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Abstract

Human pose estimation from single images is a challeng-

ing problem in computer vision that requires large amounts

of labeled training data to be solved accurately. Unfortu-

nately, for many human activities (e.g. outdoor sports) such

training data does not exist and is hard or even impossible

to acquire with traditional motion capture systems. We pro-

pose a self-supervised approach that learns a single image

3D pose estimator from unlabeled multi-view data. To this

end, we exploit multi-view consistency constraints to disen-

tangle the observed 2D pose into the underlying 3D pose

and camera rotation. In contrast to most existing meth-

ods, we do not require calibrated cameras and can there-

fore learn from moving cameras. Nevertheless, in the case

of a static camera setup, we present an optional extension

to include constant relative camera rotations over multiple

views into our framework. Key to the success are new, unbi-

ased reconstruction objectives that mix information across

views and training samples. The proposed approach is eval-

uated on two benchmark datasets (Human3.6M and MPII-

INF-3DHP) and on the in-the-wild SkiPose dataset.

1. Introduction

Human pose estimation from single images is an ongo-

ing research topic in computer vision. There exist a large

amount of supervised deep learning solutions in the litera-

ture. These approaches achieve remarkable results in a su-

pervised setting, i.e. having 2D to 3D annotations, but heav-

ily rely on a vast amount of available training data. How-

ever, there are many activities a person can perform which

are not present in common datasets. For instance, human

motions performed during outdoor and/or sports activities,

e.g. as shown in Fig. 1, are hard or even impossible to cap-

ture with a commercial motion capture systems. There-

fore, the acquisition of training data is a major practical

challenge. To this end, we propose a novel self-supervised

training procedure that does not require any 2D or 3D an-

Figure 1. CanonPose learns a monocular 3D human pose estimator

from multi-view self-supervision. By estimating 3D poses from

different views in a canonical form together with the respective

camera rotations we exploit multi-view consistency in the training

data. Even for challenging outdoor datasets with moving cameras

we achieve convincing 3D pose estimates from single images after

training.

notations in the multi-view training dataset and works with

uncalibrated cameras. To acquire 2D joint predictions from

images we use a 2D human joint estimator [7] that is pre-

trained on a different dataset with only 2D joint annotations.

The only requirements for our method are at least two tem-

porally synchronised cameras that observe the person of in-

terest from different angles. No further knowledge about the

scene, camera calibration and intrinsics is required. Sev-

eral related works consider a sparse set of 3D annotations

[36, 34, 29], unpaired 3D data [47, 48, 16], or known cam-

era positions [36, 34] to solve this problem. However, such

data rarely exists for outdoor settings with moving cameras.

To the best of our knowledge, there are only three compet-

ing methods [2, 14, 11] that apply to our setting. They either

require additional knowledge about the scene or observed

person, such as scene geometry [2] and bone lengths con-

straints [11], or sophisticated traditional computer vision al-

gorithms that produce a pseudo ground truth pose [14].

We propose a self-supervised training method which

mixes outputs of multiple weight-sharing neural networks.

Fig. 2 shows our training pipeline when using two cameras.

Each individual network takes a single image as input and

outputs a 3D pose in a canonical rotation, which gives our
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method its name CanonPose. This representation allows for

the projection of all estimated 3D poses to any camera of

the setup. Our approach splits into two stages. The first

stage predicts the 2D human pose from an image using a

neural network pretrained on the MPII dataset [24], in our

case AlphaPose [7, 17]. The second stage lifts these 2D

detections to a 3D pose represented in a learned canonical

coordinate system. In a separate path it predicts the cam-

era orientation to rotate the predicted 3D pose back into the

camera coordinate system. Combining the 3D pose from a

first view with the rotation predicted from a second view, re-

sults in a rotated pose in the second camera coordinate sys-

tem. In other words, both 3D poses in the pose coordinate

system should be equal and the predicted rotations project

it back into the respective camera coordinate systems. This

enables the definition of a reprojection loss for each orig-

inal and newly combined reprojection. For static camera

setups we propose an optional reprojection loss that is com-

puted by mixing relative camera rotations between samples

in a training batch. Additionally, in contrast to existing self-

supervised approaches, we make use of the confidences that

are typically provided by 2D pose estimators for each pre-

dicted 2D joint by including them into the 2D input vector

as well as into the reprojection loss formulation.

