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Abstract

Most standard learning approaches lead to fragile mod-

els which are prone to drift when sequentially trained on

samples of a different nature—the well-known catastrophic

forgetting issue. In particular, when a model consecu-

tively learns from different visual domains, it tends to for-

get the past domains in favor of the most recent ones.

In this context, we show that one way to learn models

that are inherently more robust against forgetting is do-

main randomization—for vision tasks, randomizing the cur-

rent domain’s distribution with heavy image manipulations.

Building on this result, we devise a meta-learning strat-

egy where a regularizer explicitly penalizes any loss associ-

ated with transferring the model from the current domain

to different “auxiliary” meta-domains, while also easing

adaptation to them. Such meta-domains are also gener-

ated through randomized image manipulations. We empir-

ically demonstrate in a variety of experiments—spanning

from classification to semantic segmentation—that our ap-

proach results in models that are less prone to catastrophic

forgetting when transferred to new domains.

1. Introduction

Modern computer vision approaches can reach super-

human performance in a variety of well-defined and iso-

lated tasks at the expense of versatility. When confronted

to a plurality of new tasks or new visual domains, they have

trouble adapting, or adapt at the cost of forgetting what they

had been initially trained for. This phenomenon, that has

been observed for decades [39], is known as catastrophic

forgetting. Directly tackling this issue, lifelong learning ap-

proaches, also known as continual learning approaches, are

designed to continuously learn from new samples without

forgetting the past.
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Figure 1. This paper tackles the continual domain adaptation

task (bottom), compared here with standard domain adaptation,

domain generalization, and domain randomization (top).

In this work, we are concerned with the problem of con-

tinual and supervised adaptation to new visual domains (see

Figure 1). Framing this task as continual domain adap-

tation, we assume that a model has to learn to perform a

given task while being exposed to conditions which con-

stantly change throughout its lifespan. This is of particu-

lar interest when deploying applications to the real-world

where a model is expected to seamlessly adapt to its en-

vironment and can encounter different domains from the

one(s) observed originally at training time. A possible so-

lution to mitigate catastrophic forgetting is storing samples

from all domains encountered throughout the lifespan of the

model [41]. While effective, this solution may not be appro-

priate when retaining data is not allowed (e.g., due to pri-

vacy concerns) or when working under strong memory con-

straints (e.g., in mobile applications). For these reasons, we

are interested in developing methods for learning visual rep-

resentations that are inherently more robust against catas-

trophic forgetting, without necessarily requiring any infor-

mation storage or model expansion.

To tackle this problem, we start from a simple intuition:

when adapting a model trained on a domain D1 to a sec-

ond domain D2, we can anticipate the severity of forgetting

to depend on how demanding the adaptation process is—
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that is, how close D2 is to D1. The natural issue is that we

cannot control whether sequential domains will be more or

less similar to each other. Motivated by results on domain

randomization [58, 65] and single-source domain general-

ization [60], we propose to heavily perturb the distribution

of the current domain to increase the probability that sam-

ples from future domains will be closer to the current data

distribution—hence (generally) requiring a lighter adapta-

tion process. Focusing on computer vision tasks, we use

image transformations for the randomization process, and

show that models trained in this fashion are significantly

more robust against catastrophic forgetting in the context of

continual, supervised domain adaptation. This result repre-

sents our first contribution.

Further, we question whether we can learn representa-

tions that are inherently robust against transfer to new do-

mains (that is, against gradient updates on samples from

distributions different than the current one). We tackle

this problem through the lens of meta-learning and devise

a regularization strategy that forces the model to train for

the task of interest on the current domain, while learning

to be resilient to potential parameter updates on domains

different from the current one. In general, meta-learning

approaches require access to a number of different meta-

tasks (or meta-domains in our case), but our setting only

allows access to samples from the current domain at any

point in time. To overcome this issue, we introduce “aux-

iliary” meta-domains that are produced by randomizing the

original distribution—also here, using standard image trans-

formations. Additionally, inspired by Finn et al. [18], we

encourage our model to train in a way that will allow it

to efficiently adapt to new domains. The devised meta-

learning algorithm, based on the new concept of auxiliary

meta-domains, constitutes our second contribution.

To extensively assess the effectiveness of our continual

domain adaptation strategies, we start with an experimen-

tal protocol which tackles digit recognition. Further, we

increase the difficulty of the task and focus on the PACS

dataset [33] from the domain generalization literature, used

here to define learning trajectories across different visual

domains. Finally, we focus on semantic segmentation, ex-

ploring learning sequences across different simulated urban

environments and weather conditions. In all the aforemen-

tioned experiments, we show the benefits of the proposed

approaches. To conclude our analysis, we show that our

methods can further be improved by combining them with

a small memory of samples from previous domains [6].

