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Abstract

3D object detection is an important yet demanding task

that heavily relies on difficult to obtain 3D annotations.

To reduce the required amount of supervision, we propose

3DIoUMatch, a novel semi-supervised method for 3D ob-

ject detection applicable to both indoor and outdoor scenes.

We leverage a teacher-student mutual learning framework

to propagate information from the labeled to the unlabeled

train set in the form of pseudo-labels. However, due to the

high task complexity, we observe that the pseudo-labels suf-

fer from significant noise and are thus not directly usable.

To that end, we introduce a confidence-based filtering mech-

anism, inspired by FixMatch. We set confidence thresholds

based upon the predicted objectness and class probability to

filter low-quality pseudo-labels. While effective, we observe

that these two measures do not sufficiently capture localiza-

tion quality. We therefore propose to use the estimated 3D

IoU as a localization metric and set category-aware self-

adjusted thresholds to filter poorly localized proposals. We

adopt VoteNet as our backbone detector on indoor datasets

while we use PV-RCNN on the autonomous driving dataset,

KITTI. Our method consistently improves state-of-the-art

methods on both ScanNet and SUN-RGBD benchmarks by

significant margins under all label ratios (including fully la-

beled setting). For example, when training using only 10%

labeled data on ScanNet, 3DIoUMatch achieves 7.7 abso-

lute improvement on mAP@0.25 and 8.5 absolute improve-

ment on mAP@0.5 upon the prior art. On KITTI, we are

the first to demonstrate semi-supervised 3D object detection

and our method surpasses a fully supervised baseline from

1.8% to 7.6% under different label ratio and categories.

1. Introduction

Object detection is a key task in 3D scene understand-

ing. It provides a concise representation of raw sensor

measurements in the form of semantically meaningful 3D

bounding boxes. This low-dimensional representation can
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already serve numerous applications in autonomous driving

and AR/VR, as well as in robot navigation and manipula-

tion. As a result, in recent years there has been a surge of

interest in developing improved object detection pipelines

and indeed current state-of-the-art methods show impres-

sive performance. Yet, much of their success is attributed to

the availability of large datasets of 3D scenes that are care-

fully annotated. While rapid advances in sensor technology

facilitate the collection of 3D scenes at scale, annotating

them remains the main bottleneck. This calls for detection

methods that can leverage both labeled and unlabeled data

at train time.

In this work, we aim to address this requirement by

proposing a novel semi-supervised 3D object detection

method which we dub 3DIoUMatch. As a generally appli-

cable method, 3DIoUMatch can be applied to both indoor

scene datasets, i.e. ScanNet[4] and SUN-RGBD[28], and

outdoor datasets, i.e. KITTI[7]. We adopt popular point-

based object detectors, VoteNet [18] and PV-RCNN [24],

as our backbone object detection networks for the indoor

and outdoor scenes, correspondingly. To provide supervi-

sion to the unlabeled scenes, we leverage a teacher-student

mutual learning framework [29] and use the bounding box

predictions from the teacher network as pseudo-labels to su-

pervise the student network on unlabeled data. However,

unlike most pseudo-label techniques that were designed for

classification, in the highly complex (joint regression and

classification) task of object detection, we observe that the

pseudo-labels suffer from significant noise, and using them

directly is suboptimal.

Inspired by FixMatch [26], the state-of-the-art semi-

supervised learning (SSL) method for 2D image classi-

fication that proposed confidence-based filtering to im-

prove pseudo-label quality, we adopt a pseudo-label filter-

ing mechanism for 3D object detection by setting thresh-

olds on predicted class probabilities (and objectness scores

for VoteNet), so as to filter out teacher proposals with po-

tentially erroneous semantic labels or ones not belong to

foreground. While effective, these criteria alone are not suf-

ficient to capture localization quality, and the pseudo-labels

may still have large errors in the bounding box parameters.
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To that end, we further propose to leverage estimated IoU

(intersection over union) as a localization quality measure

for pseudo-label filtering. IoU estimation was first proposed

in the context of 2D object detection as a localization con-

fidence in the pioneering work IoU-Net [12], where esti-

mated IoU was proven successful in replacement of class

confidence for test-time Non-Maximal Suppression (NMS).

To the best of our knowledge, leveraging IoU estimation for

pseudo-label filtering is a novel idea for SSL on both 2D

and 3D object detection. Equipping the detectors with a 3D

IoU estimation module, we are able to filter out poorly lo-

calized pseudo-labels and leverage estimated IoU for both

train-time and test-time NMS.