We evaluate our approach on the two benchmark datasets

Human3.6M [10] and MPI-INF-3DHP [24] and set the new

state of the art in several metrics for self-supervised 3D pose

estimation. Notably, this is without assuming any camera

calibration or static cameras. Our results are competitive to

the fully supervised approach of Martinez et al. [23] which

sets the baseline for single image pose estimation from 2D

detections. Additionally, we show results for the SkiPose

[39, 36] dataset. This dataset represents all challenges that

arise when activities are captured that cannot be performed

in the restricted setting of a standard motion capture system.

It consists of outdoor scenes captured on a ski slope and

includes fast motions, a large capture volume and pan-tilt-

zoom cameras.

The code is available on GitHub 1.

Summarizing, our contributions are:

• We present CanonPose: a self-supervised approach to

train a single image 3D pose estimator from unlabeled

multi-view images by mixing poses across views.

• Our approach requires no prior knowledge about the

scene, 3D skeleton or camera calibration.

• The proposed method directly employs multi-view im-

ages without any laborious pre-processing, such as

camera calibration or multi-view geometry estimation.

• We integrate the confidences from the 2D joint estima-

tor into the training pipeline.

1https://github.com/bastianwandt/CanonPose

Figure 2. Network structure to learn single image 3D pose estima-

tion from multi-view self-supervision. Each lifting network pre-

dicts a 3D pose and a camera rotation which is used to project the

3D pose back to 2D. Both networks observe the same 3D pose

from different angles. We exploit this fact by applying the cam-

era rotation to the respective other pose. This projects a predicted

3D pose into the other camera and gives an additional reprojection

error. At inference time only one view (gray box) is applied.

2. Related Work

In this section we discuss recent 3D human pose estima-

tion approaches by different types of supervision.

Full Supervision Recent supervised approaches rely on

large datasets that contain millions of images with corre-

sponding 3D pose annotations. Li et al. [18] were the first to

learn CNNs to directly regress a 3D pose from image input.

By integrating a structured learning framework into CNNs

they later improved their work [20]. Several others followed

this end-to-end approach [44, 30, 5, 26, 32, 38, 45, 42, 22,

43, 52, 19, 50, 13]. Typically, these end-to-end approaches

perform exceptionally well on similar image data. However,

their ability to generalize to other scenes is limited. Many

works tackle this problem by cross dataset training or data

augmentation.

There are other approaches that do not consider the im-

age data directly but use a pretrained 2D joint detector

[1, 28, 6, 24, 31, 25]. They benefit from training on large

datasets that contain 2D annotations for many human activi-

ties in various scenes and are therefore agnostic to the image

data. Martinez et al. [23] directly train a neural network on

2D detections and 3D ground truth. Due to its simplicity it

can be trained quickly for many epochs leading to high ac-

curacy and serves as a baseline for many following works.

The approach of [23] was extended by Hossain et al. [33]

by employing a recurrent neural network for sequences of

human poses. While effective, the major downside of all

supervised approaches is that they do not generalize well

to unseen poses. Therefore, their application to in-the-wild

scenes is limited.
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Weak Supervision Weakly supervised approaches only

require a small set or even no annotated 2D to 3D corre-

spondences. An example for a commonly applied evalua-

tion protocol for the Human3.6M dataset assumes that 3D

annotations for one of the subjects of the training set are

available. A transfer learning approach is introduced by

Mehta et al. [24] to allow for in-the-wild pose estimation

of datasets where no training data is available. This frame-

work was later extended by Mehta et al. [26] to achieve

real-time performance. Rhodin et al. [36] use multi-view

images and known camera positions to learn a 3D pose em-

bedding in an unsupervised fashion. The embedding fa-

cilitates the training with only a sparse set of 3D annota-

tions. This idea was adopted in other works [34, 29, 27, 40].

Another approach is to employ unpaired 2D and 3D poses

[47, 48, 16, 51, 3, 8]. Since these method learn distribu-

tions of plausible 3D poses and their properties they gener-

alize better to unseen poses. Although they are able to re-

construct out-of-distribution poses to a limited degree they

struggle with completely unseen poses.

