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Abstract

Automated radiographic report generation is a challeng-

ing task since it requires to generate paragraphs describing

fine-grained visual differences of cases, especially for those

between the diseased and the healthy. Existing image cap-

tioning methods commonly target at generic images, and

lack mechanism to meet this requirement. To bridge this

gap, in this paper, we propose a self-boosting framework

that improves radiographic report generation based on the

cooperation of the main task of report generation and an

auxiliary task of image-text matching. The two tasks are

built as the two branches of a network model and influence

each other in a cooperative way. On one hand, the image-

text matching branch helps to learn highly text-correlated

visual features for the report generation branch to output

high quality reports. On the other hand, the improved re-

ports produced by the report generation branch provide ad-

ditional harder samples for the image-text matching branch

and enforce the latter to improve itself by learning better

visual and text feature representations. This, in turn, helps

improve the report generation branch again. These two

branches are jointly trained to help improve each other it-

eratively and progressively, so that the whole model is self-

boosted without requiring external resources. Experimen-

tal results demonstrate the effectiveness of our method on

two public datasets, showing its superior performance over

multiple state-of-the-art image captioning and medical re-

port generation methods.

1. Introduction

Everyday a large amount of medical imaging data are

acquired, stored and examined in clinics. This has exerted

mounting pressure to radiologists to analyse images and re-

port the findings in time. Automated medical report gener-

ation is therefore in demand as it can reduce workload and

diagnostic errors as well as accelerate the clinic workflow.

Automated medical report generation is very challeng-

ing and it associates with a broader research topic of image

captioning in computer vision. In image captioning, free-

form text descriptions are generated to narrate the content

of images. A basic deep learning model for image cap-

tioning follows the encoder-decoder structure [30], where

the visual encoder extracts the visual features from images

and the text decoder converts the visual features to text out-

put. Research in this field focuses on advancing encoder

and decoder, respectively, by employing carefully-designed

attention mechanisms [22, 1, 26], relationship among image

regions [40, 38], improved language models [4, 3], or rein-

forcement learning on language metric [26, 21]. A detailed

review could be found in Section 2.

Despite recent achievements in image captioning, when

directly applying image captioners for medical report gen-

eration, there is often a visible performance decline. This

is because compared with generic images, radiographic im-

ages are more similar to each other and fine-grained visual

differences, such as the findings of clinic importance, need

to be narrated. This requires further tightening the visual

and text representations. In addition to linking image and

text by attention mechanism, some medical report genera-

tion methods [10, 41] additionally train classifiers to learn

visual representations by predicting tags of medical reports

or disease-class labels. This often requires additional anno-

tations and external medical datasets or knowledge, which

are task-specific and often unavailable, limiting the gener-

alization of these methods. Moreover, either tags or disease

classes only sparsely cover the reports’ information, leading

to relatively loosely correlated visual and text features.

To bridge this gap, in this paper, we propose a self-

boosting framework to promote radiographic report gener-

ation. It utilizes an auxiliary task to predict the match of an

image-report pair (i.e., image-text matching) by explicitly

learning strongly correlated visual and text features. These
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features could better serve the fine-grained recognition task

in radiographic report generation. More importantly, the

auxiliary image-text matching task is deeply coupled with

the main report generation task through our proposed self-

boosting framework so that these two tasks could mutu-

ally and progressively boost each other via the cooperative

interactions between them. Specifically, these two tasks

are built as two branches of a neural network model and

jointly trained. During the training iterations, the image-

text matching branch provides better features to the report

generation branch to generate ground-truth-like reports, and

these improved reports, in turn, serve as additional harder

samples to push the image-text matching branch to become

stronger by learning better features. In this way, the whole

network is gradually self-boosted and improves the ultimate

report generation performance.

Our main contributions are summarized as follows.