A key challenge when filtering based on IoU estima-

tion is how to properly set the threshold. Unlike object-

ness and class confidence for which high threshold values

(e.g. 0.9) work well, 3D IoU is more sensitive to small er-

rors. Setting the threshold too high would reduce the num-

ber of pseudo-labels to very few, from which little could

be learned. To balance between quality and coverage, we

propose a two-stage filtering process: first, using a rela-

tively low IoU threshold; then, an IoU-guided class-aware

Lower-Half Suppression (LHS) that removes only half of

the highly-overlapping boxes with low predicted IoU. Our

proposed LHS thus naturally sets a threshold that is both

dynamic and class-aware. Our experiments show that LHS

outperforms IoU-guided NMS, which suppresses all but the

top one during semi-supervised training.

Our method consistently improves upon the previ-

ous state-of-the-art method, SESS [34], on both Scan-

Net and SUN-RGBD benchmarks by significant mar-

gins. When using only 10% labeled data on ScanNet,

3DIoUMatch outperforms SESS by 7.7 absolute improve-

ment on mAP@0.25 and by 8.5 absolute improvement on

mAP@0.5. When using 5% labeled data on SUN-RGBD,

3DIoUMatch outperforms SESS by 4.8 absolute improve-

ment on mAP@0.25 and by 8.0 absolute improvement on

mAP@0.5. On KITTI, we are the first to demonstrate semi-

supervised 3D object detection work and surpass fully-

supervised baseline by large margins under all label ratios.

Our main contributions can be summarized as follows:

1. We propose a novel semi-supervised method for 3D

object detection in point clouds based on pseudo-label

propagation along with a carefully designed filtering

mechanism.

2. For the first time, we leverage predicted 3D IoU as a lo-

calization confidence score for pseudo-label filtering,

and further propose IoU-guided Lower-Half Suppres-

sion for robust pseudo-label deduplication. This idea

is generally applicable and can be coupled to different

3D detectors on both indoor and outdoor scenes.

3. We achieve markedly improved performance over the

previous state-of-the-art semi-supervised 3D object

detection methods on the two major indoor object de-

tection benchmarks, ScanNet and SUN-RGBD, under

low label ratios and fully labeled setting. As the first

semi-supervised 3D object detection work on KITTI,

we also achieve significant improvements compared to

fully supervised method.

2. Related Works

Semi-Supervised Learning (SSL) Many of the recent

SSL methods [2, 31, 1] leverage consistency regularization,

first proposed in [23, 13], which enforces the model to pre-

dict consistently across label-preserving data augmentation

of different intensity. Borrowing the concept from Mean

Teacher [29], the model with frozen weight can be viewed

as the teacher model, otherwise student model. Some meth-

ods [2], following Mean Teacher, make the teacher model

as the EMA of the student model for further regularization.

Pseudo labeling [15] is another popular class of SSL method

which can also be treated as a kind of consistency regu-

larization, as one output of the unlabeled data is enforced

to be consistent with the other (the pseudo-labels) by be-

ing supervised with the other. To improve the quality of

pseudo-labels, FixMatch [26], a state-of-the-art SSL work

on image classification, has shown that the student network

can improve significantly by setting a classification confi-

dence threshold τcls and filtering out low-confidence pre-

dictions from the teacher. With the filtered pseudo-labels,

the student model only gets supervised on the unlabeled

data whose pseudo-labels are kept. Another key factor to

the success of these methods is strong data augmentation.

It has been shown crucial to many SSL works [23, 13, 31].

Recent works [1, 26] proposed to adopt even more powerful

augmentation such as RandAugment [3] and Cutout [5].

Semi-Supervised Object Detection Since the beginning

of the deep learning era, tremendous progress has been

made in 2D object detection, e.g region-based detectors [9,

8, 22] and single-stage detectors [16, 21, 30]. Similarly

in 3D object detection, a number of deep learning meth-

ods have been proposed for different 3D data modalities,

e.g. RGBD-based detectors [19, 17], point-based detec-

tors [33, 25, 14, 18], voxel-based detectors [35], point-

voxel-based detectors [24], etc.

Despite the great progress in both 2D and 3D object de-

tection, most works focused on a fully-supervised setting.

