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Abstract

Pre-trained models play an important role in deep learn-

ing based text detectors. However, most methods ignore the

gap between natural images and scene text images and di-

rectly apply ImageNet for pre-training. To address such a

problem, some of them firstly pre-train the model using a

large amount of synthetic data and then fine-tune it on tar-

get datasets, which is task-specific and has limited general-

ization capability. In this paper, we focus on providing gen-

eral pre-trained models for text detectors. Considering the

importance of exploring text contents for text detection, we

propose STKM (Self-attention based Text Knowledge Min-

ing), which consists of a CNN Encoder and a Self-attention

Decoder, to learn general prior knowledge for text detec-

tion from SynthText. Given only image level text labels,

Self-attention Decoder directly decodes features extracted

from CNN Encoder to texts without requirement of detec-

tion, which guides the CNN backbone to explicitly learn

discriminative semantic representations ignored by previ-

ous approaches. After that, the text knowledge learned by

the backbone can be transferred to various text detectors

to significantly improve their detection performance (e.g.,

5.89% higher F-measure for EAST on ICDAR15 dataset)

without bells and whistles. Pre-trained model is available

at: https://github.com/CVI-SZU/STKM

1. Introduction

Scene text detection has drawn much attention in both

academic communities and industries due to its ubiquitous

real-world applications, such as online education, product

search, instant translation, and video scene parsing. Ben-

efited from the rapid development of deep Convolutional

Neural Networks [11] in Object Detection [16, 24, 25] and

Image Segmentation [19, 2, 26] over the past few years, re-
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Figure 1. Comparisons of different pre-training strategies. Dashed

arrows indicate fine-tuning. (a) Fine-tuned from ImageNet pre-

training. (b) Fine-tuned from SynthText pre-training, where the

red question mark indicates the knowledge gap between detector

A and detector B. (c) Our approach, where the ”HLK” denotes

high level knowledge.

cent scene text detectors have achieved significant progress.

Most of these methods apply ImageNet [27] pre-training

to speed up convergence as well as improve final accu-

racy. However, there exists an obvious domain gap be-

tween natural images and scene text images. Some meth-

ods [1, 41, 18, 37] try to fine-tune models using initializa-

tion parameters pre-trained on a large amount of synthetic
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data for text detection, which outperforms ImageNet based

pre-training, but still suffers from these shortcomings: (1)

The generalization capability of such pre-trained backbones

is limited. The weights trained with a specific detector

may not be able to obtain good results in other detectors.

Therefore, each text detection algorithm needs to be pre-

trained again, which leads to a lot of redundant computa-

tional costs. (2) Text content is usually ignored. Different

from generic object detection, text detection only classifies

region proposals as text or non-text, no information about

text content is extracted. Therefore, texture-like content in

the image is easily detected as text.

As shown in Figure 1, in this paper, our motivation is to

provide powerful pre-trained deep models for text detection,

which contains more general prior knowledge by aggregat-

ing semantic representations of text contents. Inspired by

transformer [33], we utilize self-attention mechanisms to

devise a dedicated network called STKM ( Self-attention

based Text Knowledge Mining) to learn useful prior knowl-

edge for text detection. As a result, the pre-trained back-

bone of STKM can be fine-tuned for various text detectors

to significantly improve their detection performance. To

be specific, we firstly extract features from standard CNN

backbone, and then decode the flatten features using a cas-

caded self-attention architecture to directly recognize all the

texts without requirement of detection. Our model can be

trained end-to-end and only requires image-level text an-

notations, whose labeling cost is much cheaper than that

of text location annotation. Furthermore, STKM is able to

provide more general text knowledge, i.e., the backbone

can be transferred to different text detection networks to

achieve state-of-the-art performance. We fine-tune the pre-

trained STKM backbone with diverse networks and datasets

to verify its effectiveness. In particular, by replacing Im-

ageNet pre-training with STKM, EAST [43] and PSENet

[34] can achieve 5.89% and 5.64% higher F-measure on IC-

DAR2015 [10] dataset, respectively.