2. Related work

Our work lies at the intersection of lifelong learn-

ing, data augmentation, meta-learning, and domain adap-

tation. We provide here an abridged overview of the rele-

vant background and refer the reader to Parisi et al. [41],

Hospedales et al. [24] and Csurka [11] for detailed reviews

on lifelong learning, meta-learning and domain adaptation.

Lifelong learning. The main goal of lifelong learning re-

search is devising models that can learn new information

throughout their lifespan, without forgetting old patterns.

The survey of Parisi et al. [41] divides lifelong learning ap-

proaches into three categories: (i) dynamic architectures,

where the model’s underlying architecture is modified as

it learns new patterns [53, 67, 10, 62, 15, 64, 49]; (ii)

rehearsal methods, that rely on memory replay and over-

come catastrophic forgetting by storing samples from old

tasks/distributions and regularly feeding them again to the

model [23, 37, 5, 7, 50, 21, 46]; (iii) regularization meth-

ods, that propose ways of constraining the tasks’ objectives

in order to avoid forgetting [35, 29, 66, 17]. Our work is of

the third flavor: we tackle lifelong learning without neces-

sarily replaying old data nor increasing the model capacity

over time—even though we also show that our methods can

be used in tandem with a small memory of old samples. In

contrast with most or the prior art that focuses on task/class

incremental learning, we tackle scenarios where the domain

sequentially changes but the task remains the same; we re-

fer to this problem as continual domain adaptation. See Van

de Ven and Tolias for a closer look at the different problem

formulations [59].

Data augmentation and domain randomization. The

use of data augmentation has a long history in computer

vision [55, 57, 9, 8, 30, 51]. Applying geometric or

photometric transformations to the images of the training

set generates new training samples for free and constitutes

an effective strategy to improve performance. Randomizing

the input distribution has been shown to be particularly

effective to improve sim-to-real performance (domain ran-

domization [58, 65]), and also to improve out-of-domain

performance in single-source domain generalization prob-

lems [60] (see Figure 1, top). In this work, we first show

that randomizing the domain at hand with heavy image

manipulations helps preventing catastrophic forgetting in

a continual domain adaptation setting. Then, we leverage

similar transformations to automatically generate the

samples that compose our “auxiliary” meta-domains. Our

experimental results show that the proposed meta-learning

strategy improves over simply using these additional

samples in a standard data augmentation fashion.

Meta-learning. We draw inspiration from meta-learning

approaches [34, 1, 48], and in particular from the idea of

learning representations that can be efficiently transferred

to new tasks [18]. Meta-learning generally relies on a series

of meta-train and meta-test splits, and the optimization

process enforces that a few gradient descent steps on the

meta-train splits lead to good generalization performance
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Figure 2. Life-cycle of a model when training for continual domain adaptation. At every new encountered domain, our proposed method

(Algorithm 1: Meta-DR) is applied on the training set of that domain (Primary Domain) and on the generated “auxiliary” Meta-Domains.

The final model is evaluated on test images from all the encountered domains to evaluate resilience to catastrophic forgetting.

on the meta-test. Similar to this approach, we devise a two-

fold regularizer: on the one hand, it encourages models to

remember previously encountered domains when exposed

to new ones (by means of gradient descent updates on these

tasks); on the other hand, it also encourages an efficient

adaptation to such domains. In contrast with related work

that relies on meta-learning to handle continual learning

problems, we do not require access to a buffer of old

samples [50], nor focus on learning from data streams [26].

Domain adaptation. Focusing on the resilience to domain-

shifts rather than the more standard task-shift, our work can

also be put in the context of the domain adaptation litera-

ture [56, 2, 13, 54, 19]. Our aim is indeed to perform con-

tinual domain adaptation, without degrading performances

on past domains while facing new ones. Yet, there is a fun-

damental difference with the premises of our work. While,

in the standard domain adaptation literature, the sole role

of the source domain(s) is to compensate for the scarcity

of annotated data from the target domain, in either super-

vised or unsupervised settings [11], our formulation does

not assume such scarcity and cares about performance on

the entire sequence of encountered domains.

3. Notations and problem formulation

First, we formally introduce the notions of catastrophic

forgetting and continual domain adaptation. Then, we for-

malize the problem tackled in this paper and introduce the

baseline we build upon.

Notations and definitions. Let us assume that we are in-

terested in training a model Mθ to solve a task T0, re-

lying on some data points that follow a distribution P0.

In practice, we usually do not know this distribution but

are provided with a set of samples S0 ⇠ P0. We fo-

cus on supervised learning and assume m training samples

S0 = {(xk,yk)}
m
k=1

, where xk and yk represent a data

sample and its corresponding label, respectively. We train

our model by empirical risk minimization (ERM), optimiz-

ing a loss LT0
(θ). For example, for the supervised training

of a multi-class classifier, this loss is typically the cross-

entropy between the predictions of the model ŷ and the

ground-truth annotations y:

θ
∗

T0
= min

θ

n

LT0
(S0; θ) := −

1

m

mX

k=1

y
T
k log ŷk

o

. (1)

While neural network models trained via ERM (carried

out via gradient descent) have been effective in a broad

range of problems, they are prone to forget about their ini-

tial task when fine-tuned on a new one, even if the two tasks

appear very similar at first glance.