First, we utilize an auxiliary task of image-text matching

to help learn text-correlated visual features that could help

capture the fine-grained visual differences of diagnostic im-

portance. This improves the main task of report generation

without requiring additional annotations, external medical

datasets, or external task-specific knowledge.

Secondly and more importantly, we propose a self-

boosting framework that leverages the cooperation between

image-text matching and report generation to mutually

boost each other progressively. These two tasks are tightly

coupled and jointly trained, while the stronger features

learned by image-text matching help improve report gen-

eration, and the improved reports, as additional harder sam-

ples, in turn enforce image-text matching to continue im-

proving feature learning so that the finer mismatch between

an image and its generated report could be identified.

Third, additionally utilizing image-text matching also al-

lows us to learn an effective text feature extractor, which is

used to evaluate the feature similarity between the generated

reports and the ground-truth, providing a new loss term to

further promote the report generation.

Fourth, our approach shows promising performance on

two benchmarks, generating reports from both classic Chest

X-ray images and CT images with COVID-19. It outper-

forms multiple state-of-the-art methods in image captioning

and medical report generation.

2. Related Work

Image Captioning Natural image captioning task aims

at automatically generating sentence description for the

given image. A broad collection of methods was proposed

in the last few years [11, 30, 6, 34, 42, 39, 22, 26, 21, 1, 3,

44]. Most of them adopt the encoder-decoder architecture,

employing CNN as the encoder to extract the visual fea-

ture of the image and RNN as the decoder to produce image

description. Among these methods, Show-Tell [30] is the

most canonical neural image captioning model, which pro-

vides an end-to-end framework by feeding the image fea-

tures extracted by CNN as the input of the LSTM [8] to

produce image captions. On the basis of this framework,

inspired by human brain’s attention, several methods have

proposed the attention mechanism [34, 42, 39, 22], allowing

the model to automatically learn to fix its gaze on salient ob-

jects while generating the corresponding words in the out-

put sequence. For example, in [22] an adaptive attention

model was proposed to automatically switch the focus be-

tween visual signals and the language model; in [1] a com-

bined bottom-up and top-down attention mechanism calcu-

lated attention at the level of objects and salient regions.

Also, in a very recent work in [44], it was proposed to learn

attention from an additional image-text matching task and

use it to regularize the image captioning task. Although

this work is close to our work in utilizing image-text match-

ing for image captioning, they are substantially different as

explained in Section 3.5. The superiority of our method

over [44] has also been verified in our experiment. In ad-

dition to developing attention models, other image caption-

ing works also explore how to advance the image encoder

and text decoder. To improve the image encoder, the meth-

ods [40, 38] explicitly considered the visual relationship of

the detected image regions by constructing graphical convo-

lutional network (GCN) or scene graph. To improve the text

decoder, in [14] a hierarchically structured RNN was de-

veloped to cater for paragraph generation. Recently, Trans-

former model [28] has been proposed to improve the limited

representation power of RNN, and has been used in image

captioning tasks to replace RNN as the text decoder [3].

Moreover, recently Reinforcement Learning has also been

introduced to train the non-differentiable captioning met-

rics [26, 21] for improvement.

Image-text matching The goal of image-text matching

task is to measure the visual-semantic similarity between a

text and an image. One of the most common approaches is

to project the image and text features into a joint semantic

space to compute their similarity by cosine distance. Most

methods in this field are dedicated to improving feature

extraction techniques and roughly fall into two categories:

global representation based [13, 32, 7] and local representa-

tion based [15, 20, 31]. Among them, SCAN [15] is a rep-

resentative attention-based method for local representation,

which was also adopted by [44] to facilitate captioning.

