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Abstract

The problem of expert model selection deals with choos-

ing the appropriate pretrained network (“expert”) to trans-

fer to a target task. Methods, however, generally depend on

two separate assumptions: the presence of labeled images

and access to powerful “probe” networks that yield useful

features. In this work, we demonstrate the current reliance

on both of these aspects and develop algorithms to operate

when either of these assumptions fail. In the unlabeled case,

we show that pseudolabels from the probe network provide

discriminative enough gradients to perform nearly-equal

task selection even when the probe network is trained on

imagery unrelated to the tasks. To compute the embedding

with no probe network at all, we introduce the Task Tangent

Kernel (TTK) which uses a kernelized distance across mul-

tiple random networks to achieve performance over dou-

ble that of other methods with randomly initialized models.

Code is available at https://github.com/BramSW/

task_characterization_cvpr_2021/.

1. Introduction

Transfer learning is key to the success and popularity of

computer vision. The features from a convolutional neural

network (CNN) trained on one task can be incredibly useful

across a broad variety of tasks[36, 32, 34, 24]. Even larger

performance gains can be obtained by selecting a pretrained

model more specially suited to the task at hand. This be-

havior has been studied in past work[6], but only recently

has attention turned to how to determine which specialized

model is appropriate for a given task[2].

The key to such model selection is characterizing tasks

and their relationships. What does one need to characterize

a task? A priori, it seems that we need to characterize two

things:

1. The input, characterizing which requires a dataset of

images, and features to represent them, and

∗ The first two authors contributed equally to this work.

2. The output, characterizing which requires labels for

the dataset.

Current approaches to characterizing tasks synthesize

both sources of information. Task2Vec[2], for example,

trains a linear head on top of a pretrained feature extractor

and uses the Fisher information associated with the result-

ing model to generate a vectorized embedding. Decisions

such as choosing the best pretraining task for a target task

can then effectively be made using retrieval-like techniques

with this embedding.

But how much of these accurate decisions come from

characterizing the input domain alone, and how much

comes from knowledge of the precise task? This question

has important practical considerations. For example, sup-

pose we want to choose a pretrained representation for an-

alyzing x-ray images. We may not yet know what we want

to recognize in x-ray images. In fact, we may want a pre-

trained representation suitable for any kind of x-ray image

analysis, even those we haven’t conceived yet. In such cases

we are interested in characterizing only the general problem

domain, and do not have particular labels (yet) that we are

interested in. This raises the question: Can we character-

ize tasks without labels?

As our first contribution, we answer this question in the

affirmative. To address this problem, we introduce Pseu-

doTask: a modification of the Task2Vec algorithm that re-

places labels with pseudolabels output by an image classi-

fier trained in a generic source domain. While these pseu-

dolabels are definitely incorrect due to domain misalign-

ment, they prove discriminative enough to be quite useful in

characterizing tasks. Empirically, we find that PseudoTask

embeddings are as accurate as supervised Task2Vec embed-

dings, indicating that one can characterize tasks effectively

even without labels.

Key to this performance, as also to the performance of

Task2Vec, is the inductive bias provided by the pre-trained

feature representation. However, this inductive bias may

prove harmful as the task domains move farther away from

the domain where the feature extractor is pretrained [36],

making it risky to rely so heavily on such feature represen-

tations. This raises a second question: can we characterize
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tasks without features?

We answer this too in the affirmative. We design a

method called Task Tangent Kernel (TTK) that measures

task similarity using the gradients of randomly initialized

networls. TTK does not use pretrained probe networks at

all. Despite this lack of inductive bias, it provides useful

selections as well, at less than half the error of PseudoTask

and Task2Vec with random feature extractors.

In sum, this paper introduces two new techniques for

characterizing tasks that lift some of the restrictive assump-

tions of prior work (Figure 2):

1. We introduce PseudoTask, a new way of characteriz-

ing tasks without labels, allowing one to characterize

problem domains in general. We find PseudoTask per-

forms almost the same as Task2Vec, indicating that la-

bels are in fact not necessary.