In practice, this means that if we use the model θ∗
T0

trained on the first task T0 as a starting point to train for

a different task T1, the newly obtained model θ∗
T0→T1

typi-

cally shows degraded performances on T0. More formally,

LT0
(θ∗

T0→T1
) > LT0

(θ∗
T0
). This undesirable property of

deteriorating performance on the previously learned task is

known as catastrophic forgetting.

Problem formulation. In this work, we assume that the

task remains the same but that the domain varies instead.

The model is sequentially exposed to a list of different do-

mains. We wish for the model to being able to adapt to each

new domain without degrading its performance on the old

ones. We refer to this as continual domain adaptation. The

goal of this paper is to mitigate catastrophic forgetting on

previously seen domains.

More formally, given a task T that remains constant,

we assume that the model is exposed to a sequence of N

domains (Di)
N
i=1, each characterized by a distribution Pi

from which specific samples Si are drawn. As in previous
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work [37], we assume locally i.i.d. data distributions. With

this new formulation, and slightly abusing the notations, the

problem of catastrophic forgetting mentioned before can be

rewritten as LT (θ
∗

Di→Di+1
) > LT (θ

∗

Di
). We assume that

each set of samples Si becomes unavailable when the next

domain Di+1 with samples Si+1 is encountered. We are

interested in assessing the performance of the model at the

end of the training sequence, and for every domain Di (see

Figure 2).

Baseline. A naive approach to tackle the problem defined

above is simply to start from the model Mi
θ

obtained af-

ter training on domain Di and to fine-tune it using samples

from Di+1. Due to catastrophic forgetting, this baseline

typically performs poorly on older domains i < N when it

reaches the end of its training cycle. This will be our exper-

imental lower-bound.

4. Method

4.1. Image transformation sets

A core part of our study is the definition of proper image

transformation sets, used to drive the domain randomiza-

tion process—and, for what concerns the proposed meta-

learning solution, to define the auxiliary meta-domains. We

assume access to a set Ψ, where each element is a spe-

cific transformation with a specific magnitude level (e.g.,

“increase brightness by 10%”). Drawing from Volpi and

Murino [60], we consider a larger set covering all the pos-

sible transformations obtained by combining N given basic

ones (e.g., with N = 2, “increase brightness by 10% and

then reduce contrast by 5%”).

Given the so-defined set and a sample set S =
{(xk,yk)}

m
k=1

⇠ P , we can craft novel data points by sam-

pling an object from the set T ⇠ Ψ, and then applying it to

the given data points, obtaining Ŝ = {(T (xk),yk)}
m
k=1

.

We compare different sets, with different combinations

of color/geometric transformations and noise injection. As

we will detail later, we can also generate arbitrary auxiliary

meta-domains in this way.

Domain randomization. As mentioned in Section 1, part

of our analysis is aimed at showing that domain random-

ization helps mitigating catastrophic forgetting. We per-

form it in a simple fashion [60]: given an annotated sample

(x,y) ⇠ P , before feeding it to the current model θ and

optimizing the objective in Eq. (1), we transform the image

with a transformation uniformly sampled from the given set

T ⇠ Ψ, obtaining the sample (T (x),y).

4.2. A meta-learning algorithm

Motivation. We aim at formulating a training objective

that, at the same time, allows (i) learning a task of interest

T ; (ii) mitigating catastrophic forgetting when the model is

transferred to a different domain; (iii) easing adaptation to

a new domain.

To achieve the second and the third goals, we follow

an approach which borrows from the meta-learning litera-

ture [18]; we assume that we have access to a number of

meta-domains, and exploit them to run meta-gradient up-

dates throughout the training procedure. We enforce the

loss associated with both the original domain (our training

set) and the meta-domains (described later) to be small in

the points reached in the weight space, both reducing catas-

trophic forgetting and easing adaptation.

Unfortunately, when dealing with domain Di we do not

have access to the other domains Dk, k 6= i, and hence can-

not use them as meta-domains. Instead, we propose to au-

tomatically produce these meta-domains using standard im-

age transformations, as mentioned in Section 4.1. We detail

this process at the end of this section. Throughout the next

paragraph, when dealing with a domain Di, we assume the

availability of different meta-domains D̂i,j , each defined by

a set of samples Ŝi,j . To ease notation, unless in potentially

ambiguous cases, we will drop the index i, i.e., (D̂j , Ŝj).

Optimization problem. Training neural networks typically

involves a number of gradient descent steps that minimize a

loss, see for instance Eq. (1) for the classification task.