In summary, the main contributions of this paper are two-

fold:

• We propose STKM, which can be trained end-to-end,

to acquire general text knowledge for following text

detection tasks. To the best of our knowledge, we are

the first attempt to provide general pre-trained models

for text detection.

• Without bells and whistles, extensive experiments

show that the STKM can improve the performance of

various detectors by a great margin on different bench-

marks.

2. Related Work

Deep learning based scene text detectors available in lit-

erature can be mainly categorized into regression-based,

Recognition result: ThinkPad Recognition result: Thinki0u

Figure 2. An example of incomplete text for recognition. Left:

Complete text is both detected and recognized correctly. Right:

Incomplete text is easily detected but difficult to be recognized.

The detector EAST [43] and recognition network CRNN [29] are

used.

segmentation-based and connected component-based (CC-

Based) methods.

Regression-Based Methods takes scene text as general

object, general detection frameworks [16, 24, 25] are ap-

plied to locate text boxes by predicting the offsets from an-

chors or pixels. However, texts are often presented in irreg-

ular boxes with various aspect ratios. To handle this prob-

lem, TextBoxes [13] extends SSD [16] to effectively capture

various text shapes by modifying the size of convolutional

kernel and anchor box. RRPN [22] introduces rotation to

both anchors and RoI-Pooling in Faster R-CNN, to detect

arbitrary-oriented scene texts. EAST [43] uses FCN [19] to

directly predict pixel-level quadrangles of word candidates

without region proposals and preset anchors.

Segmentation-Based Methods regards detection task as

a semantic segmentation problem by directly segmenting

text regions with irregular shapes. PixelLink [4] firstly seg-

ments text instances with linking pixels and then generates

bounding boxes from segmentation results. SSTD [9] pro-

poses an attention mechanism by FCN to substantially sup-

presses background interference in the feature maps, which

achieves accurate detection of words, particularly at small

sizes. PSENet [34] generates multi scale of kernels for each

text instance, and gradually expands the minimal scale ker-

nel to the complete text instance with a progressive scale

algorithm. TextField [36] learns a direction field to link

neighbor pixels and use a simple morphological-based post-

processing to achieve the final detection.

CC-Based Methods firstly extract individual text parts

or characters, then use a link or group post-processing pro-

cedure to generate final texts. CTPN [31] leverages a mod-

ified Faster R-CNN [6] to extract horizontal text proposals

with fixed-width for naturally connecting dense text com-

ponents and generating horizontal text lines by a recurrent

neural network. CRAFT [1] detects the text area by explor-

ing the affinity between characters. DRRG [41] is the first

attempt to perform deep relational reasoning between dif-

ferent small components via graph convolutional network

for arbitrary shape text detection.

The above works have achieved remarkable progress in

text detection area. However, most of these approaches
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Figure 3. Illustration of our overall pipeline, (a) is the structure of STKM, (b) represents general text detection task. We firstly train STKM

using an image level text recognition task. After that, the text knowledge learned by the backbone can be transferred to general text

detectors to significantly improve their detection performances.

directly apply networks pre-trained using ImageNet, with-

out paying particular attention to the importance of pre-

training methodology. Although there are a few methods

[41, 1, 13, 20, 5, 37, 40] proposed to pre-train their models

using synthetic data, they are primarily designed to address

labeling deficiencies in target datasets, such as the lack of

character level annotations. In this paper, we focus on pro-

viding general and powerful network models for text detec-

tion. To achieve this goal, we design an efficient text feature

mining network, to enable the standard backbone to learn

strong prior knowledge helpful for text detection.

3. Method

In this section, we first introduce the overall pipeline of

the proposed STKM network. Next, we present details of

ordered text sequence generation and design of loss func-

tion. At last, we introduce the scheme of fine-tuning.