2. To avoid the potentially mismatched inductive bias of

pretrained feature extractors, we introduce Task Tan-

gent Kernels, which characterizes tasks effectively

even without such feature extractors.

2. Related Work

Previous work has studied why pretrained models trans-

fer so well[43, 19], the tradeoffs between specialization and

scale in pretraining[6] and how concurrent multitask learn-

ing can benefit performance[41]. Task2Vec[2], the work

that this paper builds off, studies the problem of automated

model selection, as does [15]. [31, 1, 22] recommend algo-

rithms for various problems using “Active Testing”, intel-

ligently adapting exploration based on results. Such types

of approaches are inherently more limited computationally

than embedding-based methods. [37] predicts per-image

performance for single models, while [8, 26] characterize

performance per-dataset. [25, 42] deal with the problem

of model recommendation for action recognition and ob-

ject detection respectively, but require some degree of per-

formance evaluation on the new task in order to provide a

recommendation.

Transfer learning has been increasingly optimized, with

recent advances detailed in [18]. The problem of expert se-

lection has analogs to image retrieval, examples of which

include[30, 4]. Other works measuring distances between

domains include evaluating the biases between semantically

similar datasets[33] and measuring temporal domain shifts

in datastreams[17]

Our PseudoTask framework draws heavily on pseu-

dolabeling for semi-supervised learning, such as in [21].

Parts of our training setup are very similar to that of self-

training, such as for few-shot transfer or semi-supervised

learning[29, 39]. PseudoTask can be considered a form of

self-supervised training such as [9, 27, 5, 11, 12]. The Task

Tangent Kernel is inspired by Neural Tangent Kernel litera-
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Figure 1. Tasks consisting of images and possibly labels are em-

bedded into a vector space. When a new task is introduced, a new

embedding is calculated and compared (using a modified cosine

distance) to the bank of previous embeddings. The closest embed-

ding is selected to use as pretraining for the new task.

ture, originating with [14] and developed in [23, 3, 28].

3. Problem setup

A task T = (XT , YT ) consists of a domain of images

XT = {xi}
nT

i=1 and corresponding labels Y = {yi}
nT

i=1.

An expert ΘT = (�T , hT ) is a dedicated neural network,

consisting of a feature extractor �T and a head hT that is

trained on a task T . Suppose that we have a bank of tasks

T1, . . . , TN , and have already trained a corresponding bank

of experts ΘT1
, . . . ,ΘTN

. Then, when we encounter a new

task T 0, instead of training a model from scratch, we may

want to choose a pretrained expert ΘTi
, use its fixed feature

extractor �Ti
and train a linear head to solve the new task;

see Figure 1. The goal of expert selection is to pick the best

pretrained expert for the target task.

4. Background: Task2Vec

Our work builds on Task2Vec[2], a recent approach that

tries to characterize tasks and embed them in a useful way.

Task2Vec tries to characterize both the input domain, as

well as the semantic information carried by the labels. The

key intuition behind Task2Vec is that we can try to solve the

task with a moderately effective but generic off-the-shelf

feature extractor (e.g., trained on Imagenet) and then see

which parameters of the feature extractor most impact the

performance. Task2Vec posits that tasks which are sensitive

to the same set of feature extractor parameters are likely to

be “similar” to each other, especially in terms of what they

demand out of pretrained features.