In our training procedure, prior to every gradient de-

scent step associated with the current domain, we sim-

ulate an arbitrary number of optimization steps to mini-

mize the losses associated with the given meta-domains.

If we are given K different meta-domains, and run a sin-

gle gradient descent step on each of them at iteration t, we

obtain K different points in the weight space, defined as

{θ̂tj = θt � αrθLT (Ŝj ; θ
t)}Kj=1, where j indicates the jth

meta-domain.

Our core idea is to use these weight configurations to

compute the loss associated with the primary domain Di

(observed through the provided training set Si) after adap-

tation, {LT (Si; θ̂
t
j)}

K
j=1. Minimizing these loss values en-

forces the model to be less prone to catastrophic forgetting,

according to the definition we have provided in Section 3;

we define their sum as Lrecall.

Furthermore, we compute the loss values associated with

samples from the meta-domains {LT (Ŝj ; θ̂
t
j)}

K
j=1, and de-

fine their sum as Ladapt. If one divides the samples from

the meta-domains in meta-train and meta-test subsets, min-

imizing Ladapt is equivalent to running the MAML algo-

rithm [18]. Combining the pieces together, the loss that we

minimize at each step is

L := LT (Si; θ
t) + β

1

K

KX

j=1

LT (Si; θ̂
t
j)

| {z }

Lrecall

+γ
1

K

KX

j=1

LT (Ŝj ; θ̂
t
j)

| {z }

Ladapt

(2)
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Intuitively, the three terms of this objective embody the

points (i), (ii) and (iii) detailed at the beginning of this

section (learning one task, avoiding catastrophic forgetting,

and encouraging adaptation, respectively).

In our exposition above, we have assumed that only a

single meta-optimization step is performed for each aux-

iliary meta-domain. In this case, computing the gradients

rθLT (θ̂
t
j) involves the computation of the gradient of a

gradient, since rθLT (θ̂
t
j) = rθLT (θ

t�αrθLT (θ
t)) [18].

One could define multi-step meta-optimization procedures,

but we do not cover that extension in this work.

For Eq. (2) to be practical, we need access to meta-

domains D̂j during training—concretely, sample sets Ŝj to

run the meta-updates. The core idea is to generate an ar-

bitrary number of “auxiliary” meta-domains by modifying

data points from the original training set Si via data manip-

ulations. As already mentioned, we rely on standard im-

age transformations introduced in Section 4.1 to do so; in

practice, the idea is to start from the original training set

Si = {(xk,yk)}
m
k=1

⇠ Pi, sample image transformations

Tj from a given set Ψ, Tj ⇠ Ψ, and craft auxiliary sets

as Ŝj = {(Tj(xk),yk)}
m
k=1

—that can be used for meta-

learning. The learning procedure, that we named Meta-DR,

is detailed in Algorithm 1. In our implementation, we set

K = 1 in Eq. (2), and approach it via gradient descent—by

randomly sampling one different auxiliary transformation

prior to each step (T in line 6 being the transformation em-

ployed to generate the current auxiliary meta-domain).

Algorithm 1 Meta-DR

1: Input: training set Si, auxiliary transformation set Ψ = {Tq}Mq=1
,

initial weights ✓i−1, hyper-parameters ⌘ (learning rate), ↵ (meta-

learning rate), � and �

2: Output: weights ✓i

3: Initialize: ✓  ✓i−1

4: for t = 1, ..., H do

5: Sample (x̂, ŷ) uniformly from Si . Batch for meta-update

6: Sample T uniformly from Ψ . Random transformation

7: ✓̂t
T
 ✓t � ↵rθLT (T (x̂), ŷ; ✓t) . Meta-update

8: Sample (x,y) uniformly from Si . Batch for update

9: ✓t+1  ✓t � ⌘rθ

�
LT (x,y; ✓t)
| {z }

Current task

+

10: + � LT (x,y; ✓̂tT )
| {z }

Backward transfer

+� LT (T (x),y; ✓̂tT )
�

| {z }

Forward transfer

11: ✓i  ✓H+1

Again, while for clarity we report one single gradient de-

scent step for the auxiliary meta-domains in the Algorithm

box (line 7), the procedure is general and can be imple-

mented with arbitrary gradient descent trajectories. Given a

sequence of domains (Di)
N
i=1, we run Algorithm 1 on each

of them sequentially (see Figure 2), providing the respective

datasets Si as input.

5. Experiments

In this section, we first detail our experimental protocols

for evaluating lifelong learning algorithms (Section 5.1) in

a continual adaptation setting. We detail the different base-

lines we benchmark against in Section 5.2. Finally, we re-

port our results in Section 5.3.

5.1. Experimental protocols

Digit recognition. We consider standard digit datasets

broadly adopted by the computer vision community:

MNIST [31], SVHN [40], MNIST-M [19] and SYN [19].