A few works [10, 6] have proposed to leverage unlabeled

data or weakly-annotated data for 2D object detection. Un-

der a standard SSL setting as we follow, CSD [11] proposed

a consistency regularization method to enforce the consis-

tency between predictions from an image and its flipped

version. STAC [27] adopts a two-stage scheme for training

Faster R-CNN [22]: in the first stage it pre-trains a detector

with labeled data only and then predicts the pseudo labels
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Figure 1. 3DIoUMatch pipeline at semi-supervised training stage. We adopt as our backbone an extended version of VoteNet with

an additional 3D IoU estimation module. For SSL, we utilize a teacher-student mutual learning framework, composed of a learnable

student taking strongly augmented input data and an EMA teacher taking weakly augmented input samples. On labeled data, the student

network is supervisedly trained. On unlabeled data, the student network takes pseudo-labels from its EMA teacher. To improve the

quality of pseudo-label, we adopt a confidence-based filtering mechanism that filters out predictions that fail to pass all thresholds on class

probability, objectness, and 3D IoU. We further use IoU-guided Lower-Half Suppression to remove the duplicated predictions. Using the

filtered pseudo-labels, we selectively supervise the student predictions that are around the bounding boxes in the pseudo-labels.

for the unlabeled data; in the second stage, STAC leverages

asymmetric data augmentation and the pseudo-label filter-

ing mechanism to remove object proposals with low confi-

dence. Note that the pseudo-labels are only generated once

at the end of the first stage.

The only prior work on semi-supervised point-based

3D object detection, is SESS [34]. SESS is built upon

VoteNet [18] and adopts a two-stage training scheme. It

leverages a mutual learning framework composed of an

EMA teacher and a student, uses asymmetric data aug-

mentation, and enforces three kinds of consistency losses

between the teacher and student outputs. Although SESS

brings noticeable improvements upon a vanilla VoteNet

when using only a small portion of labeled data, we find

their consistency regularization suboptimal, as it is uni-

formly enforced on all the student and teacher predictions.

In this work, we instead propose to apply confidence-based

filtering to improve the quality of pseudo-labels from the

teacher predictions and we are the first (in both 2D and 3D

object detection) to introduce IoU estimation for localiza-

tion filtering.

IoU Estimation IoU estimation was first proposed in a

2D object detection work IoU-Net [12], which proposed an

IoU head that runs in parallel to bounding box refinement

and is differentiable w.r.t. bounding box parameters. IoU-

Net adds an IoU estimation head to several off-the-shelf

2D detectors and uses IoU estimation instead of classifi-

cation confidence to guide NMS, which improves the per-

formance consistently over different backbones. Thanks to

its differentiability, IoU-Net can perform IoU optimization

on bounding box parameters for iterative refinement, which

further brings noticeable performance improvement.

For 3D object detection, STD [32] follows IoU-Net to

add a simple IoU estimation branch parallel with the box

estimation branch and to guide NMS with IoU estimation.

PV-RCNN [24] devises a similar 3D IoU estimation mod-

ule and use it at IoU-guided NMS stage. These two mod-

ules, unfortunately, are not suitable for IoU optimization as

the features fed to the IoU estimation branch are not dif-

ferentiable w.r.t. the bounding box size. Since the original

VoteNet is not equipped with an IoU module, we devise a

differentiable point-cloud-based 3D IoU estimation module

is simple yet effective that can support the IoU optimization.

3. Method

In this section, we describe our solution in detail. We

first formulate our problem in 3.1 and then summarize the

two object detection backbones, PV-RCNN and VoteNet, in

3.2. We use VoteNet as an example to illustrate our pro-

posed 3DIoUMatch pipeline in 3.3. We further explain how

we use the estimated 3D IoU for pseudo-label filtering and

deduplication in 3.4. Finally, we illustrate how we leverage

the pseudo-labels for supervision in 3.5.

3.1. Problem Definition

Given a 3D point cloud representation of a scene x ∈
R

N×3 containing a set of objects O = {o(j)}, we aim at

detecting the amodal oriented 3D bounding boxes of all ob-

jects in O, along with their semantic class labels. In particu-

lar, we are interested in accomplishing this task under chal-

lenging conditions of limited supervision where we have

access to a (small) set of labeled scenes {xl
i,y

l
i}

Nl

i=1 and
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a set of unlabeled scenes {xu
i }

Nu

i=1, where Nl and Nu are

the number of labeled and unlabeled scenes, respectively.

For a labeled scene x, the label y comprises bounding box

parameters {b(j)} and semantic class labels {q(j)} of all

ground truth objects {o(j)}.

3.2. IoU­aware 3D Object Detection

We experiment our SSL method on two 3D detectors,

VoteNet [18] and PV-RCNN [24]. VoteNet is a single-stage

indoor point cloud detector while PV-RCNN is a two-stage

outdoor point cloud detector. They both take point clouds

only for inputs and output a list of bounding boxes after

Non-Maximum Suppression (NMS) for each scene, which

contain the prediction of center, size, orientation and se-

mantic class. However, their architecture are very different

partly due to the great discrepancy between indoor and out-

door scenes.