Concretely, Task2Vec trains a linear layer on top of the

off-the-shelf feature extractor (called a “probe”) for the task

in question. It then computes the Fisher Information Matrix

(FIM), which is known to measure the sensitivity of the loss

to the parameters of the model. Denoting by pw(y|x) the

output distribution of trained model pw with weights w, and

by p̂(x) the data distribution, the FIM is defined as:

F = Ex,y⇠p̂(x)pw(y|x[rw log pw(y|x)rw log pw(y|x)
T ]
(1)

Task2Vec estimates F using a variational approach that
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amounts finding the optimal weights ŵ and precision matrix

Λ that minimize the following objective:

L(ŵ,Λ) =Ew⇠N (ŵ,Λ)[LCE(XT , YT , pw)]+

�KL(N (0,Λ)||N (0,�2I)
(2)

Here LCE is the cross entropy loss over the dataset and � is

a hyperparameter. Achille et al. prove that the solution to

this is Λ = F+ βλ2

2N I . Task2Vec finally takes the diagonal of

F and averages together the values for different parameters

of the same filter to produce the embedding.

When using this embedding, symmetric distances such

as cosine distance, denoted dsym, do not yield satisfactory

pefrformance when retrieving experts. This is because there

is an inherent asymmetry to the expert selection problem: a

task with a large dataset and thousands of classes will yield

a good expert for a similar task with only two classes and

a small dataset, but not vice versa. Therefore, there is a

large benefit to making the distance function asymmetric to

account for the complexity of the task. The Asymmetric

Task2Vec distance (dasym) is defined as:

dasym(tA =) tB) = dsym(tA, tB)� ↵dsym(tA, t0) (3)

Here t0 is the “trivial” task of ImageNet classification. This

formulation makes complex tasks that are very different

from ImageNet relatively closer to everything else. The in-

tuition is that a more complex task has a higher chance of

being a relevant expert given the same degree of symmetric

similarity. ↵’s value varies by architecture. In the original

work, ↵ = 0.3 is reported as optimal when training with

a ResNet-34[13]. In our experiments with ResNet-18s we

found ↵ = 0.15 to yield best performance. See Supplemen-

tary for further discussion of ↵.

Limitations: The Task2Vec formulation requires a fully

specified task to have a labeled dataset, as well as a pre-

trained probe network to be available. We next address

these limitations using our proposed alternatives below.

5. Characterization Without Labels: Pseudo-

Task

Motivation: The first step in Task2Vec is to train a lin-

ear classifier with a probe network’s features for the task

in question. This uses labels, which in turn provide the se-

mantics of the task. But often we may want to characterize

entire problem domains (e.g., x-ray images) without having

a specific task in mind. In such cases, labeled datasets may

be unavailable.

Even for well-specified tasks, the amount of labeled data

required to characterize the task using the Task2Vec ap-

proach can also be substantial, precluding applications like

few-shot learning where one may want to choose experts

and take decisions with only one or two labels per class. To
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Figure 2. A: The original Task2Vec[2] framework. A pretrained

model is available as are image labels, which a linear head is

trained to predict. B: Our proposed PseudoTask framework. Pre-

trained models are available, but labels are not. A zero-initialized

head is trained to match the predictions of the full pretrained net-

work. C: Our proposed Task Tangent Kernel framework. Labels

are available, but pretrained models are not. No training is done.

Gradients are calculated from the features and labels using Maxi-

mal Coding Rate Reduction (MCR2)[40] across randomly initial-

ized networks (see Sec. 6).

alleviate this issue, we present a self-supervised task char-

acterization, which we dub “PseudoTask”.

5.1. Method

What information can we use to characterize a problem

domain with no labels? Self-training approaches have re-

cently shown the usefulness of training a network in one

domain to match the predictions of a teacher from a source

domain even when the two domains share no classes at

all[29, 39]. Furthermore, unsupervised contrastive learning

approaches such as MoCo and SimCLR[12, 5], demonstrate

the emergence of semantics simply by learning to distin-

guish individual images.

Both approach types point to the striking power of pseu-

dolabels, and motivate us to create PseudoTask, where

pseudolabels are used as a substitute for ground-truth la-

beling. Concretely, PseudoTask follows the originally pre-

sented framework of Task2Vec with a key modification: in-

stead of real labels, we use soft labels from a pretrained

classifier (ImageNet or Places365).