Self-supervised and Unsupervised Learning without 3D

Ground Truth Recently, the interest in multi-view self-

supervised and unsupervised 3D pose estimation is grow-

ing. Our work also falls into this category. Drover et al.

[4] propose an unsupervised approach to monocular human

pose estimation. They randomly project an estimated 3D

pose back to 2D. This 2D projection is then evaluated by

a discriminator following adversarial training approaches.

Chen et al. [2] extended [4] with a cycle consistency loss

that is computed by lifting the randomly projected 2D pose

to 3D and inversing the previously defined random pro-

jection. Although these two approaches are unsupervised,

they integrate knowledge about the scene by constraining

the camera rotation axis that is used for the random pro-

jection. Rochette et al. [37] use a large amount of cam-

eras from different viewing angles to achieve on par perfor-

mance with a comparable fully supervised approach. How-

ever, due to the restriction to the camera setup the practi-

cal applicability is limited. Kocabas et al. [14] propose

a multi-view self-supervised approach which does not re-

quire any 3D supervision. They apply traditional computer

vision methods, namely epipolar geometry, to 2D pose pre-

dictions from multiple views to compute a pseudo ground

truth which is then used to train the 3D lifting network. Al-

though this simple and effective straight-forward approach

gives promising results, the laborious preprocessing step

is very parameter sensitive and therefore does not gener-

alize well. Moreover, mistakes due to wrongly estimated

joints in the 2D prediction step result in a wrong pseudo

ground truth. Iqbal et al. [11] tackle this problem by train-

ing an end-to-end network that refines the pre-trained 2D

pose estimator during the self-supervised training. Unfor-

tunately, such approaches tend to easily overfit to a specific

dataset. For example, it could learn a background image

for the training dataset which leads to exceptional perfor-

mance on the specific dataset but does not generalize to

other backgrounds. This even happens in self-supervised

settings. Furthermore, Iqbal et al. [11] employ a loss on

normalized 3D bone lengths which is computed from the

ground truth 3D poses of the Human3.6M training set.

In contrast, our approach does not require knowledge

about the scene and camera position or any anthropomet-

ric constraints. Additionally, it is modular such that any 2D

pose estimator can be used which makes it agnostic to the

image data. Even though our approach relaxes many con-

straints of the comparable works it still outperforms them in

most experiments.

3. Method

Our approach consists of two steps: first applying an off-

the-shelf 2D joint detector to the input images, and second

lifting these detections and the respective confidences for

each joint to 3D. The core idea of our approach is that 2D

detections from one view can be projected to another view

via a canonical pose space2. Fig. 2 shows our pipeline us-

ing two cameras. For simplicity the network structure is

shown for only two cameras. If more cameras are available

it is straight-forwardly extended. A single neural network,

the 3D lifting network, predicts the 3D pose X ∈ R
3×j

with j joints and a rotation R ∈ R
3×3 to rotate the pose

to the camera coordinate system. The pose is represented

in a canonical pose coordinate system which is automati-

cally learned during training. Subsequently, the predicted

3D pose is rotated from the pose coordinate system to the

camera coordinate system by the predicted rotation. This

separation into canonical human pose and camera rotation

enables us to formulate various reprojection losses for self-

supervision across views and samples.

3.1. Reprojection

Before a 2D pose is lifted to 3D it is normalized by cen-

tering it to the root joint and scaled by dividing it by its

Frobenius norm. This sidesteps the scale-depth ambiguity

in monocular reconstruction. In particular, the root center-

ing gives a common rotation point for all 3D predictions.

For each view the predicted 3D pose is rotated into the cam-

era coordinate system by RX . R ∈ R
3×3 is a rotational

matrix such that RRT = I3 with I3 as the 3 × 3 identity

matrix and det(R) = 1. Since we assume weak perspective

cameras, the projection to the camera plane is simply done

by removing the depth coordinate, which is expressed as

Wrep =

(

1 0 0
0 1 0

)

RX, (1)

2The benefit of canonical representations is also shown in [41].
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where Wrep ∈ R
2×j is called the reprojected 2D pose.