Indoor scene detector: VoteNet VoteNet [18] is built

upon PointNet++ [20] backbone, and first processes the in-

put point cloud {xi}
N
i=1 to generate a sub-sampled set of

M < N seed points enriched with high-dimensional fea-

tures {[xi; fi] ∈ R
3+C}Mi=1. Next, each seed point votes

for the center of the object it belongs to, and the votes

are grouped into K clusters. Finally, each of the K vote

clusters is aggregated to make a prediction of a 3D bound-

ing box parameters b(k), a corresponding objectness score

sk = P(b(k) is an object), and a probability distribution

{pcls} over L possible semantic classes. The bounding box

parameters b are its center location c ∈ R
3, scale d ∈ R

3,

and orientation θ around the upright axis.

At train time, VoteNet jointly minimizes a weighted

combination of the following target losses: vote coordi-

nate regression, objectness score binary classification, box

center regression, bin classification and residual regression

for heading angle, scale regression, and category classifica-

tion. At test time, VoteNet applies Non-Maximum Suppres-

sion (NMS) based on objectness score to remove duplicated

bounding boxes. Here, we instead rely on a 3D IoU estima-

tion module designed for VoteNet. For more details, refer

to the supplementary materials.

Outdoor scene detector: PV-RCNN PV-RCNN[24] is a

high-performance and efficient LiDAR point cloud detector

that deeply integrates both 3D voxel CNNs and PointNet++-

style set abstraction to learn more discriminative point cloud

features. Specifically, PV-RCNN first passes the 3D scene

through a novel voxel set abstraction module based on

sparse 3D CNN to get a set of keypoints with representa-

tive scene features. Then RoI grid pooling is then applied to

the keypoints to abstract proposal-specific features into RoI

grid points. The RoI grid points containing rich context in-

formation are finally used to accurately estimate bounding

box parameters.

PV-RCNN itself incorporates an IoU-estimation module

which can predict the IoU of each bounding box and use it

to guide the sorting of the boxes.

3.3. 3DIoUMatch for SSL on 3D object detection

We take VoteNet as our example and our method with

PV-RCNN is similar. With the incorporation of 3D IoU

module into VoteNet, we construct an IoU-aware VoteNet

for SSL on 3D object detection. Our proposed solution

is comprised of two training stages: a pre-training stage,

where we train our IoU-aware VoteNet on the labeled data,

followed by an SSL stage where the entire data is utilized

by pseudo-labeling the unlabeled scenes.

Pre-training. We start by training our IoU-aware VoteNet

in a supervised manner, using the labeled set {xl
i,y

l
i}

Nl

i=1.

The training loss is a sum over the original VoteNet losses

Lvotenet and 3D IoU loss LIoU. Once converged, we clone the

network to create a pair of student and teacher networks.

Semi-supervised training through a teacher-student

framework. We follow a teacher-student mutual learn-

ing framework [29] and train our networks on both labeled

{xl
i,y

l
i}

Nl

i=1 and unlabeled data {xu
i }

Nu

i=1. Each training

batch contains a mixture of {xl
i}

Bl

i=1 labeled samples and

{xu
i }

Bu

i=1 unlabeled samples.

For labeled samples, we supervise the student network

using ground truth supervisions (as done in the pre-training

stage) whereas for unlabeled samples, the student networks

is supervised using pseudo-labels {ỹu
i }

Nu

i=1 generated from

the teacher network. The final loss is formed as:

L = Ll({x
l
i}

Nl

i=1, {y
l
i}

Nl

i=1) + λuLu({x
u
i }

Nu

i=1, {ỹ
u
i }

Nu

i=1)

where λu is the unsupervised loss weight.

To succeed in semi-supervised learning, it is crucial for

the teacher network to generate high-quality pseudo-labels

and maintain a reliable performance margin over the stu-

dent network throughout the training. As commonly used

in SSL literature, e.g. Mean Teacher [29] and SESS [34],

we adopt an EMA teacher. We further leverage asymmetric

data augmentation and pseudo-label filtering (see Sec.3.4).

To be in a position of advantage, the teacher network

takes input data with weak augmentation only while the stu-

dent network uses stronger data augmentation. We share

the same data augmentation strategy with SESS. The input

point clouds to our teacher network are augmented only by

random sub-sampling while the inputs to the student net-

work further undergo a set of stochastic transformation T ,

including random flip, random rotation around the upright

axis, and a random uniform scaling.

3.4. Pseudo­Label Filtering and Deduplication

In the teacher-student framework, the performance gap

between the teacher and the student is usually quite
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marginal given that these two models are just different by

EMA on weight and data augmentation strength. Hence,

it is not always true that the teacher prediction is more ac-

curate than the student’s on a specific training sample. On

unlabeled data, the student model will only benefit from the

pseudo-labels that are more accurate than its predictions.