Given a domain (task) T = (XT ) consisting of unla-

beled images XT = {xi}
nT

i=1 and a pre-trained classifier Θ,

we follow Algorithm 1 to compute our embedding. Note

that when computing the Task2Vec embedding (second for

loop), the soft predictions are computed dynamically on

randomly augmented versions (x0) of the images (x).

Asymmetric PseudoTask: The final adjustment we found

necessary in the self-supervised algorithm was the mea-

sure of asymmetery. In the original work, a bias term of

�↵dsym(tsource, t0) was used where t0 is the “trivial” Ima-
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Algorithm 1: PseudoTask

Compute soft labels `i = Θ(xi) for each image;

Zero out the linear classification layer (�);

for 2 epochs do
Fit the linear head � to {`i}

end

for 10 epochs do
Minimize Task2Vec loss:

L(ŵ,Λ) = Ew⇠N (ŵ,Λ)[LCE(x
0,Θ(x0), pw)] +

�KL(N (0,Λ)||N (0,�2I))
end

geNet task. While the benefit of this term for Task2Vec was

replicated in our baseline experiments, we found that it was

not appropriate for PseudoTask. For PseudoTask, the dis-

tance bias term dsym(ta, t0) is fairly homogeneous across

tasks compared to the variation for embeddings trained with

Task2Vec. We hypothesize that this behavior stems from the

training objective of PseudoTask being consistent across do-

mains (matching soft labels from the same pretrained clas-

sifier) while Task2Vec varies more significantly in label dis-

tribution.

To define an alternative asymmetric distance, we lever-

age the observation that a large norm of the PseudoTask

(and Task2Vec) embedding is correlated with task hardness:

for a complex task, linear classifiers on the probe feature ex-

tractor will not work well, yielding large-valued Fisher In-

formation Matrix (see Sec. 2.2 in [2]). As such, to bias the

expert selection towards experts trained on more complex

tasks, we add a bias term based on the norm of the embed-

ding and define PseudoTask’s asymmetric distance between

two task embeddings, ta and tb as:

d0asym(ta =) tb) = dsym(ta, tb)� ↵||ta|| (4)

The intuition behind this definition is similar to the

Task2Vec asymmetric distance, but uses a slightly different

formulation.

6. Characterization Without Features: Task

Tangent Kernel

Motivation: Task2Vec and PseudoTask both use pre-

trained feature representations. Even for Task2Vec, which

does not need pseudolabels, the availability of this feature

representation is critical. Task2Vec relies on the Fisher

information matrix, which is typically used to character-

ize how sensitive the optimum parameter setting is. If the

feature extractor is far from optimal, using the Fisher in-

formation does not make sense. Unfortunately in practice

one may operate in such drastically different domains that

a given pretrained feature extractor is no longer optimal.

Indeed, we find that if the feature extractor is far from op-

timal, Task2Vec fails at effective characterization (Sec.7.4).

We therefore need an alternative approach that does not rely

so heavily on a suitable feature representation.

The derivatives of random neural networks We want to

declare two tasks to be similar if and only if a model trained

on one produces a good feature extractor for the other, or

alternatively, the optimal feature extractors for the two tasks

are close to each other. A brute force approach to measuring

task distance might thus be to separately train models for

each task from the same initialization and look at how far

the optima are in parameter space.

Of course, this is prohibitively expensive and obviously

defeats the point, since we wanted to avoid training a sepa-

rate model for the target task anyway. But what if we don’t

train these models the whole way? Can we instead just train

these models for very few epochs or steps and then evaluate

how far they are? Concretely, imagine we start the training

for both tasks using the same initialization, and take a sin-

gle step. If the optimal models for the two tasks are close to

each other, one might imagine that the very first update will

also be close. If we repeat this for multiple initializations

and find that the first update for the two tasks are always

close, then one might conclude that the tasks are “similar”.