Models pre-trained using ImageNet have been proven to

capture rich semantic information from images. However,

as the text information of image is not explicitly studied,

ImageNet pre-training can not capture text knowledge. In

order to learn text specific representation in image and pro-

vide better prior knowledge for text detection, we propose

STKM for text knowledge mining. For scene text images,

text recognition requires more complete information than

text detection. As shown in Figure 2, it is hard to recognize

the incomplete text which, however, can be detected easily.

Therefor our STKM aims at mining rich prior knowledge of

text into pre-trained models by text recognition task. Due to

the small size available and large number of text instances

in scene text images, STKM is designed to directly recog-

nize all word instances in the image, without requirement

of detection

3.1. Network Architecture

Inspired by transformer [33] , we propose STKM to ac-

quire general prior knowledge for text detection using atten-

tion mechanism. As shown in Figure 3, STKM consists of

two main components, a CNN Encoder to transform the in-

put image into the feature map with high-level semantic in-

formation, and a Self-attention Decoder to decode features

extracted by the CNN Encoder into text sequence.

CNN Encoder. The basic framework of CNN Encoder

consists of standard CNN backbone and FPN [15]. We

firstly extract four feature maps {P2, P3, P4, P5} from dif-

ferent layers of backbone with 256 channels. In order to

combine different levels of semantic features together, we

fuse four feature maps to obtain the enhanced feature map

Fe through operation C(.), which is shown as :

Fe = C(P2, P3, P4, P5)

= Down×2(P2) ‖ P3 ‖ Up×2(P4) ‖ Up×4(P5)
(1)

where ”‖” refers to concatenation, Down×2 denotes 2 times

down-sampling and Up×2 , Up×4 represent 2 and 4 times

up-sampling, respectively. After that, feature map Fe is fed

into a 1×1 convolution layer to reduce the number of chan-

nels from 1024 to 512. The shape of Fe is H × W × C,

where H,W is 1

4
height and width of the input image, and

C presents channels.
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Since the subsequent operations will flat the output of

CNN Encoder into a sequence, the spatial relationship of

Fe will be lost. We design an Adaptive Spatial Position

Encoder Module(ASPM) to relieve this problem. ASPM is

a fully convolutional network, with a sigmoid layer. We

generate a coordinate matrix M as input of ASPM, which

can be shown as:
{

M(j, i, 0) = j/H j ∈ [0, H)

M(j, i, 1) = i/W i ∈ [0,W )
(2)

where H and W denote the height and wight of the feature

map Fe, respectively. The generated coordinate matrix M
has the same length and width as Fe. The ASPM can adap-

tively encode the coordinate matrix M into spatial position

encoding S. Finally, we add S and Fe to obtain the output

of CNN Encoder F , which has the same shape as Fe.

Multi-head Self-attention Module

Feed-forward Module
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Figure 4. The overview of the Self-Attention module.

Self-attention Decoder. The main challenge of our de-

sign is how to convert the feature extracted from backbone

into a single text sequence, which determine the quality of

text knowledge mined by STKM. Inspired by transformer,

we design a Self-attention Decoder to achieve this goal. As

shown in Figure 4, we stack four identical decoder layers

to construct the Self-attention Decoder, and each decoder

layer consists of a masked multi-head self-attention mod-

ule, a multi-head attention module and a feed-forward mod-

ule. We present the detail of these modules in the supple-

mentary material due to the page limit. First, the masked

multi-head self-attention module obtains the non-local se-

quence Snon by modeling dependencies between different

characters within previous outputs outprev . After that, we

flat the feature map F output by CNN Encoder into a fea-

ture sequence I with the shape of K × C, where K equals

to H × W , and C is the dimensions of each vector in the

feature sequence. The output of multi-head attention mod-

ule is computed by a weighted operator applied to flatten

Algorithm 1 OTSG

Input: The list of Nw words present in an input image: W ;

The maximum number of characters for the text sequence: L;

Output: An ordered text sequence inserted with required flags: G;

1: function GENERATION(W , L)

2: G← ∅

3: Sort the words in list W according to ASCII order, get Wsorted;

4: Add SOS to G;

5: for i = 1 to Nw do

6: Add the characters of the i-th word in Wsorted to G;

7: Add WOS to G;

8: end for;

9: Add EOS to G;

10: if the length of G is less than L then

11: Add padding flag POS to G;

12: end if

13: for each character gi in G do

14: generate the one-hot vector with dimension Nc:

[gi(1) . . . gi(n) . . . gi(Nc)];
15: end for

16: return G.