To assess lifelong learning performance, we propose train-

ing trajectories in which first we train on samples from

one dataset, then train on samples from a second one, and

so on. Given these four datasets, we propose two dis-

tinct protocols, defined by the following sequences: MNIST

! MNIST-M ! SYN ! SVHN and SVHN ! SYN !

MNIST-M ! MNIST, referred to as P1 and P2, respec-

tively. These allow to assess performance on two differ-

ent scenarios, respectively: starting from easy datasets and

moving to harder ones, and vice-versa.

For both protocols, we use final accuracy on every test set

as a metric (in %); each experiment is repeated n = 3 times

and we report averaged results and standard deviations. For

compatibility, we resize all images to 32⇥32 pixels, and, for

each dataset, we use 10, 000 training samples. We use the

standard PyTorch [42] implementation of ResNet-18 [22] in

both protocols. We train models on each domain for H =
3 · 103 gradient descent steps, setting the batch size to 64.

We use Adam optimizer [28] with a learning rate η = 3 ·
10−4, which is re-initialized with η = 3 ·10−5 after the first

domain. For Meta-DR, we set β = γ = 1.0 and α = 0.1
(results associated with more hyper-parameters are reported

in Appendix D). We consider one set with transformations

that only allow for color perturbations (Ψ1), one that also

allows for rotations (Ψ2), and one that also allows for noise

perturbations (Ψ3). See Appendix B for more details.

PACS. We consider the PACS dataset [33], typically used

by the domain generalization community. It comprises im-

ages belonging to seven classes, drawn from four distinct

visual domains: Paintings, Photos, Cartoons, and Sketches.

We propose to use this dataset to assess continual learning

capabilities of our models: as in the Digits protocol, we

train a model in one domain, then in a second one, and so

on. At the end of the learning sequence, we assess per-

formance on the test sets of all domains. We consider the

sequence Sketches ! Cartoons ! Paintings ! Photos (in-

creasing the level of realism over time), and repeat each ex-

periment n = 5 times, reporting mean and standard devi-

ation. In this case, we start from an ImageNet [14] pre-

trained model, and resize images to 224 ⇥ 224 pixels. We

rely on SGD optimizer with learning rate η = 0.01, reduced
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to η = 0.001 after the first domain. We consider a transfor-

mation set with color transformations (Ψ4).

Semantic scene segmentation. We rely on the Virtual

KITTI 2 [3] dataset to generate sequences of domains. We

use 30 simulated scenes, each corresponding to one of the 5

different urban city environments and one of the 6 different

weather/daylight conditions (see Figure 2). Ground-truth

for several tasks is given for each datapoint; here, we focus

on the semantic segmentation task.

As we will show in the next section, the most severe for-

getting happens when the visual conditions change dras-

tically (as expected); for this reason, we focus on cases

where we train an initial model on samples from a partic-

ular scene, and adapt it to a novel urban environment with

a different condition. In concrete terms, given three urban

environments A, B, C sampled from the five available, we

consider the learning sequences Clean ! Foggy ! Cloudy

(P1), Clean ! Rainy ! Foggy (P2) and Clean ! Sun-

set ! Morning (P3)—where by “clean” we refer to syn-

thetic samples cloned from the original KITTI [20] scenes.

For each protocol, we randomly sample n = 10 different

permutations of environments A, B, C and report averaged

results and standard deviations (details in Appendix A).

Since Virtual KITTI 2 [3] does not provide any default

train/validation/test split, for each scene/condition we use

the first 70% of the sequence for training, the next 15%
for validation and the final 15% for test. We use sam-

ples from both cameras and use horizontal mirroring for

data augmentation in every experiment. We consider the

U-Net [52] architecture with a ResNet-34 [22] backbone

pre-trained on ImageNet [14]. We train for 20 epochs on

the first sequence, and for 10 epochs on the following ones,

setting the batch size to 8. We use Adam optimizer [28]

with a learning rate η = 3 · 10−4, which is re-initialized

with η = 3 · 10−5 after the first domain. For Meta-DR,

we set β = γ = 10.0 and α = 0.01 (results associated

with more hyper-parameters are reported in Appendix D).

We consider a transformation set that allows for color per-

turbations (see Appendix B). We rely on a publicly avail-

able semantic segmentation suite [63] that is based on Py-

Torch [42]. We assess performance on every domain ex-

plored during the learning trajectory, using mean intersec-

tion over union (mIoU, in [0, 100]) as a metric.

5.2. Training methods

We are interested in assessing the performance of models

trained via domain randomization (Naive + DR) and with

our proposed meta-learning solution (Meta-DR).

First, we benchmark these methods against the Naive

baseline introduced in Section 4, which simply finetunes

the model as new training domains come along. Then,

we consider two oracle methods: If we assume access to

every domain at every point in time, we can either train

on samples from the joint distribution from the beginning

(P0 [ P1 · · · [ PT , oracle (all)), or grow the distribution

over iterations (first train on P0, then on P0 [P1, etc., ora-

cle (cumulative)). With access to samples from any domain,

oracles are not exposed to catastrophic forgetting; yet, their

performance is not necessarily an upper bound [36].