Standard optimization procedures rely on gradient descent,

so this first update corresponds to the gradient of the ran-

domly initialized model. Thus, we hypothesize that a mea-

sure of task similarity could be computed by calculating the

expected similarity between the gradients of the tasks at the

same random initialization.

The Neural Tangent Kernel, which was first proposed in

[14], describes the convergence behavior of neural networks

in the limit of infinite width. A side-effect of this analysis

is a kernel function between data points that comes close

to mimicking the behavior of trained neural networks, but

itself requires no training. This kernel takes the form:

k(x, x0) = Eθh
@f(✓, x)

@✓
,
@f(✓, x0)

@✓
i (5)

where x and x0 are data points (e.g., images), and ✓ is the

parameters of a randomly initialized neural network drawn

from a fixed distribution (typically Gaussian).

Our work essentially adapts the above kernel to operate

on tasks instead of points. Based on the results with NTK,

we reason that computing the NTK kernel over tasks instead

of individual data points (by simply averaging the gradients

of points in a task) thus provides a measure of similarity

between the tasks.

We concretize this intuition as follows. Suppose we are

given two tasks T1 = (X1, Y1) and T2 = (X2, Y2) consist-

ing of images Xk = {x
(k)
i }nk

i=1, k = 1, 2 and corresponding

labels Yk = {y
(k)
i }nk

i=1, k = 1, 2.
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Suppose L is a loss function such that given a feature

extractor �, L(�, X, Y ) measures how well the feature ex-

tractor is able to separate out the classes in the task (X,Y ).
We randomly initialize N feature extractors {�i}

N
i=1 with

parameters {✓i}
N
i=1. For each feature extractor, for each

task, we compute the gradient of the loss with respect to

the feature vector parameters:

g
(k)
i =

@L(�i, Xk, Yk)

@✓i
(6)

We then define a kernel between the two tasks as the average

cosine distance between the two gradients :

k(T1, T2) =
1

N

N
X

i=1

hg
(1)
i , g

(2)
i i

kg
(1)
i kkg

(2)
i k

(7)

Because we are computing this task kernel using the gra-

dients, we call this kernel the task tangent kernel. We only

use the last residual block of the ResNet to compute the em-

bedding as it contains the most channels.

Loss function:A key component here is the loss function

L. Typical loss functions such as cross entropy operate

on predictions rather than features, which presents diffi-

culty given the permutation-variant nature of a randomly

initialized classifier head. We use the Maximal Coding Rate

Reduction loss(MCR2)[40]. This loss measures how close

same-class features are, and how spread out the dataset is in

feature space. Specifically, we embed the images X using

the feature extractor � yielding embeddings Z 2 R
d⇥m (d

being the feature dimensionality, m the total number of data

points). Let the set of embeddings of class j be denoted by

Zj . Then the loss is defined as:

L(�, X, Y ) = �R(Z) +Rclass(Z) (8)

R(Z) =
1

2
log det

✓

I +
d

m✏2
ZZ>

◆

(9)

Rclass(Z) =
X

j

mj

2m
log det

✓

I +
d

mj✏2
ZjZ

>

j

◆

. (10)

With mj as the number of data points with member-

ship in class j and ✏ a “prescribed precision” constant

(✏2 = 0.5 in our work, see [40] for details). The functions

R and Rclass describe the whole-dataset and per-class cod-

ing rates, measuring the compactness of all or subsets of

features. This loss encourages the dataset as a whole to be

non-compact (discriminable) while the class subsets should

be highly compact (clustered), bearing resemblance to the

supervised contrastive learning objective such as in[16].

7. Experiments

7.1. Meta-Task and Baselines

We perform experiments on the CUB+iNat meta-task

of the Task2Vec paper [2], denoted as T . This set con-

Method Error Labels? Pretraining?