17: end function

sequence I . The attention weights are denoted as α with

the shape of L × K, where L represents the length of out-

put sequence. We compute the output of attention module

as follows:
{

α = Attn(I, Snon)

Oatt = α× I
(3)

where Attn is an operation that calculates α using I and

Snon. We present the details of Attn in the supplementary

material. The shape of Oatt is L × C. Each vector in Oatt

can be decoded into a character. After that Oatt is fed into

a feed-forward module, which consists of two linear layers

and one ReLU layer in order to provide the network with

non-linear transformations. At last, we take the output of

the last decoder layer as the input of classification module,

which consists of a single linear layer and softmax layer, to

get the output sequence Sout.

The Sout is a sequence consisting of L characters

{c1, c2, · · · , ci, · · · , cL}, where each character is repre-

sented by a probability vector with dimension Nc, ci =
[ci(1), ci(2), · · · , ci(n), · · · , ci(Nc)]. In this paper, we

consider to recognize Nc = 98 characters, i.e. 10 digits, 52

case-sensitive letters, 32 punctuation characters and 4 spe-

cial flags for word separation and sequence paddings (in-

troduced in the next section). In the probability vector, the

value of ci(n) represent the probability of ci to be the n-th

character in the list of Nc(98) candidate characters.

3.2. Ordered Word Sequence Generation for Text
Recognition

As a network designed for text recognition task, our

STKM only requires image level text labels for training.

When there are a number of text instances available in the

input image, our network output a sequence of recognized
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words. See Figure 3 (a) for an example of such an ordered

word sequence. While the list of words in the output is

sorted in ASCII order, the list of labelled word instances

in the image need to be sorted in ASCII order as well, such

that the two sequences are consistent in order and can be

properly matched. We propose an OWSG (Ordered Word

Sequence Generation) algorithm to transform the available

image level text annotations into an ordered word sequence.

In the sequence, the list or words are sorted in the order of

appearance of characters based on ASCII table.

To make the output of the network separable for each

word, we add SOS (Start of Sequence), EOS (End of Se-

quence), WOS (Word of Sequence) and POS (Padding of

Sequence) to the label. While tags like SOS and EOS are

used to indicate the start and end of sequence, a line feed

flag WOS is employed to separate different words in the

sequence. As the length of sequence is required to be fixed

for the output of network, we use flag POS to pad the word

sequence to a preset length L.

The detail of text sequence generation is summarized in

Algorithm 1. Given an unordered list of words W avail-

able in an image, our OWSG algorithm first sorts the words

in ASCII order, adds SOS, EOS and WOS flags to begin-

ning, end and middle of the word list, respectively, and pads

the sequence to a fixed length L with POS. Finally, each

character gi in the sequence G = {g1, g2, . . . , gi, . . . gL} is

represented by a one-hot vector [gi(1) . . . gi(n) . . . gi(Nc)]
with dimension Nc. While all others are set as zero, the n-th

element corresponding to character gi will be set as one.

3.3. Loss Function

Given a ground truth sequence G =
{g1, g2, . . . , gi, . . . , gL} generated by our OWSG and

the output Sout = {c1 . . . ci . . . cL} of our network STKM,

a KLDiv (Kullback-Leibler Divergence) loss function is

designed in our paper to calculate the loss:

D(G ‖ Sout) =

L
∑

i=1

Nc
∑

n=1

gsmooth
i (n) log

gsmooth
i (n)

ci(n)
(4)

gsmooth
i (n) = gi(n)× (1− ε) + ε/Nc (5)

where L denotes the number of characters in the two se-

quences, Nc represent the dimension of one-hot/probability

vector for each character and gi(n), ci(n) represent the n-

th code/probability for the i-th character gi and ci, respec-

tively.