Concerning methods devised ad hoc for continual learn-

ing, we compare against L2-regularization and EWC ap-

proaches [29]. For a fair comparison, these algorithms—

and the ones below—are implemented with the same do-

main randomization strategies used for Meta-DR and Naive

+ DR. We also assess performance when an episodic mem-

ory of M samples per encountered domain is stored (by

default, M = 100). Learning procedures do not change,

except that at every training step the current domain’s batch

of samples is stacked with a batch from the memory (Ex-

perience Replay, or ER [6]). We further benchmark our

strategies against the GEM method [37], and using differ-

ent values for the memory size. Note that replay-based ap-

proaches come with storage overheads, since the episodic

memory grows with the number of domains as O(n).

5.3. Results

Classification (Digits and PACS). We report in Table 1 and

Table 2 the comparison between models trained on Digits

and on PACS, respectively.

The first result to highlight, is the significantly improved

performance of Naive + DR with respect to the baseline

(Naive). For instance, observe the improved performance

on SVHN samples at the end of the training sequence of

protocol P2, from ⇠ 54% to ⇠ 72% (Table 1); or the im-

proved performance on Sketches, from ⇠ 74% to ⇠ 84%
(Table 2). This comes without additional overhead on the

learning process, except for the neglectable computation

spent to transform image samples.

Next, in some cases we can appreciate the benefit of

combining domain randomization with methods devised

ad hoc for continual learning, namely L2 and EWC [29];

without data augmentation, we could not detect any sig-

nificant improvement when using these algorithms in our

setting. Note that such regularization strategies generally

perform better under the availability of a task label at test

time [38, 4, 16, 27, 21]; in our settings, we desire our model

to be able to process samples from any arbitrary domains

without further information such as domain labels.

Our meta-learning approach compares favorably with

all non-oracle approaches (see Meta-DR row in Tables 1

and 2). A testbed in which we perform worse than a com-

peting algorithm is SVHN in protocol P2, where L2 regu-

larization [29] performs better. SVHN is a more complex

domains than the others, so it might be less effective simu-

lating auxiliary meta-domains from this starting point.

To better highlight the performance gains obtained by re-
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Digits experiment: comparison

Protocol P1 Protocol P2

Method MNIST (1) MNIST-M (2) SYN (3) SVHN (4) SVHN (1) SYN (2) MNIST-M (3) MNIST (4)

Naive 83.7 ± 6.4 68.8 ± 3.4 92.3 ± 0.4 86.9 ± 0.1 54.0 ± 5.8 74.9 ± 3.1 71.1 ± 1.5 98.5 ± 0.0

Naive + DR 83.4 ± 3.6 72.0 ± 1.1 95.0 ± 0.3 91.4 ± 0.1 72.3 ± 0.9 80.8 ± 0.6 89.5 ± 0.6 99.0 ± 0.0

L2 [29] + DR 85.9 ± 2.8 71.8 ± 1.8 95.4 ± 0.2 91.4 ± 0.1 75.3 ± 1.4 82.0 ± 1.3 89.4 ± 0.9 98.8 ± 0.0

EWC [29] + DR 87.2 ± 1.8 70.7 ± 1.0 95.4 ± 0.3 91.8 ± 0.1 73.3 ± 0.5 80.5 ± 0.8 89.8 ± 0.6 98.8 ± 0.1

Meta-DR 92.0 ± 0.6 75.1 ± 0.5 95.3 ± 0.3 91.9 ± 0.2 73.8 ± 2.1 82.4 ± 1.1 90.1 ± 0.1 99.0 ± 0.1

ER [6] 93.2 ± 0.9 77.7 ± 1.2 94.1 ± 0.2 89.2 ± 0.5 74.4 ± 0.6 86.1 ± 0.1 89.9 ± 0.3 98.6 ± 0.2

ER [6] + DR 93.9 ± 0.3 79.9 ± 0.4 95.8 ± 0.2 91.5 ± 0.3 80.6 ± 0.5 90.1 ± 1.2 89.8 ± 0.7 98.8 ± 0.1

ER [6] + Meta-DR 93.4 ± 0.8 79.7 ± 0.4 95.8 ± 0.5 92.4 ± 0.1 82.4 ± 0.4 90.5 ± 0.2 90.4 ± 0.1 99.0 ± 0.1

Oracle (all) 99.3 ± 0.0 93.4 ± 0.4 97.1 ± 0.2 89.9 ± 0.5 89.9 ± 0.5 97.1 ± 0.2 93.4 ± 0.4 99.3 ± 0.0

Oracle (cumul.) 99.3 ± 0.1 93.3 ± 0.2 96.6 ± 0.1 88.6 ± 0.7 90.2 ± 0.2 97.0 ± 0.1 92.5 ± 0.1 98.5 ± 0.1