Increase

LEEP [26] 20.8% X X

RSA [8] 8.8% X X

Random Selection 59.5%

EMD [7] 51.3% X X

Average Features 39.2% X

ImageNet Init.* 30.2% X

Task2Vec (Rand. Init) 48.7% X

Task2Vec (Orig) 8.9% X X

Task Tangent Kernel 21.4% X

PseudoTask (ImageNet) 20.4% X

PseudoTask (Places365) 10.0% X

Table 1. Metric reported is the mean increase of relative error be-

tween a method’s choice and the optimal, averaged across the 50

tasks of Cub+iNat from [2]. Gray indicates methods which re-

quire running inference with each proposed expert on the target

dataset which quickly becomes computationally prohibitive. Both

TTK and PseudoTask outperform all baselines that do not require

running inference from each expert on the new dataset. Further-

more, PseudoTask using Places365 initialization almost equals su-

pervised performance.

sists of 25 species classification tasks from Caltech-UCSD

Birds[38] and 25 from iNaturalist[35]. Tasks are sets of

species grouped at either the Order or Family level. For

each individual task T 2 T , the benchmark requires us to

choose an expert from T � {T}. We measure the error ob-

tained with this choice, relative to the error of the optimal

choice, reporting the average relative error across all tasks.

Baselines: The Random baseline selects a task from T �
{T 0} uniformly at random, and uses the corresponding ex-

pert. ImageNet Initialization does not use any of the ex-

perts available in T , but instead uses a pretrained ImageNet

network every time (an option not available to selection al-

gorithms). Average Features uses an ImageNet-pretrained

feature extractor to compute the average feature vector of

images in the task, which is used as a task embedding (under

cosine distance). Other metrics based solely on ImageNet-

pretrained features, such as the H-Divergence[17] (accuracy

of a linear classifier separating domains) between tasks pro-

duced similar or worse results. RSA and LEEP are more

sophisticated techniques that analyze the features produced

by each expert-target pair. While these techniques prove to

be quite effective, the computational cost of running infer-

ence using each expert quickly can become prohibitive as

the number of considered tasks increases.

7.2. Main Results

We present our main findings in Table 1 and Figure 3.

Both proposed methods outperform baselines, with Pseu-

doTask achieving performance on par with Task2Vec. Note

that LEEP and RSA require computing predictions for each
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Figure 3. Violin plot of the error on each target task (x-axis) obtained by training a linear head on top of a model from each of the other

49 tasks. Markers indicate selection algorithm choices. Both of our methods (PseudoTask and Task Tangent Kernel) reliably outperform

using an ImageNet feature extractor. The experimental setting is the same as Figure 3 of [2].

expert/task pair; in the case of RSA an entire model must be

trained on the target task before the expert initialization is

chosen. In contrast, embedding methods only require per-

pair vector arithmetic and representations are persistent.

Task Tangent Kernel TTK has the most significant hand-

icap, operating solely on the provided task dataset as op-

posed to other methods which employ networks pretrained

on over a million images. Despite this, TTK is still useful,

beating the strong baseline of initializing from ImageNet

every time (ImageNet is not a permitted expert to select in

the benchmark). We see in Section 7.4 that the performance

by TTK is far superior to any other method operating off of

random initialization and that this benefit stems from using

multiple randomized networks, in accordance with theoret-

ical work involving the Neural Tangent Kernel.

PseudoTask PseudoTask outperforms the baselines by

even more significant margins than TTK. Furthermore, by

using Places365 as the initialization for the probe network

instead of ImageNet, we are able to halve the mean rela-

tive error increase. In doing so we achieve results almost

equal to the original supervised method despite no avail-

able labels. We present possible reasons for the success of

Places365 initialization in Section 7.5.

In Figure 4, we compare the taxonomical distance be-

tween tasks to the induced symmetric distances of our meth-

ods. PseudoTask (ImageNet) has an even higher correlation

with the ground truth taxonomy than the original Task2Vec.