We adopt label smoothing presented in [30] to soft the

label G and avoid the cases where gi(n)/ci(n) = 0. As a

result, gi(n) is transformed to gsmooth
i (n) first before it’s

input to equation for calculation of the loss. In equation

5, ε is a pre-set hyper-parameter that adjusts the degree of

smoothness and we set ε = 0.1 in this paper. While D(G ‖
Sout) become calculable for all different G, the smoothing

operation can also reduce the gap between the true category

probability and the mean probability of other categories, so

as to avoid over-fitting.

3.4. Network Training and Backbone Fine­tuning

To learn the useful text knowledge, image level text

recognition task is used to train our STKM. In this task,

the network is required to recognize all of the texts (word

level) available in an input image. Through this task, the

backbone in STKM can learn important features about the

contents of text, rather than looking at the bounding box of

texts only. Once the text knowledge has been learned by the

backbone, it can be transferred to general text detectors and

fine-tuned by target datasets.

4. Experiments

In this session, we first briefly introduce the datasets and

present the implementation details of our methods. Then

we transfer the backbone of proposed STKM to EAST

and PSENet, and compare them with other state-of-the-art

methods on various challenging benchmarks. While EAST

is one of the most commonly used algorithms for detect-

ing linear texts of arbitrary orientation, PSENet is designed

to detect curved text with the help of segmentation. Finally,

we conduct ablation studies and different comparison exper-

iments to demonstrate the effectiveness and generalization

ability of our method.

4.1. Datasets

Syhthtext [7] contains more than 800K synthetic im-

ages, which are created by pasting words on the image ac-

cording to certain rules. Most of these images are at word

level annotations. This dataset is used to train our STKM.

ICDAR2015 [10] was introduced in the ICDAR 2015

Robust Reading Competition for incidental scene text de-

tection, which consists of 1000 training images and 500

testing images, both with texts in English. The annotations

are at the word level and the locations of texts are labeled

with quadrilateral boxes.

ICDAR2017 [23] is a multi-lingual (9 languages)

datasets, which contains 7,200 training images, 1,800 vali-

dation images, and 9,000 testing images. Similar to IC15,

the text regions in IC17 are also annotated by the 4 vertices

of quadrilaterals.

MSRA-TD500 [38] consists of 300 training and 200

testing images where texts includes Chinese and English.

The annotations are at the word line level, and text regions

are labeled with rotated rectangles.

TotalText [3] has 1255 training images and 300 testing

images. Recently presented in ICDAR 2017, the text re-

gions are labeled with polygon and the annotations are at

word-level.
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(a) (b)

Figure 5. Visual results of the proposed method. (a) Heatmap visualization. (b) Results on ICDAR2015. Left column: detection results of

original EAST. Right column: detection results of EAST with backbone pre-trained in STKM.

CTW-1500 [39] consists of 1000 training and 500 test-

ing images, with total of 10751 text instances. Every image

has curved text instances, which are annotated at text-line

level by a region of 14 vertices.

4.2. Implementation Details

Training. We use ResNet [8] as the backbone of the pro-

posed STKM and use SynthText dataset mentioned above as

training set. For data augmentation, we rotate the original

images in an angle range of -20◦ to +20◦. Random cropping

is not applied because we don’t use location annotations and

couldn’t confirm whether the text region is clipped or not.

The rotated image is resized to 512 × 512. We apply Adam

optimizer to train our model with an initial learning rate 1 ×
10−4. The model is trained end-to-end for 10 epochs on 2

Tesla V100 GPUs with batch size of 32. Unlike other meth-

ods, STKM only needs to be trained once, and the weights

of backbone can be transferred to different text detectors for

fine-tuning on the target dataset.