With W as the input 2D pose we define the scale-

independent reprojection loss as

Lrep =

∥

∥

∥

∥

W −
Wrep

‖Wrep‖F

∥

∥

∥

∥

1

, (2)

where ‖ · ‖1 denotes the L1 norm. Since the global scale of

the 3D pose is unknown and we consider weak perspective

projections, scaling the reprojection Wrep is essential. Note

that the input 2D pose W is already divided by its Frobenius

norm in the preprocessing. That means both, the input pose

and the predicted pose, have the same scale.

To ensure that the network predicts a proper rotation,

the matrix R is not predicted directly, but in axis-angle

representation. Let (θ) be a rotational angle and ω =
(ω1, ω2, ω3) denote a rotation axis. With

A =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (3)

Rodrigues’ formula is applied to obtain the rotation matrix

R = I3 + (sin θ)A+ (1− cos θ)A2. (4)

3.2. Viewconsistency

A straight-forward way of ensuring view consistency

would be to enforce a loss, such as L2, between the canoni-

cal poses predicted by two views. In theory, that loss should

be zero for the correct solution because the same person

seen from two different views should have the same canon-

ical pose. In practice, however, this leads to the lifting net-

work learning 3D poses that are view invariant but no longer

in close correspondence to the input pose, preventing the

network to converge to plausible solutions in our prelimi-

nary experiments.

The key insight to the proposed method is that rotations

and poses from different views can be mixed to enforce the

view consistency as a variant of the previously introduced

reprojection objective. We mix the predicted camera and

pose of two views, say view-1 and view-2, by rotating the

predicted canonical 3D pose from the source view-1 to the

target view-2 by using the rotation from view-2. For two

cameras as in Fig. 2 there exist four possible combinations

of rotations and poses. The same approach is easily ex-

tended to m cameras which gives m2 combinations. Dur-

ing training time all possible combinations are reprojected

to the respective cameras. With this training scheme we

enforce multi-view consistency without bias towards trivial

solutions. Note that the lifting network is only applied to a

single frame at inference stage and does not need any other

inputs.

3.3. Confidences

The output of most pretrained 2D joint estimators are 2D

heatmaps where each entry indicates the confidence for the

presence of the corresponding joint at the associated posi-

tion in the image. Commonly, the argmax or soft-argmax

is computed and given as input to the following lifting net-

work. However, this gives an exact joint position indepen-

dent of the confidence of the 2D detection. That means un-

certain predictions are processed in the same way as certain

ones. We circumvent this problem by two simple modifi-

cations. First, we concatenate the maximum value of each

heatmap, which is a surrogate to its confidence, to the 2D

pose input vector to our lifting network. Second, we mod-

ify the reprojection error in Eq. 2 such that each difference

between input and reprojected 2D is linearly weighted with

its confidence by

Lrep,c =

∥

∥

∥

∥

(

W −
Wrep

‖Wrep‖F

)

⊙C

∥

∥

∥

∥

1

, (5)

where

C =

(

c1 c2 . . . cj
c1 c2 . . . cj

)

(6)

with ci as the maximum value of the heatmap for joint i and

⊙ as the Hadamard product.

3.4. Cameraconsistency

A reasonable assumption for many practical motion cap-

ture setups is that cameras are static during recording a se-

quence, i.e. they do not change their position or orientation.

This is the case for the Human3.6M3 and 3DHP dataset.

However, this assumption is not mandatory for our pro-

posed method, but an enhancement for scenes with static

cameras. We will show the effect of this optional improve-

ment in the experiments as well as the performance of our

approach without it on the SkiPose dataset that contains

moving cameras.