Figure 4. Average taxonomical distance between tasks in neigh-

borhoods of varying sizes. Taxonomical distance is the how far up

the phylogenetic tree (Order, Class, Phylum, Kingdom) the com-

mon root of the two tasks is. Black line represents the ground truth

average distance in neighborhoods of a given size (calculated at

each task in the meta-task). Preservation of taxonomical distance

is desirable, demonstrating capture of the semantics of a task.

Example choices: Figure 5 demonstrates PseudoTask’s

decision-making ability. As an example, the 2nd column

“Piciformes” is the task of classifying the 7 different types

of woodpeckers in CUB. Walking through the selections:

1. Charadiiformes (CUB) is properly matched to its

counterpart from iNat.

2. Cuculiformes (CUB) is properly matched to Passeri-

formes (iNat), a very large songbird dataset.
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Figure 5. Examples of optimal selections vs. those made by PseudoTask. Source tasks (columns) are selected to transfer to target tasks

(rows). Representative images of each dataset are shown. A blue bracket indicates the optimal choice, a red bracket the algorithm’s choice.

PseudoTask selections are made without the use of labels.

3. Squamata (iNat, lizards and snakes) is “incorrectly”

matched to Anura (iNat, frogs). This demonstrates

how transferability and semantics are not perfectly cor-

related: taxonomically, Squamata is much closer to

Anura than Lepidoptera.

7.3. Other Datasets

CUB Attributes One possible concern with PseudoTask

is that it does not take into account the labels of the task.

As such, it might end up choosing experts relevant to the

domain, but not necessarily to the task at hand.We test this

scenario by forming a variant of the CUB+iNat benchmark,

called CUB-bp+iNat, where the CUB labels are the breast

pattern of the birds instead of species classes. Per-task em-

beddings are re-calculated for Task2Vec and TTK, while ex-

perts are trained/transferred to obtain per-selection accura-

cies. Results are shown in Table 2 (L) for selections on the

CUB half of the meta-task. This concern does not prove to

be a detriment, on the contrary, PseudoTask performs bet-

ter relative to other methods than in the purely class-based

setting. Intriguingly, this suggests that the more important

factor in transfer is the domain, rather than the precise se-

mantics of the labels themselves.

Cars To validate our models on varied types of imagery,

we create a new benchmark Cars from the Stanford Cars

dataset[20] 1. The tasks are manufacturers (e.g. Audi) that

have more than one model of car in the dataset. In Table 2

(R), we observe that PseudoTask performs nearly equally to

Task2Vec and notably TTK’s performance exceeds both of

1We create the Cars benchmark as the Mixed benchmark of [2] re-

quires attribute labels that are not publicly available.

Method CUB-bp Cars

Random 12.6% 28.2%

ImageNet Initialization 11.4% -5.9%

PseudoTask (ImageNet) 9.3% 18.2%

Task Tangent Kernel 13.4% 14.0%

Task2Vec (orig) 12.6% 14.2%

Table 2. (L) Relative errors on the CUB half of the CUBbp+iNat.

We see that, despite no knowledge of the label shift, PseudoTask

performs substantially better than alternatives. (R) Relative errors

on the Cars meta-task. Denominators in relative error calcula-

tion are buffered by 1 due to presence of zeros (perfect accura-

cies). We note that ImageNet Init. is a much stronger baseline

than in CUB+iNat due to the strength of self-selection in Cars.

For 80% of the tasks incorporating any extra data actually hurts

performance.

them. This confirms our success of adapting the Task2Vec

algorithm to function well without labels or initialization.

7.4. Varied Initializations

The significance of initialization is demonstrated in Fig-

ure 6. As previously noted, PseudoTask performs signif-

icantly better with Places365 pretraining. Hypothesized

reasons for this improvement are presented in Section 7.5.

Task2Vec performs markedly worse when using Places365,

but in the Supplementary we show that this is solely due to

hyperparameter tuning.