Backbone Fine-tuning. We fine-tune EAST and

PSENet on various public datasets. For EAST, we choose

ICDAR2015, ICDAR2017 and MSRA-TD500 as target

datasets due to its limitation on processing curved texts. We

apply random crop and rotation for input images, which are

then resized to different sizes, due to various text lengths

and image sizes in different datasets. Specifically, the im-

ages of ICDAR2015, ICDAR2017, and MSRA-TD500 are

resized to 512 × 512, 640 × 640, 640 × 640, and the batch

size is 32, 22, and 22, respectively. Adam optimizer is used

for training with initial learning rate 1 × 10−4. We train

EAST for 600 epochs on ICDAR2015 and MSRA-TD500

datasets and the learning rate is decreased by 0.1 every 200

epochs. For ICDAR2017, a total of 150 epochs are trained

with a learning rate decrease of 0.1 per 50 epochs.

For PSENet, we select ICDAR2015, TotalText and

CTW-1500 as target datasets. The data augmentation for

training data follows the steps of the original paper. We

train PSENet for 600 epochs using stochastic gradient de-

scent (SGD) optimizer where the batch size is set to 16.

Weight decay and momentum are set as 0.0001 and 0.9, re-

spectively. The initial learning rate was set to 1 × 10−3 and

decreased by 0.1 after epoch 200 and 400. All the experi-

ments of EAST and PSENet are performed on a single Tesla

V100 GPU.

4.3. Visual Results

We show some qualitative results of our method in Fig-

ure 5. Inspired by CAM [42]. we firstly visualize the fea-

tures output by the CNN Encoder to better understand their

properties. As shown in Figure 5 (a), the highlighted text

area of 2D attention masks indicates that our method is able

to learn the positions of characters without text location

annotations. Meanwhile, such rich semantic information

mined by standard backbones can be useful prior knowledge

for subsequent text detection. Take EAST for example, Fig-

ure 5 (b)shows that EAST with the backbone pre-trained in

STKM can detect text more accurately while the original

EAST may easily produce false positives in texture-like ar-
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eas, like windows. Lot of texts like ”SHA” (the 2nd row)

and ”aigonlofu” (the 3rd row) are also missed by the origi-

nal EAST. The Self-attention Decoder of our STKM guides

the backbone to learn both position information and dis-

criminative semantic representations useful for text detec-

tion, so as to reasonably improve the detection performance

on target datasets after fine-tuning.

4.4. Ablation Study

To demonstrate the effectiveness of the proposed Self-

attention decoder in STKM, we conduct ablation experi-

ments by evaluating the performances of EAST and PSENet

on ICDAR2015, ICDAR2017, MSRA-TD500, CTW-1500

and TotalText, and report their results in Table 1. When

the self-attention decoder is not included, we replace it with

standard ResNet classification head and convert STKM into

a character-level multi-label classification network. As

shown in Table 1, the inclusion of Self-attention Decoder

significantly increases the F-measure of both EAST and

PSENet. While the improvement of EAST on ICDAR2015,

ICDAR2017 and MSRA-TD500 are 6.74%, 6.99% and

9.34%, respectively, that of PSENet on ICDAR2015, CTW-

1500 and TotalText are 5.06%, 3.02% and 5.61%, respec-

tively.

Table 1. Ablation study for Self-attention Decoder. “P”, “R” and

“F” represent the precision, recall and F-measure respectively.

”SD?” means whether Self-attention Decoder is included or not.
Algorithms Datasets SD? P R F Gain

