state-of-the-art [40] while remaining a few times

faster. Our network is model-agnostic and we show the

generalization on HAMBox [40], RetinaFace [13], and

HRNet [61] respectively.

3. Our method solves the GPU memory issue and allows

us to indirectly train on 8K resolution to further in-

crease AP. We collect 8K resolution test set to show

the improvement, and we will release our test sets as a

new benchmark for future camera hardware.

2. Related Work

Object Detection has been advanced significantly by deep

learning and there are many types of deep learning based

detectors. Two-stage detectors [18, 17, 53, 21, 5, 12]

generate region proposals in the first stage, then refine them

in the second stage. One-stage detectors [51, 52, 38, 37, 71]

remove the first stage and run directly on the predefined

anchors. Anchor-free detectors [31, 32, 59, 65, 74, 75]

remove anchor to reduce design parameters. Although each

type is different, we design our network to only use the box

and confidence from the input detector, so in theory, our

work is compatible with these wide ranges of detectors.

Face Detection is a special case of object detection and

they can leverage each other. On top of a generic object

detector, past works propose to change the anchor matching

[72, 9, 43, 76, 33, 40] or change the anchor sampling [46] to

detect small faces, add context module [26, 57, 35] to learn

contextual features, add face alignment task [69, 8, 13] to

leverage different dataset, search for face-specific backbone

[39] to increase network capacity, or train progressively

[77] to handle multi-scale. While training strategies are
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