Both Task2Vec and PseudoTask suffer dramatically with

random initialization. Task2Vec still is significantly better

than random choice, while PseudoTask is worse. We at-

tribute this difference to PseudoTask having the same de-

pendencies on the probe network as Task2Vec while addi-

tionally relying on the induced pseudolabels.
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Figure 6. Error increase percentage for method-initialization pairs

(lower is better). With random initialization, Task Tangent Kernel

dramatically outperforms the other methods, more than halving

the error. Hyperparameters are constant across initializations.

Figure 7. Each data point is a TTK experiment using x networks

with 100/x batches of size 128 per network. The dashed horizon-

tal line is the performance of Task2Vec on a random initialization.

We see that TTK with a single random network performs compa-

rably to Task2Vec, and that a diversity of models is more beneficial

than repeated gradient computations on a single network.

By design, TTK does not rely on a probe network and

has vastly superior performance compared to other meth-

ods without network initialization, where the error is over

a factor of 2 lower. We confirm in Figure 7 that the per-

formance of TTK stems from the diversity of models used.

On the far left of the figure, only a single network is trained

with 100 batches of data; this method is fairly equivalent

to Task2Vec in both nature and performance. Performance

improves with the number of networks, validating the moti-

vation of the TTK: the expectation over random models can

substitute for a powerful feature extractor.

7.5. ImageNet vs. Places365

In both Task2Vec and PseudoTask, Places365 initializa-

tion ultimately yields superior performance than the Ima-

geNet counterparts. This is quite unintuitive, as generally

ImageNet transfers better than Places365[10, 44] which has

made it the standard in transfer learning. Better pseudo-

classification performance is not the reason; the Adjusted

Mutual Information between the pseudolabels and ground

truth is quite small, ImageNet has the larger score at 0.05

demonstrating a lack of label consistency despite the strong

selection performance for both models.

This analysis focuses on PseudoTask. The average

prediction confidence (post-softmax) of ImageNet and

Places365 are 0.19 and 0.18 respectively, despite the former

having nearly triple the available classes. These correspond

Figure 8. Histograms of the values contained in the PseudoTask

embeddings. ImageNet has more extreme values, both high and

low, than Places365. We attribute this difference to the softness of

Places365 labels relative to ImageNet.

to 19, 000⇥ and 6, 600⇥ higher than a uniform random

guess. We theorize that the difference in performance stems

from ImageNet making higher confidence predictions, even

when incorrect, resulting in less informative embeddings.

We record the class predictions from both models for a

batch from each task of size min(100, ndataset). ImageNet

averages 84 different predictions per class (8% of 1000 to-

tal possibilities) while Places365 uses 77 different predic-

tions (21% of 365 total possibilities). Across all tasks, Im-

ageNet predicts 857 classes (85.7% of maximum possible)

and Places365 354 (97% of maximum possible).

We hypothesize that this relative softness of prediction

from the Places365 model is beneficial for PseudoTask be-

cause the objective becomes more akin to contrastive learn-

ing (e.g., MoCo or SimCLR[12, 5]) instead of a one-hot

classification problem. Consistently, PseudoTask with hard

pseudolabels performs far worse. By softening the classi-

fication problem, the network parameters might equalize in

discriminative power (and thus gradient), preventing a small

subset of terms from dominating the embedding calculation.

We visualize the values of all embeddings in Figure 8.

ImageNet has a longer tail of values while Places365 has

a concentrated peak at relatively low values for both algo-

rithms. Thus ImageNet yields “spikier” embeddings whose

large values will dominate the distance calculations.

8. Conclusion

In this work, we designed methods to overcome current

limitations of expert selection algorithms: namely perfor-

mance without labels or model initializations. Our zero-

label approach, PseudoTask, achieved nearly equal perfor-

mance to the previous supervised version, Task2Vec. We

demonstrated that both of these methods fail without pre-

trained model initialization and created the Task Tangent

Kernel which doubles the performance of other methods

when pretraining is not available. Promising lines of fu-

ture work include semi-supervised expert selection, zero-

label zero-initialization methods, and extension to other

data forms such as shapes or natural language.
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