Therefore we should filter out low-quality predictions from

the teacher model and only supervise the student model with

the rest of the teacher model predictions.

Jointly filtering based on class, objectness, localization

confidences For VoteNet, we propose to set an objectness

threshold τobj and filter out bounding box predictions with

objectness score s < τobj . We further propose to set a clas-

sification confidence threshold τcls for filtering out predic-

tions that are likely to contain a wrong class label.

Note that none of these two confidence measures cap-

ture the accuracy of bounding box parameter predictions.

We propose to predict a 3D IoU for each predicted bound-

ing box, use the 3D IoU estimation as a localization con-

fidence, and set a localization threshold τIoU to filter out

poorly localized predictions. Formally, we remove all the

predictions that fail to satisfy all three confidence thresh-

olds, i.e. s > τobj , max(pcls) > τcls, and v > τIoU.

IoU-guided lower-half suppression for deduplication

After the confidence-based filtering, there is still a lot of du-

plicated bounding box predictions that may introduce harm-

ful noise to our pseudo-labels. NMS is a standard process

in object detection for duplicate removal before evaluation,

which takes a set of highly overlapped bounding box pre-

dictions that share the same class prediction, ranks them ac-

cording to a confidence score and removes all but the top-1

prediction. STAC [27] applies class confidence based NMS

to teacher predictions during pseudo-label generation.

The default NMS used in VoteNet is based on object-

ness confidence. Given that objectness score doesn’t cap-

ture the localization quality, a train-time IoU-guided NMS

will naturally perform better (see Table.2), where we use

the product of predicted IoU and predicted objectness as

the ranking metric. However, using the top one selected

by IoU-guided NMS can still be suboptimal, since the pre-

dicted IoU will inevitably carry some errors. We argue that

different from the test time scenario, pseudo-labels do not

need to be fully deduplicated. Imagine this situation: if a

bounding box predicted by the student is 0.2m to the left of

its corresponding ground truth, it is a foreground object and

will get bounding box supervision in VoteNet. However, if

unfortunately the pseudo-label survives after non-maximal

suppression is to the right of the ground truth more than

0.1m, this predicted bounding box may lose supervision

and be treated as a background box. This example shows

that strict non-maximal suppression can lead to a smaller

number of student model predictions that can receive super-

vision. Since we cannot know the best pseudo label among

a bunch of highly-overlapped ones, it’s fine to be less strict.

To this end, we propose a novel Lower-Half Suppression,

or in short, LHS, that only discards half of the proposals

with lower predicted IoU. We argue that since LHS sup-

presses bounding boxes sharing the same class label, this

suppression can be seen as a second-step class-aware self-

adjusted filtering, which sets dynamic thresholds among the

overlapping bounding boxes to keep the ones with higher

confidence and hence find a better balance between pseudo-

label quality and the amount of supervision. We also use

the product of predicted IoU and predicted objectness as

the confidence metric.

Final-step pseudo-label processing After the filtering

and IoU-guided LHS, we now have high-quality predic-

tions {ŷuT }
K′

k=1 from the teacher network, where K ′ is the

number of bounding boxes remains. Given that the student

model inputs go through a stronger augmentation including

an additional geometric transformation T , in synchronize

with the student model inputs, the bounding box parameters

of the pseudo-labels need to go through the same transfor-

mation T , namely b̃
u
= T (b̂

u

T ). We further take convert

the predicted class probability distribution p̂uT into semantic

class label via q̃u = max(p̂uT ). Now we obtain the filtered

pseudo-labels ỹ = {b̃
u
, q̃u}K

′

k=1.

3.5. Selective Supervision using Pseudo­Labels

For our generated pseudo-labels, there is no guarantee

that the labels can cover all the ground truth objects from

O due to the filtering and potentially inaccurate teacher pre-

dictions. Given the incompleteness of our filtered pseudo-

labels, we are relatively confident about the bounding boxes

in this set but student predictions far away from all of our

pseudo-labels are not necessarily negative. Our experiments

show that supervising objectness on unlabeled data using

the pseudo-labels seriously hurts the performance. For sim-

ilar reasons, we do not supervise vote loss, which is a unique

element in VoteNet and not shown in other detectors. For

more analysis and experimental proof for this, we refer the

readers to the supplementary materials. In this case, we will

only supervise the bounding boxes in the vicinity of the

pseudo bounding boxes and aim to improve their bound-

ing box quality. More specifically, we stick to the way

how VoteNet select foreground objects for bounding box

parameter supervision: we supervise bounding box param-

eters and class for a prediction only if the vote that gener-

ates this prediction is within 0.3m of any bounding box in

the pseudo-labels. For this set of pseudo-foreground pre-

dictions, we adopt the same way that VoteNet establishes

association and enforce original VoteNet losses except for

objectness loss and vote loss.
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5% 10% 20% 100%