For a static camera setup all relative rotations between

the cameras are equal. An intuitive approach to enforce

static cameras is to calculate an L2-loss between the rela-

tive rotations over one batch of training samples. However,

a batch-wise loss leads to degraded solutions or had no ef-

fect if its weight was set to a low value. This observation is

similar to the findings regarding the canonical pose equal-

ity in Sec. 3.2. For this reason we propose a similar mixing

approach as in Sec. 3.2, now over estimates from different

samples in one batch. A relative rotation R1,2 using the

rotation matrices R1 and R2 from view-1 to view-2 respec-

tively, is defined by

R1,2 = R2R
T
1 . (7)

3In fact, camera angles change between subjects but not during a cap-

ture session with one subject.
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Figure 3. Network structure of the lifting network. The 2D input

vector contains the x- and y-coordinates of the 2D pose and the

confidence given by the 2D joint detector. It is upscaled using

a fully connected layer with 1024 neurons which then goes to a

residual block. After that the network splits into two paths that

predict the 3D pose in the canonical space and the camera rotation,

respectively. Each of the paths has two consecutive residual blocks

followed by a fully connected layer that downscales the features

to the required size. The Rodrigues block implements Rodrigues

formula (Eq. 4) and has no trainable parameters.

Let R
(s)
1,2 be the predicted relative rotation between view-1

and view-2 of sample s. We then randomly permute these

relative rotations in the batch and use them to reproject the

canonical poses similar to Eq. 1

Wrep =

(

1 0 0
0 1 0

)

R
(s)
1,2R

(s′)
1 X

(s′), (8)

where R
(s′)
1 and X(s′) are the rotation and estimated 3D

pose in the current frame and R
(s)
1,2 is the randomly assigned

relative rotation from another sample in the batch4. The

loss is calculated in the same way as the reprojection loss in

Eq. 2. Similar to Sec. 3.2 this is easily extended to multiple

cameras. Again, we emphasize that this loss is optional to

improve the results for the case of static cameras. However,

our method works without it.

3.5. Network Architecture

Fig. 3 shows the architecture of our lifting network. The

input 2D pose vector is concatenated with a vector contain-

ing the confidences for each joint. It is upscaled to 1024
neurons by a one fully connected layer. It is followed by

a residual block consisting of fully connected layers with

dimension 1024. Similar to [47] the output is fed into two

paths, each containing two consecutive residual blocks with

identical architecture to the first block. The 3D pose path

directly outputs the 3D coordinates of the predicted pose

in the pose coordinate system. The camera path outputs a

three-dimensional vector θω which is the axis angle rep-

resentation. The rotation matrix is computed using Ro-

drigues’ formula as described in Sec. 3.1. The activation

functions after each layer, except the two output layers, are

leaky ReLU’s with a negative slope of 0.01. We train the

network for 100 epochs using the Adam optimizer with an

4For the Human3.6M dataset we ensure that relative rotations are only

changed in between subjects since camera positions vary between them.

initial learning rate of 0.0001 and weight decay at epochs

30, 60 and 90, respectively.

4. Experiments

We perform experiments on the well-known benchmark

datasets Human3.6M [10] and MPI-INF-3DHP [24]. Addi-

tionally, we evaluate on the SkiPose dataset [39, 36] to test

the generalizability of our method to real world scenarios.

To conform with our setting of training a single image pose

estimator with unlabeled images for a specific set of activ-

ities, we train one network for each dataset without using

additional datasets.

4.1. Metrics

For the evaluation on Human3.6M there exist two

standard protocols. Both protocols calculate the mean

per joint position error (MPJPE), i.e. the mean euclidean

distance between the reconstructed and the ground truth

joint coordinates. Since a multi-view self-supervised

setting does not contain metric data, we adjust the scale of

our predictions before calculating the MPJPE. For a fair

comparison with other works we compare to their scale

adjusted predictions if they are available. Protocol-I com-

putes the MPJPE directly whereas Protocol-II first employs

a rigid alignment between the poses. Additional to the

MPJPE one protocol for 3DHP calculates the Percentage

of Correct Keypoints (PCK). As the name suggests it is the

percentage of predicted joints that are within a distance of

150mm or lower to their corresponding ground truth joint.