Table 1. Digit classification accuracy on MNIST, MNIST-M, SYN and SVHN at the end of protocols P1 (left) and P2 (right). Meta-

DR indicates results obtained via Algorithm 1. The same transformation set Ψ3 is used for Meta-DR and the methods that rely on

domain randomization (+ DR). Oracles are not comparable as they can access data from all domains at anytime during training. ER-based

approaches [6] rely on an episodic memory, with 100 samples per domain here.
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Figure 3. Digit classification accuracy for protocols P1 (left, i.e. MNIST → MNIST-M → SYN → SVHN) and P2 (right, i.e. SVHN →

SYN → MNIST-M → MNIST) of digit experiments. (Top) Per-domain performance on the test set throughout the training sequence (after

having trained on each of the four domains). (Bottom) Performance at the end of the training sequence for different transformation sets

Ψi. The methods Naive, Naive + DR and Meta-DR, are associated with pink, blue and red bars, respectively.

lying on meta-learning with respect to the simpler random-

ization approach and to the naive approach, we report in

Figure 3 (top) the accuracy evolution as the model is trans-

ferred and adapted to each of the different domains, for the

two protocols (P1 and P2, in left and right panel, respec-

tively). Meta-DR (red bars) is compared with Naive and

Naive + DR (pink and blue bars, respectively).

To disambiguate the contribution of the transformation

sets from the contribution of the meta-learning solution,

we report in Figure 3 (bottom) the performance achieved

using different transformation sets Ψ to generate auxiliary

meta-domains. Results are benchmarked against Naive +

DR trained with the same sets. These results show that the

meta-learning strategy consistently outperforms such base-

line across several choices for the auxiliary set Ψ.

Episodic memory. We report the results associated with

models trained with an additional memory of old samples

in Tables 1 and 2 for Digits and PACS experiments, respec-

tively (middle rows). As previous work has shown [6], the

availability of a memory significantly mitigates forgetting.

First, we show that if a memory is available, the methods

Naive + DR and Meta-DR still positively contribute to the

model performance. Next, we show that such improvement

is consistent as we increase the memory size (Table 2).1

More results can be found in the Supplementary Material.

Ablation study. We report an ablation study in Table 3,

analyzing performance of models trained via Meta-DR (re-

1Note that, in our experiments, the ER algorithm [6] is the best perform-

ing baseline to compare against—for what concerns replay-based methods.
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PACS experiment

Methods M.size Sketches (1) Cartoons (2) Paintings (3) Photos (4)

Naive − 73.0 ± 2.9 71.4 ± 3.0 78.3 ± 1.6 98.8 ± 0.2

Naive + DR − 84.3 ± 2.4 75.0 ± 2.2 80.7 ± 0.7 98.7 ± 0.1

L2 [29] + DR − 83.9 ± 2.3 73.5 ± 2.8 81.5 ± 1.0 99.0 ± 0.2

EWC [29] + DR − 84.8 ± 1.8 74.0 ± 2.1 80.9 ± 1.9 98.6 ± 0.1

Meta-DR − 85.7 ± 1.8 75.4 ± 0.7 82.0 ± 1.9 98.5 ± 0.3

GEM [37] 100 81.6 ± 2.9 85.4 ± 0.6 82.4 ± 0.9 97.4 ± 0.2

200 84.3 ± 0.8 86.3 ± 0.8 81.4 ± 0.6 97.2 ± 0.3

300 82.3 ± 3.0 85.6 ± 0.9 81.6 ± 0.3 96.9 ± 0.7

GEM [37] + DR 100 88.3 ± 2.3 84.3 ± 0.2 84.9 ± 0.7 97.9 ± 0.2

200 90.0 ± 0.9 85.3 ± 0.3 83.7 ± 0.2 97.6 ± 0.3

300 89.9 ± 1.2 84.1 ± 0.5 85.0 ± 0.9 97.9 ± 0.2

ER [6] 100 88.1 ± 1.1 85.0 ± 1.7 84.1 ± 1.4 98.5 ± 0.3

200 89.5 ± 0.7 85.7 ± 0.7 84.7 ± 1.5 98.6 ± 0.4

300 90.1 ± 0.6 86.5 ± 0.9 85.0 ± 0.9 98.5 ± 0.3

ER [6] + DR 100 90.9 ± 0.5 85.1 ± 1.2 87.2 ± 1.0 98.7 ± 0.3

200 91.3 ± 1.0 86.3 ± 0.9 87.3 ± 1.1 98.7 ± 0.2

300 91.4 ± 0.6 87.1 ± 0.4 87.4 ± 1.2 98.5 ± 0.3

ER [6] + Meta-DR 100 91.5 ± 0.8 87.2 ± 1.0 87.6 ± 1.4 98.4 ± 0.2

200 92.5 ± 0.5 87.7 ± 0.8 87.8 ± 0.8 98.7 ± 0.2

300 92.4 ± 0.6 88.1 ± 0.5 88.5 ± 0.9 98.7 ± 0.3

Oracle (all) − 93.6 ± 0.3 90.7 ± 0.7 88.4 ± 0.6 98.8 ± 0.2

Oracle (cumul) − 92.2 ± 0.7 89.1 ± 1.0 86.3 ± 0.8 97.8 ± 0.4

Table 2. Results related to PACS [33], at the end of the training se-

quence Sketches → Cartoons → Paintings → Photos. GEM [37]

and ER-based approaches [6] rely on an episodic memory, with a

number of samples per domain indicated in the 2nd column.