EAST

IC15
78.01 82.14 80.02

X 88.72 84.88 86.76 +6.74

IC17
72.88 54.50 62.36

X 73.23 66.85 69.35 +6.99

TD500
70.05 69.93 69.99

X 81.64 77.15 79.33 +9.34

PSENet

IC15
84.31 77.61 80.82

X 87.78 84.06 85.88 +5.06

CTW
79.71 74.25 76.89

X 80.67 79.17 79.91 +3.02

TotalText
80.68 72.81 76.54

X 86.32 78.36 82.15 +5.61

4.5. Comparisons with Different Pre­training
Strategies

As ImageNet and SynText are widely used datasets to

pre-train different text detectors, we perform evaluation of

our STKM with these baselines in this section. For a fair

comparison, we firstly re-implement the original EAST and

PSENet, so that ImageNet pre-training can be applied. Then

we replace ImageNet pre-training with other strategies to

fine-tune these two text detectors on target datasets. Fig-

ure 6 shows the variances of F-measure for EAST on IC-

DAR2015 dataset, when it is pre-trained by different strate-

gies for various epochs. As shown in the figure, the per-

formance of EAST generally improve with the increase of

epochs and become stable when the number approaches

10. There is a large margin between the performances of

SKTM, SynthText pre-training and ImageNet pre-training.
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Figure 6. F-measure for different pre-training epochs.

Table 4 shows the performances of different pre-training

strategies, together with that of our approach. As there

is a large domain gap between natural scene images with

text images, the performances of EAST and PSENet using

the backbones pre-trained by ImageNet achieves the low-

est F-measure. The F-measure gains of EAST using the

backbone trained by our SKTM on ICDAR2015 and IC-

DAR2017 are 5.89% and 3.18%, respectively, which are

significantly higher than that of EAST pre-trained by Im-

ageNet and SynthText. Similar results are also suggested

by PSENet.

To further justify the generalization capability of our

SKTM, we also tested the performance of backbone pre-

trained by EAST/PSENet using SynthText and list their re-

sults in Table 4. Take IC15 for example, while the per-

formance of EAST using backbone pre-trained by PSENet

only achieves slightly better performance (+0.67%) than

ImageNet pre-training, that of EAST for IC17 dataset

is even substantially lower (-4.35%) than ImageNet pre-

training. The poor robustness shows that the backbone

trained with a specific detector, e.g PSENet, may not be

suitable for other detectors like EAST. When PSENet is

concerned, the F-measure gains of our SKTM are also sig-

nificantly higher than that of backbone pre-trained using

EAST for both IC15 and CTW-1500 datasets.

4.6. Comparisons with State­of­the­Arts

In this section, we compare EAST and PSENet using the

backbone pre-trained in STKM with other state-of-the-art

methods on different challenging benchmarks and report

their results in Table 2 and Table 3, respectively. Without

using any tricks, the last row of Table 2 shows that the F-

measure of EAST applying our STKM has improved sig-

nificantly on all datasets (5.89% on ICDAR2015, 3.18% on

ICDAR2017 and 10.86% on MSRA-TD500). Similarly, as
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Table 2. Experimental results on ICDAR2015, ICDAR2017 and MSRA-TD500. The symbol “*” means our implementation. The number

in [ ] denotes the relative improvement. “Addl” indicates additional data.

Algorithms Addl
IC15 IC17 TD500

Precsion Recall F-measure Precsion Recall F-measure Precsion Recall F-measure

SegLink [28] X 76.8 73.1 75 - - - 86 70 77

RRD [14] X 85.6 79.0 82.2 - - - 69 79 74

PixelLink [4] - 81.7 82.9 82.3 - - - 81.1 73 76.8

MSR [37] - 86.6 78.4 82,3 - - - - - -

TextBoxes++ [12] X 87.8 78.5 82.9 - - - - - -

PAN [35] - 82.9 77.8 80.3 - - - - - -

FOTS [17] X 88.8 82 85.3 57.5 79.5 66.7 - - -

Lyu et al [21] X 94.1 70.7 80.7 83.6 55.6 66.8 - - -

EAST* [43] - 82.83 79.08 80.87 70.27 62.52 66.17 69.43 67.52 68.47

EAST + STKM (ours) - 88.72 84.88 86.76[+5.89] 73.23 66.85 69.35[+3.18] 81.64 77.15 79.33[+10.86]

Table 3. Experimental results on ICDAR2015, TotalText and CTW-1500. The symbol “*” means our implementation. The number in [ ]

denotes the relative improvement. “Addl” indicates additional data.