Correct Poses Score (CPS)

For practical applications, such as motion analysis and

prediction, the evaluation of the whole pose is a crucial

prerequisite. Even if a single joint of a pose is incorrect it

can change downstream tasks significantly. The formerly

introduced metrics evaluate the quality of the prediction

joint by joint. However, they ignore the assignment of

joints to poses and instead average over all joints in the

test set. Fig. 5 compares 3D pose estimates with their

respective ground truths. Each column shows two different

reconstructions from the same pose. The reconstructions

in the top row have a lower PMPJPE compared to the

bottom row. However, the overall 3D poses appear better

reconstructed in the bottom row. In this section we present

a simple yet powerful metric to evaluate such cases, the

Correct Poses Score (CPS). A pose W is considered

correct if for all joints i the Euclidean distance is below a

threshold value θ. Given a pose with joint positions wi and

predicted joint positions ŵi after rigid alignment, a correct

pose is defined by

CPθ =

{

1 ‖wi − ŵi‖2 < θ ∀i ∈ {1, ..., j}

0 else
. (9)
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PMPJPE = 61.7

CP180 = 0

CPS = 15.3

PMPJPE = 62.64

CP180 = 1

CPS = 180.9

PMPJPE = 67.5

CP180 = 1

CPS = 162.6

PMPJPE = 72.29

CP180 = 0

CPS = 110.4

PMPJPE = 66.9

CP180 = 0

CPS = 59.8

PMPJPE = 77.61

CP180 = 1

CPS = 140.5

Figure 4. Comparison of PMPJPE and our CP-metric. Each col-

umn compares to different predicted 3D reconstructions with the

same ground truth. While PMPJPE averages out high individual

joint errors which are located in the right arm in the visualized

case, CP indicates them. In this way, the correctness of the overall

pose is evaluated. Note that for the calculation of the CPS we vary

the threshold, which in these examples is 180mm.

Additional to the PMPJPE Fig. 5 shows the CP@180mm,

which classifies the reconstructed poses into correct and in-

correct. The percentage of correct poses is calculated for

the test dataset. To be independent of the threshold, we cal-

culate the area under curve for θ ∈ [0mm, 300mm] which

defines the CPS.

4.2. Skeleton Morphing

We deploy an off-the-shelf detector AlphaPose [7] for

retrieving the 2D human pose estimation required as input

to our method. The keypoint locations in the datasets used

to train AlphaPose and other 2D pose estimation methods

differ from the 3D skeleton of the test benchmarks. For ex-

ample, the root joint position is not in the middle of the hip

joints and the relative position of the neck to the shoulders

is different. We circumvent this problem by training a 2D

skeleton morphing network that predicts the offset between

the 2D pose from AlphaPose to the ground truth 2D pose

in the dataset. We train the morphing network on subject 1
of each dataset with the given ground truth poses. To not

include these ground truth poses into our training, subject

1 is excluded in all experiments. Thereby our data used for

the self supervised training does not contain any 2D ground

truth data, mimicking real application scenarios. Note that

the morphing network never sees any images and therefore

is not able to learn domain specific image features. In an

experimental setting where the skeletal structure does not

need to match a different skeleton this step is obsolete. This

is the case for most practical applications.

Table 1. Evaluation results for the Human3.6M dataset in mm.

The bottom section, labeled with self, shows methods that can

solve our setting. Best results are marked in bold and second best

in italic.
Supervision Method MPJPE↓ PMPJPE↓

full Martinez [23] 67.5 52.5

weak Rhodin [36] 80.1 65.1

Rhodin [35] 122.6 98.2

3D interpreter [49] 98.4 88.6

AIGN [46] 97.2 79.0

RepNet [47] 89.9 65.1

HMR [12] - 66.5

Wang [48] 86.4 62.8

Kolotouros [15] - 62.0

Kundu [16] 85.8 -

self Chen [2] - 68.0

EpipolarPose [14] 76.6 67.5

Iqbal [11] 69.1 55.9

Ours 81.9 53.0

Ours + C 74.3 53.0

4.3. Quantitative Evaluation on Human3.6M and
3DHP

For the Human3.6M dataset, to keep it consistent with

previous approaches, we follow standard protocols and

evaluate only on every 64th frame. However, with a suf-

ficiently fast 2D pose estimator, which is the performance

bottle neck of our complete pipeline, we can achieve real-

time performance. Table 1 shows the results of the proposed

method compared to other state-of-the-art approaches. We

outperform every other comparable approach in terms of

PMPJPE. Note that we even achieve comparable perfor-

mance to the fully supervised method of Martinez et al.

[23] which has a lifting network with similar structure to

ours. Only one other self-supervised approach attains a

lower MPJPE, however, by using additional information.