Dataset Model mAP

@0.25

mAP

@0.5

mAP

@0.25

mAP

@0.5

mAP

@0.25

mAP

@0.5

mAP

@0.25

mAP

@0.5

ScanNet

VoteNet 27.9±0.5 10.8±0.6 36.9±1.6 18.2±1.0 46.9±1.9 27.5±1.2 57.8 36.0

SESS reported \ \ 39.7±0.9 18.6 47.9±0.4 26.9 62.1 38.8

SESS 32.0±0.7 14.4±0.7 39.5±1.8 19.8±1.3 49.6±1.1 29.0±1.0 61.3 39.0

Ours 40.0±0.9 22.5±0.5 47.2±0.4 28.3±1.5 52.8±1.2 35.2±1.1 62.9 42.1

Abs. improve. +8.0 +8.1 +7.7 +8.5 +3.2 +6.2 +1.6 +3.1

SUN-RGBD

VoteNet 29.9±1.5 10.5±0.5 38.9±0.8 17.2±1.3 45.7±0.6 22.5±0.8 58.0 33.4

SESS reported \ \ 42.9±1.0 14.4 47.9±0.5 20.6 61.1 37.3

SESS 34.2±2.0 13.1±1.0 42.1±1.1 20.9±0.3 47.1±0.7 24.5±1.2 60.5 38.1

Ours 39.0±1.9 21.1±1.7 45.5±1.5 28.8±0.7 49.7±0.4 30.9±0.2 61.5 41.3

Abs. improve. +4.8 +8.0 +3.4 +7.9 +2.6 +6.4 +1.0 +3.2

Table 1. Comparison with VoteNet and SESS on ScanNet val set and SUN RGB-D val set under different ratios of labeled data. We report

the mAP@0.25 and mAP@0.5 as mean±standard deviation across 3 runs under different random data splits. Due to the randomness of the

data splits and our better pre-training protocol, SESS results provided by us are higher than those reported in the paper on mAP@0.5, and

the mAP@0.25 results differ a little (the only difference is the pre-trained weights and data splits). The final improvement is the absolute

improvement of our method over SESS results provided by us. Following SESS, we also report the results with 100% labeled data, where

we simply make a copy of the full dataset as unlabeled data and train our method.

4. Experiments

4.1. Datasets and Evaluation Metrics

Indoor Datasets: ScanNet and SUNRGB-D We eval-

uate our VoteNet-based 3DIoUMatch on two major in-

door datasets, ScanNet [4] and SUN RGB-D [28]. Scan-

Net is an indoor scene dataset consisting of 1513 recon-

structed meshes, among which 1201 are training samples

and the rest are validation samples. SUN RGB-D contains

10335 RGB-D images of indoor scenes which are split into

5285 training samples and 5050 validation samples. For

both datasets, we follow [18, 34] for pre-processing data

and labels to train our method and we report mAP@0.25

(mean average precision with 3D IoU threshold 0.25) and

mAP@0.5 in the following experiments.

Outdoor Dataset: KITTI As for our PV-RCNN-based

3DIoUMatch, we use KITTI for evaluation. KITTI [7] is a

very popular dataset for autonomous driving which consists

of fine annotations for 3D detection. There are 7481 out-

door scenes for training and 7518 for testing, and the train-

ing samples are generally divided into a train split of 3712

samples and a validation split of 3769 samples. We fol-

low [24] for data pre-processing and report the mAP with

40 recall positions, with a rotated IoU threshold 0.7, 0.5,

0.5 for the three classes, car, pedestrian, and cyclist, respec-

tively.

4.2. Experiments on Indoor Scene Datasets

For experiments on indoor datasets, i.e., ScanNet and

SUNRGB-D, we use IoU-aware VoteNet as our backbone

detector.

4.2.1 Result Comparison

Table 1 shows the results of our method compared to SESS

and VoteNet under different ratios of labeled data on Scan-

Net and SUN RGB-D, respectively. The results illustrate

that, with our effective train-time filtering and test-time im-

provement leveraging IoU estimation, we are able to signif-

icantly outperform current state-of-the-art, SESS, under all

labeled ratio settings. With 5% labeled data, our method

outperforms SESS by 8.1 and 8.0 on mAP@0.5 on ScanNet

and SUN RGB-D, respectively. Note that our method gains

more improvement on mAP@0.5, thanks to the high quality

of pseudo labels and the IoU guidance for test-time NMS.