Algorithms Addl
IC15 TotalText CTW

Precsion Recall F-measure Precsion Recall F-measure Precsion Recall F-measure

TextSnake [20] X 84.9 80.4 82.6 82.7 74.5 78.4 67.9 85.3 75.6

SegLink [28] X 73.1 76.8 75.0 30.3 23.8 26.7 42.3 40.0 40.8

Textfield [36] X 84.3 83.3 84.1 81.2 79.9 80.6 83 79.8 81.3

LOMO [40] X 91.9 83.5 87.2 88.6 75.7 81.6 89.2 69.6 78.4

TextDragon [5] X 84.8 81.8 83.1 79.5 81.0 80.2 84.5 74.2 79.0

Tian et al. [32] X 85.1 84.5 84.8 - - - 82,7 77.8 80.1

PSENet* [34] - 82.5 78.09 80.24 81.8 75.1 78.31 81.63 76.04 78.74

PSENet + STKM (ours) - 87.78 84.06 85.88[+5.64] 86.32 78.36 82.15[+3.84] 85.08 78.23 81.51[+2.77]

Table 4. Comparisons of different Pre-training strategies. “P”, “R”

and “F” represent the precision, recall and F-measure respectively.
Algorithms Datasets Pre-train P R F Gain

EAST

IC15

ImageNet 82.83 79.08 80.87 -

SynthText 83.22 83.87 83.55 +2.68

PSENet 83.76 79.53 81.54 +0.67

STKM(ours) 88.72 84.88 86.76 +5.89

IC17

ImageNet 70.27 62.52 66.17 -

SynthText 71.25 66.29 68.68 +2.51

PSENet 71.39 54.51 61.82 -4.35

STKM(ours) 73.23 66.85 69.35 +3.18

PSENet

IC15

ImageNet 82.50 78.09 80.24 -

SynthText 86.32 80.54 83.33 +3.09

EAST 86.44 81.34 83.81 +3.57

STKM(ours) 87.78 84.06 85.88 +5.64

CTW

ImageNet 81.63 76.04 78.74 -

SynthText 81.80 77.80 79.72 +0.98

EAST 80.67 79.17 79.91 +1.17

STKM(ours) 85.08 78.23 81.51 +2.77

show in Table 3, PSENet equipped with the backbone of

STKM achieves substantial improvements of 5.64%, 3.76%

and 2.77% in F-measure on ICDAR2015, TotalText and

CTW-1500, respectively.

Among state of the art approaches like SegLink [28],

TexBoxes++ [12] and PAN [35] etc., the F-measure of

EAST using the backbone of STKM is consistently the

highest on ICDAR2015, ICDAR2017 and MSRA-TD500

datasets. The performance gains of our approach over the

runner up are around 1.4%, 3% and 3% on ICDAR2015,

ICDAR2017 and MSRA-TD500 datasets, respectively. The

F-measure of PSENet using the backbone of STKM is also

the highest among state-of-the-art approaches for TotalText

and CTW-1500 datasets. For ICDAR2015 dataset, the F-

measure of our approach ranks the second, which is about

1.32% lower than that of LOMO [40]. However, compared

with PSENet, the network of LOMO is much more compli-

cated. LOMO firstly use SynthText and its location annota-

tions to train their detector for 10 epochs, and then fine-turn

it on the IC15 dataset. Note that our approach can also be

integrated with LOMO to further improve its performance.

5. Conclusion

We propose in this paper the first text knowledge min-

ing network, whose backbone can be transferred to differ-

ent text detectors to improve their detection performance.

Integrated with the proposed self-attention module, the pro-

posed STKM can learn text knowledge from datasets with

only image level text annotations. The learned text knowl-

edge can thereafter be transferred to different text detectors

to improve their performance. Extensive experiments on

challenging benchmarks demonstrate the effectiveness and

generalization ability of our STKM.
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