Digits experiment: ablation study

Losses Protocol: P1

Lrecall Ladapt MNIST (1) MNIST-M (2) SYN (3) SVHN (4)

83.7 ± 6.4 68.8 ± 3.4 92.3 ± 0.4 86.9 ± 0.1

X 94.3 ± 0.7 76.5 ± 0.6 94.4 ± 0.0 89.5 ± 0.1

X 89.7 ± 0.5 74.6 ± 0.1 95.4 ± 0.1 91.9 ± 0.0

X X 92.0 ± 0.6 75.1 ± 0.5 95.4 ± 0.3 91.9 ± 0.2

Table 3. Ablation study of the loss terms in Eq. (2). Performance

evaluated on all domains at the end of the training sequence P1.

lying on the set Ψ3) as we include the different terms in our

proposed loss (in Eq. 2). We report performance of mod-

els trained on Digits (protocol P1). Accuracy values were

computed after having trained on the four datasets. These

results show that, in this setting, the first regularizer helps

retaining performance on older tasks (cf. MNIST perfor-

mance with and without Lrecall). Without the second regu-

larizer though, performance on late tasks suffers (cf. perfor-

mance on SYN and SVHN with and without Ladapt). The

two terms together (last row) allow for good performance

on early tasks as well as good adaptation to new ones.

Semantic scene segmentation. We report in Figure 4 (left)

results related with protocols P1, P2 and P3 (top, mid-

dle and bottom, respectively). We compare Meta-DR with

Naive and Naive + DR. Also in these settings, heavy data

augmentation proved to be effective to better remember the

Semantic segmentation experiment

Protocol P1

Clean (1) Foggy (2) Cloudy (3)

Naive 56.6 ± 15.1 34.5 ± 9.7 78.7 ± 10.1

Naive + DR 61.9 ± 8.8 46.1 ± 8.6 78.7 ± 8.9

Meta-DR 63.2 ± 7.8 51.1 ± 8.1 79.3 ± 10.3

Protocol P2

Clean (1) Rainy (2) Foggy (3)

Naive 41.3 ± 13.7 40.3 ± 12.8 75.3 ± 19.1

Naive + DR 59.6 ± 8.7 53.8 ± 11.3 75.4 ± 9.1

Meta-DR 59.8 ± 8.8 59.0 ± 10.5 74.8 ± 09.6

Protocol P3

Clean (1) Sunset (2) Morning (3)

Naive 60.3 ± 11.5 63.6 ± 7.7 76.0 ± 10.0

Naive + DR 61.4 ± 8.1 62.3 ± 8.1 73.4 ± 9.9

Meta-DR 62.6 ± 9.2 61.5 ± 8.7 74.5 ± 11.2
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Figure 4. (Left) mIoUs on domains related to protocols P1, P2,

P3 at the end of the training sequences (top, middle and bottom,

respectively). (Right) Performance on the first domain “Clean”

throughout the learning sequences. Legend in Table (Left).

previous domains; in general, using Meta-DR allows for

comparable or better performance than Naive + DR, us-

ing the same transformation set. We can observe smaller

improvements with respect to the Naive baseline when the

domain shift is less pronounced (P3): in this case, neither

domain randomization nor Meta-DR carry the same benefit

that we observed in the other protocols, or in the experi-

ments with different benchmarks (Tables 1 and 2).

6. Conclusions and future directions

We propose and experimentally validate the use of do-

main randomization in a continual adaptation setting—

more specifically, when a visual representation needs to be

adapted to different domains sequentially. Through our ex-

perimental analysis, we show that heavy data augmentation

plays a key role in mitigating catastrophic forgetting. Apart

from the classical way of performing augmentation, we pro-

pose a more effective meta-learning approach based on the

concept of “auxiliary” meta-domains, that we believe the

broader meta-learning field can draw inspiration from.

For future work, we believe that designing more ef-

fective auxiliary sets might significantly improve adapta-

tion to more diverse domains. For example, previous

works focused on augmentation strategies to improve in-

domain [12, 25] and out-of-domain [61, 60, 47] perfor-

mance might prove helpful in our settings.

Acknowledgments. This work is part of MIAI@Grenoble
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