4.2.2 Ablation Study

Filtering and Deduplication Mechanism. We study the

effect of each component of the filtering and deduplication

mechanism. In Table 2, the second row shows the results

of naive pseudo labeling, which takes all predictions from

the teacher model for supervision. Expectedly the results

are not satisfying, only a little higher than VoteNet. Simply

applying the dual filtering of classification and objectness

confidence gives significant improvement, as the filtering

picks out the teacher model proposals that are very likely to

be close to true objects and have the correct class. The con-

ventional objectness-based NMS in VoteNet, however, fails

to improve further, since the remaining proposals already

have high objectness scores and the objectness-based NMS

is not capable of picking the ones with higher localization

accuracy.

As shown in the fifth and sixth row, after we introduce

IoU during train time, IoU filtering and train-time IoU-

14620



ScanNet 10% SUN-RGBD 5%Obj&Cls

Filter

IoU

Filter

Train-time

Suppression

Test-time

Suppression

Test-time

IoU opt. mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

Obj-NMS 38.4 19.8 32.9 12.5

X Obj-NMS 44.5 24.7 36.9 17.5

X Obj-NMS Obj-NMS 44.2 25.2 37.1 17.4

X X IoU-NMS Obj-NMS 45.9 26.8 37.4 18.7

X X IoU-LHS Obj-NMS 46.5 26.9 37.9 18.5

X X IoU-LHS IoU-NMS 47.0 28.2 38.8 20.8

X X IoU-LHS IoU-NMS X 47.2 28.3 39.0 21.1

Table 2. Effects of the different components, including train-time filtering and deduplication, and test-time improvements.

guided NMS contribute to better performance under both

settings. Our proposed IoU-guided LHS improves over IoU

guided NMS on mAP@0.25, since LHS finds a better bal-

ance between quality and coverage. With better filtering and

deduplication leveraging IoU estimation during train time,

we gain 2.3 and 1.7 absolute improvement over the without-

IoU version on mAP@0.25 and mAP@0.5 respectively on

ScanNet 10%. This verifies that considering localization

confidence is important for getting high-quality pseudo la-

bels. With test-time improvements, our method gains in to-

tal 3.0 and 3.1 absolute improvement respectively.

We set 0.9 for both classification and objectness confi-

dence threshold following STAC [27] and investigate the ef-

fect of different IoU thresholds on ScanNet 10%, as shown

in Figure 2. The performance (with test-time improve-

ments) is higher than the without-IoU baseline by large mar-

gins when τIoU ≤ 0.5. Note that the performance peaks

at τIoU = 0.25 for mAP@0.25 while peaking at 0.5 for

mAP@0.5, simply because mAP@0.5 prefers a stronger fil-

tering on localization quality. When τIoU > 0.5 , further

increasing τIoU may lead to a drastic drop in pseudo-label

coverage and hence is detrimental to the performance.

Test-time IoU-guided NMS and IoU optimization. We

then evaluate the improvement brought by using IoU esti-

mations at test time. The last two rows in Table 2 shows

that IoU-guided NMS and IoU optimization improves the

performance further.

4.2.3 Result Analysis

In this section, we examine how our 3DIoUMatch works

during training on ScanNet 10%. The upper two curves in

Figure 3 show that as the training goes, the performance on

unlabeled data and test data increases conformably, which

indicates the increasing quality of pseudo-labels. We also

show how the coverage of the pseudo-labels changes on

the unlabeled data over the training. Here coverage at a

certain threshold simply means the class-agnostic recall,

measuring the percentage of ground truth objects that can

find a pseudo-label with an IoU larger than the threshold.

Figure 2. 3DIoUMatch results with different IoU thresholds on

ScanNet 10%.

Figure 3. The performance improvements and pseudo-label cover-

age over the semi-supervised learning stage on ScanNet 10%.

As we can see from the lower two curves in Figure 3: at

the beginning, the coverage of the pseudo-labels is rela-

tively low due to the strict filtering mechanism; as the semi-

supervised learning goes on, the improving detection per-

formance leads to a higher passing rate of the filter and

hence a higher coverage of the pseudo-labels, which in re-

turn fuels SSL; by the end of training, the coverage at 0.25

and at 0.5 both increase by about 10%.

4.2.4 Implementation Details

Training For the pre-training stage, we train with a

batch size of 8 and follow the same data augmentation of
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SESS [34]. We then use those pre-trained weights to ini-

tialize the student and teacher networks. For the SSL stage,

we construct each batch by taking 4 labeled samples and 8

unlabeled samples, with the same data augmentation. The

weights of different loss terms are the same as VoteNet and

we set λu = 2. The student network is trained for 1000

epochs (the labeled data is traversed in one epoch), opti-

mized by an ADAM optimizer with an initial learning rate

of 0.002, and the learning rate is decayed by 0.3, 0.3, 0.1,

0.1 at the 400th, 600th, 800th and 900th epoch, respectively.