Our analysis revealed that although our pose structure is

very accurate (which results in a low PMPJPE) the largest

part of the error originates from a slight offset in the rota-

tion. For example, comparing frame 1 from subject 9 of the

Human3.6M dataset to itself rotated by only 15◦ around the

longitudinal axis already results in an MPJPE of 67.7mm.

Most methods [2, 14, 11] that have no knowledge of the

scene or any 3D training data show this large gap between

MPJPE and PMPJPE, as a small rotation leads to small re-

projection loss but large 3D MPJPE error. Iqbal et al. [11]

still set the state of the art in terms of MPJPE. However, they

need bone length constraints which they directly compute

from the ground truth 3D data of the training set. Our ap-

proach does not require any predefined priors on the skeletal

structure. Using our static camera constraint (Ours+C) im-

proves the MPJPE significantly.

Fig. 5 shows the CPS for our method compared to Epipo-

larPose [14], which is the only comparable approach with

publicly available code, and the 3D pose estimation base-

line of Martinez et al. [23]. On this metric, we outper-
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Table 2. Evaluation results for the 3DHP dataset. The bottom sec-

tion, labeled with self, shows methods that can solve our setting.

Best results are marked in bold and second best in italic. MPJPE

and PMPJPE are given in mm, PCK is in %.
Supervision Method MPJPE↓ PMPJPE↓ PCK↑

weak Rhodin [36] 121.8 - 72.7

HMR [12] 169.5 - 59.6

Habibie [9] - - 70.4

Kolotouros [15] 124.8 - 66.8

Li [21] - - 74.1

Kundu [16] 103.8 - 82.1

self Chen [2] 71.1

EpipolarPose [14] 125.7 - 64.7

Iqbal [11] 110.1 - 76.5

Ours 119.2 68.7 69.0

Ours + C 104.0 70.3 77.0

form EpipolarPose by a large margin. Note the high thresh-

old of over 80mm that is required by [14] to achieve a CP

above 1% compared to our threshold slightly below 50mm.

As for the CPS metric, we are on par with the fully super-

vised approach of [23]. Since their originally trained model

is not publicly available anymore we retrained their model

with their provided code to report the new CPS metric. The

retrained model achieved a PMPJPE of 53.5mm, which is

slightly lower compared to their original number. The new

model is used only for reporting CPS. Fig. 6 shows qualita-

tive results for the Human3.6M data set in the first row.

We also evaluate our approach on the 3DHP dataset

[24] following the standard test protocols and metrics. Ta-

ble 2 shows the results. We outperform every other self-

supervised approach. In contrast to other approaches the

proposed method does not require calibrated cameras5 or

anthropometric constraints. For the CPS metric we achieve

a score of 134.2.

4.4. Moving cameras

Our main motivation is to enable 3D human pose estima-

tion in the wild by using a multi-view camera system with

temporally synchronised cameras. Moreover, the performed

activity should be very challenging to capture and hard to

simulate in a traditional motion capture studio. That means

a straight-forward activity domain transfer, e.g. pretraining

or combined training with a different dataset, is not reason-

able. The SkiPose dataset [39, 36] comprises all challenges

of this motivation. It features competitive alpine skiers per-

forming giant slalom runs. To record this dataset huge effort

was taken to setup and calibrate the cameras and keep them

in place after calibration. Additionally, the cameras are ro-

tating and zooming to keep the alpine skier in the field of

view. The proposed method can deal with all these diffi-

culties since it does not require a calibrated or static setup

and works with multiple synchronised cameras. Since the

5The configuration Ours+C only assumes that cameras are static during

the sequence, which is a much weaker constraint.

Figure 5. Comparison of CPS curves for distances from 1mm to

300mm with corresponding AUC for the Human3.6M dataset. A

higher value means a better result, i.e. the leftmost curve achieves

the best result in terms of CP.