Medical report generation Due to the characteristics of

medical reports, many existing methods are based on the

hierarchical structured LSTM network [10, 43, 41] to gen-

erate finer detailed text information about the input radio-

graphic images. Jing et al [10] proposed a multi-task hi-

erarchical model with co-attention to automatically predict

keywords and generate long paragraphs. Yin et al [41] pro-

posed a topic matching mechanism to project the topic gen-
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erated by the sentence RNN and its corresponding ground-

truth into the same embedding space, so as to make them

share the same semantics. In addition, Xue et al [36, 35]

proposed a different network structure which includes a sen-

tence generative model and a recurrent paragraph genera-

tive model, utilizing the generated sentence to produce next

sentence. Another type of pipeline is called “Describe and

Conclude” [9], which first generates the findings and then

produces the impression by summarizing the information

from the generated findings.

3. Method

In this section, we first give an overview of the proposed

model. Then two important branches of our model, i.e.,

image-text matching and medical report generation, are pre-

sented. Following that, we describe how these two branches

achieve joint training and mutual improvement.

3.1. Overview

A typical radiographic report consists of a conclusive

“impression” part and a descriptive “finding” part. Tak-

ing a medical image as input, our model generates a long-

paragraph diagnostic report with both parts. As mentioned

in Section 1, our model improves report generation by tak-

ing advantage of the interactions between the main task

of report generation and the auxiliary task of image-text

matching. Our model is trained in a self-boosting manner.

Fig. 1 provides an overview about our framework. In

general, our model consists of two entangled branches:

medical report generation (main task) and image-text

matching (auxiliary task). As for the main task, our re-

port generation branch (RG-branch) follows the encoder-

decoder architecture. The visual encoder detects image re-

gions with an unsupervised method, extracts regional fea-

tures using CNN, and refines these visual features based

on the regional relationships learnt through self-attention.

The text-decoder takes the refined visual features as input,

passes them through a hierarchical LSTM model catering

for both the topic-level and word-level decoding, and gen-

erates the final paragraphical report. As for the auxiliary

task, taking the image-report pairs as input, our image-text

matching branch (ITM-branch) consists of an image en-

coder and a report encoder, learning the visual and the text

features, respectively, in order to predict if the input image

and report match each other.

The two branches interact with each other in three

ways. First, they share the visual encoder, so that the text-

correlated visual features learned by ITM-branch could also

be utilized to improve the RG-branch to generate high-

quality reports. Second, the report encoder learnt by the

ITM-branch is also utilized by the RG-branch to evaluate

and minimize the feature-level loss between the generated

and the ground-truth reports. Third, during the training,

the improved reports generated by RG-branch are passed

to the ITM-branch as additional harder samples, which en-

forces the ITM-branch to improve itself by enhancing the

feature learning. These three interactions last for the train-

ing course, making the whole model gradually boost itself.

At inference stage, only RG-branch is used, which receives

a test image and generates the corresponding report.

3.2. Report Generation (RG) Branch

The ultimate target of our model is to generate ground-

truth-like diagnostic reports from radiographic images.

Therefore, report generation is our main task. Like most

image-captioning methods, our RG-branch consists of a vi-

sual encoder and a successive text decoder, with enhanced

characteristics. They are elaborated as follows.

Visual encoder Although some generic image caption-

ers use Faster R-CNN [25] to encode image regions at

object-level, existing medical report generation methods ex-

tract visual features from the whole image rather than image

regions, due to the lack of supervised information. Differ-

ently, given an input image of size 3 × H × W , we em-

ploy the selective search algorithm to generate region pro-

posals unsupervisely, and then refine these region proposals

by: 1) excluding regions smaller than 2000 pixels; 2) ex-

cluding regions where the background ratio exceeds 70%.

This leads to roughly M = 30 regions for one image. Af-

ter that, we adopt ResNet-101 to produce a set of vectors

v1, · · · , vM ∈ R
D with a dimention D = 2048 for each

region. Compared with image-level features, using regional

features can “look closer” to the image, thus better suits the

fine-grained pattern description. It is found that modeling

region relationship is beneficial for visual representation.