The number of generated 3D proposals is 128. We use

k = 3, D = 4 for the IoU module. The three thresholds

are set to be τobj = 0.9, τcls = 0.9, τIoU = 0.25. For more

details, we refer the readers to the supplementary materials.

Inference We forward the input to the student network

to generate proposals. We first apply IoU optimization to

refine box parameters following IoU-Net [12], followed by

an IoU-guided NMS with a 3D IoU threshold of 0.25.

4.3. Experiments on KITTI

For experiments on the KITTI dataset, we adopt PV-

RCNN[24] as our backbone. PV-RCNN itself comes with

a 3D IoU module, allowing to use it in our semi-supervised

learning pipeline without modifying its architecture.

4.3.1 Results

We evaluate our method on KITTI validation set. Table 3

demonstrates significant and consistent improvement across

all categories with 1%, 2%, and 100% labeled data, com-

pared to supervised training only. Similar to our experi-

ments on indoor scene datasets, here the 100% labeled data

setting means making a copy of the full dataset as unla-

beled data and train the network using our devised semi-

supervised pipeline. With 1% labeled data, our method out-

performs the labeled-data-only baseline by 6.6 mAP@0.5

on pedestrian, which is the most challenging class.

4.3.2 Ablation Study

We conduct ablation studies on KITTI with 1% labeled data.

Table 4 shows our improvements compared with a pseudo-

label baseline and filtering based on class confidence only.

The results validate the effectiveness of our IoU-based lo-

calization confidence filtering.

4.3.3 Implementation Differences with VoteNet

In KITTI, we only care about three classes, car, pedestrian,

and cyclist, which differ a lot in the difficulty to detect. In-

stead of using LHS, we follow PV-RCNN to set different

IoU thresholds for each individual class, i.e., τcar = 0.8,

τped = τcyc = 0.4. We selectively supervise the predictions

that meet the foreground bar in PV-RCNN according to our

1% 2% 100%

Car Ped. Cyc. Car Ped. Cyc. Car Ped. Cyc.

PVR. 77.3 47.8 62.9 80.4 47.1 63.5 83.0 57.9 73.1

Ours 80.7 54.4 67.3 82.0 54.6 69.5 84.8 60.2 74.9

Table 3. 3D detection results on KITTI val set with different

labeled ratios. The results are for moderate difficulty level eval-

uated by the mAP with 40 recall positions, with a rotated IoU

threshold 0.7, 0.5, 0.5 for the three classes, respectively.

Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PVR. 89.6 77.3 74.1 54.9 47.8 42.3 80.4 62.9 58.7

naive psd.-lb. 91.1 78.8 76.1 58.9 51.3 45.4 82.6 65.5 60.8

cls. thres. only 90.8 79.7 76.8 63.2 55.0 49.7 84.9 65.0 61.2

Ours 91.6 80.7 78.1 63.3 54.4 49.5 86.5 67.3 62.8

Table 4. Ablation study on KITTI 1% labeled data. Same eval-

uation metric as Table 1.

pseudo-labels. In contrast to VoteNet, PV-RCNN is a two-

stage detector containing an RPN. Bounding box object-

ness (or foreground probability) has been predicted in the

RPN and used to pick top 100 proposals to forward to the

RoI head. We therefore only additionally filter according to

classification confidence with the threshold τcls = 0.2. Due

to the non-differentiability of the IoU module of PV-RCNN,

we also do not apply IoU optimization.

We also adopt a two-stage training scheme for our PV-

RCNN-based 3DIoUMatch. We use an unlabeled weight

λu = 2 and only supervise anchor classification and bound-

ing box regression in PV-RCNN on unlabeled data. Please

refer to the supplementary materials for more details.

5. Conclusion

In this paper, we propose 3DIoUMatch, a novel semi-

supervised 3D object detection method leveraging IoU es-

timation. Built upon a teacher-student mutual learning

framework, we leverage asymmetric data augmentation and

pseudo-label filtering and deduplication to facilitate the stu-

dent learning from the EMA teacher. With our IoU esti-

mation module, we make filtering and deduplication aware

of localization confidence and apply test-time IoU-guided

NMS and IoU optimization, leading to further improve-

ment. Experiment results on the ScanNet, SUN-RGBD, and

KITTI datasets validate the effectiveness of our method:

we achieve significant gain over the previous state-of-the-

art methods and baselines under all settings. Our idea of

leveraging IoU estimation for semi-supervised learning is

generally applicable to different kinds of 3D object detec-

tors and can be extended to 2D detectors as future works.
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