Table 3. Evaluation results for the SkiPose dataset. The result for

[36] was estimated from a bar plot in the paper. Since [36] consid-

ers a (sparse-)supervised setting and known camera position it is

only shown as a baseline. MPJPE, PMPJPE and CPS are given in

mm, PCK is in %.
Supervision Method MPJPE↓ PMPJPE↓ PCK↑ CPS↑

weak Rhodin [36] 85 - - -

self 2 cams (Ours) 201.9 122.4 47.4 54.8

3 cams (Ours) 176.9 106.7 54.5 82.8

4 cams (Ours) 139.3 95.8 61.9 94.3

5 cams (Ours) 129.9 90.7 66.4 106.9

w/o conf. (Ours) 135.7 95.5 58.8 79.3

full (Ours) 128.1 89.6 67.1 108.7

camera setup is not static we cannot apply the relative rota-

tion constraint here. Table 3 shows our results for different

configurations in comparison to Rhodin et al. [36]. Since

they consider a (sparse-)supervised setting and known cam-

era positions a direct comparison is not possible and only

serves as a baseline. Fig. 6 shows qualitative results for the

SkiPose dataset in the second row.

4.5. Ablation Studies

To analyze our approach we perform a number of abla-

tion studies. First, to simulate a practical setting with lim-

ited resources, we reduced the number of cameras to train

the model. Table. 4 and Table 3 show results for the training

with different numbers of cameras. While the performance

expectedly slightly drops due to the lower number of train-

ing samples and views our approach still produces good re-

sults which underlines its applicability in real world sce-

narios. In a second experiment we show the impact of us-

ing the confidences from the 2D joint estimator as inputs to

the network and for the calculation of the reprojection error.

They significantly improve the performance of our model.
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Figure 6. Qualitative results for the Human3.6M dataset (top) and for the challenging SkiPose dataset (bottom).

Table 4. Ablation studies on the Human3.6M dataset. All values

are given in mm.
MPJPE↓ PMPJPE↓ CPS↑

2 cams 82.7 61.2 148.5

3 cams 82.0 62.2 145.6

w/o confidences 95.6 65.0 142.5

ground truth 2D 65.9 51.4 187.1

direct pose equality 554.3 360.8 0.0

direct camera equality 617.9 374.5 0.0

full (4 cams) 81.9 53.0 167.6

full+C (4 cams) 74.3 53.0 167.3

Figure 7. Visualization of the canonical pose space from the Hu-

man3.6M dataset. Left and middle: Canonical poses for the same

3D pose predicted from 4 different views. Right: 10 randomly

sampled canonical poses. Our network automatically learns a dis-

entanglement of a 2D pose into 3D and a camera rotation.

To prove that the proposed mixing of rotations and poses to

achieve view- and camera-consistency is superior to simple

equality constraints, we performed experiments with such

equality constraints. The results show that indeed our mix-

ing approach is an essential part to make it work. We also

experimented with the bone lengths constraints from [11]

that, however, did not improve the results. To compute a

lower bound we also show results for training with ground

truth 2D annotations.

4.6. Are We Learning a Canonical Pose Basis?

Finally, we evaluate the claim that we learn a canonical

pose basis. To visualize the disentanglement for different

3D poses Fig. 7 shows a visualization of reconstructed 3D

poses in the canonical basis obtained from 4 views on the

left and in the middle. The right image shows 10 randomly

picked reconstructions in the canonical space. Although the

similarity of the poses is not enforced directly as described

in Sec. 3.2 the poses are similarly oriented in the canonical

space. In particular, the hip joints are aligned which leads

to a similar alignment of the upper body. The standard de-

viation for the hip joints of the canonical poses from the test

set of Human3.6M are 7.9mm and 7.7mm for the right and

left hip, respectively. This underlines that pose and rotation

are disentangled plausibly by our network.

5. Conclusion

We present CanonPose, a neural network trained for sin-

gle image 3D human pose estimation from multi-view data

without 2D or 3D annotations. Given a pretrained 2D hu-

man pose estimator we exploit multi-view consistency to

automatically decompose a 2D observation into a canon-

ical 3D pose and a camera rotation that is used to repro-

ject it back to the observation after mixing. Since our ap-

proach does not require either 2D nor 3D annotations for the

multi-view data it is practically applicable to many in-the-

wild scenarios, including outdoor scenes with moving cam-

eras. We not only achieve state-of-the-art results on bench-

mark datasets with less prerequisites compared to other ap-

proaches, but also show promising results on challenging

outdoor scenes.
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