Unlike some image-captioning methods [40, 38] that rely

on the Visual Genome dataset to learn GCN or scene graph

for generic images, we employ self-attention [28] to learn

the relationships among regions and transform regional vi-

sual features V into relationship-enhanced ones Vh for re-

finement. These relationship-enhanced regional features are

then passed through a region pooling layer to generate the

pooled vector vp. We further input the pooled vector vp

through a 2048-dimensional fully-connected layer to pro-

duce the final representation: If = Wfvp+bf . The output

of the visual encoder If is then sent to the text-decoder in

RG-branch for report generation, as well as to ITM-branch

for predicting image-text matching.

Text decoder To generate paragraphical report, we

adopt a hierarchical structured LSTM, which includes a sen-

tence LSTM and a word LSTM [14]. The sentence LSTM

takes the visual features as input, produces a topic vector

for each sentence in the report paragraph, and determines

when to stop generating the topic vector. Those topic vec-

tors are then fed into the word LSTM to produce the sen-

tences. More details are as follows.
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Figure 1. An overview of the proposed framework comprising of a medical report generation branch (RG-branch, the gray part) and an

auxiliary image-text matching branch (ITM-branch, the green part). RG-branch consists of two components: a region-level image encoder

(shared with ITM-branch) to extract visual features from medical images, and a hierarchical LSTM to generate diagnose reports. ITM-

branch consists of an image encoder (shared with RG-branch) and a report encoder based on Sentence-BERT. It compares the similarity of

visual and text features for match. The two branches are designed to have cooperative interactions during training. ITM-branch provides

RG-branch text-correlated visual features for report generation and its report encoder for measuring the feature level loss of the generated

reports. In turn, with the improved generated reports, RG-branch supplies ITM-branch harder and harder samples to force the latter to

evolve for better feature learning. In this way, the whole model is self-boosted.

The sentence LSTM is a single layer LSTM with a hid-

den size H = 512. It takes the image feature If as

input, and in turn generates a sequence of hidden states

h1 · · ·hN ∈ R
H , one for each sentence in the paragraph:

hi+1, ci+1 = LSTM(If , (hi, ci)), i ∈ {0, · · · , N − 1},

where ci denotes the memory cells of LSTM, and N is

the number of sentences in the paragraph. Based on the

hidden state hi, a topic vector ti ∈ R
P is obtained as:

ti = tanh(Wthi + bt) i ∈ {1, · · · , N}. In addition,

the hidden state hi is also mapped from H dimension to

two dimension by a linear projection to produce a proba-

bility qi through a sigmoid function, determining whether

the ith sentence is the last sentence in the paragraph. qi can

be learnt by minimizing the cross entropy loss for a binary

classification of being continued or not. In our work, when

the “impression” part is available in the reports, we further

use this information to guide the generation of the topic vec-

tors, since “impression” implies a global topic about the re-

port. Specifically, a single layer LSTM is first trained to

generate “impression”, and then the attained weights are

utilized to initialize the weights of the sentence LSTM.

The word LSTM is also a single layer LSTM with hid-

den size H = 512 and the initial hidden and cell states of

the word LSTM are set to zero. It takes the topic vectors

produced by the sentence LSTM as the input and generates

detailed sentences. Given the ith topic ti, the hidden and

cell states of the word LSTM are updated by hi+1, ci+1 =

LSTM(s
(i)
j−1, (hi, ci)), where j ∈ {0, · · · ,M + 2}, and M

is the number of word in ith sentence. It should be noted,

when j = 0, si−1 represents the topic vector ti; when j > 0,

s
i
j represents the word embedding of the jth word in the ith

sentence. In particular, s0 and sM+1 represent the word

embedding of the special token 〈start〉 and 〈end〉 respec-

tively. After obtaining the hidden state of word LSTM, the

probability pij = Softmax(Wphj +bp) can be learnt, pre-

dicting the probability of jth word in ith sentence, where

i ∈ {1, · · · ,M} , j ∈ {1, · · · , N}.

Loss function Most image captioning and medical re-

port generation methods construct the loss functions evalu-

ating the difference between the generated and the ground-

truth reports at the word-level (cross-entropy based loss).

In this paper, we further argue that a generated report with

high-quality should also be similar to the ground-truth at

the semantic feature levels. That is, they should stay sim-

ilar after they are passed through a text feature extractor

producing features corresponding to high-level semantics.

In our work, such a text feature extractor could be readily

achieved by utilizing the report encoder learnt in the aux-

iliary ITM-branch, which is well trained to effectively en-

code the most critical text features correlated to the visual

contents. Specifically, given K reports, the loss function

used in our RG-branch consists of two terms as follows:

LRG = λCE

K
∑

k=1

L
(k)
CE + λfeat

K
∑

k=1

L
(k)
feat, (1)

where λCE and λfeat are hyper-parameters balancing the
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two terms.

The first loss term L
(k)
CE is the cross-entropy loss

used to measure the word-level difference for the

kth report. Since we use a hierarchical LSTM as

the text decoder, the L
(k)
CE is the sum of the cross-

entropy loss L
(k)
S of the sentence LSTM and the cross-

entropy loss L
(k)
W of the word LSTM. The loss L

(k)
S =

−
∑N

i=0

[

l
(k)
i · log(q

(k)
i ) + (1− l

(k)
i ) · log(1− q

(k)
i ))

]

,

where q
(k)
i and l

(k)
i are the predicted and the ground-

truth labels, respectively, indicating if the ith sen-

tence is the last sentence in the kth report. The loss

L
(k)
W = −

∑N

i=1

∑M

j=1 y
(k)
ij log(p

(k)
ij ), where y

(k)
ij refers to

the ground-truth and p
(k)
ij refers to the prediction of the jth

word in the ith sentence within the kth report.

The second loss term L
(k)
feat =‖ ΦITM−R(T̂(k)) −

ΦITM−R(T(k)) ‖2 measures the difference at the feature

level, where T̂
(k) and T

(k) are the predicted paragraph and

the ground-truth for the kth report, respectively. Here the

mapping ΦITM−R(·) denotes the embedding function of

the report encoder in ITM-branch (see Section 3.3 for more

details), which is highly nonlinear.

In addition, following literature [26], we also apply re-

inforcement learning with CIDEr as the reward to further

boost the performance of our RG-branch.

3.3. ImageText Matching (ITM) Branch

To promote the main task of report generation, we also

introduce an auxiliary task of image-text matching to learn

highly correlated visual and text features. Our ITM-branch

takes an image-report pair as input and tells whether the

image and the report match. It consists of an image encoder

and a report encoder, detailed as follows.

Image encoder Our ITM-branch shares its image en-

coder with our RG-branch. As mentioned above, the image

encoder extracts visual features from regions, refines these

features with regional relationship, and outputs the image

representation on top of an additional region pooling. It is

worth mentioning that, sharing the image encoder between

ITM-branch and RG-branch enables our model to both learn

image-text correlated features and fine-tune these features

for the main report generation task.

Report encoder We considered BERT’s [4] model as

the report encoder, which is a multi-layer bidirectional

Transformer [28] and has set a new state-of-the-art perfor-

mance on various NLP tasks. However, we do not directly

use the vanilla BERT. As mentioned, the report encoder

in ITM-branch is also employed by RG-branch to com-

pare the feature similarity between the generated and the

ground-truth reports. Taking this into account, we adapt a

Sentence-BERT [24] model to constructing our report en-

coder, because Sentence-BERT employed a siamese and

triplet network structure [27] for BERT, making it more

suitable to derive semantically meaningful sentence em-

beddings. Sentence-BERT has been well pre-trained on

two large broad-coverage corpus [2, 33] for various tex-

tual similarity tasks. Moreover, on top of the pretrained

Sentence-BERT, we stack another fully connected layer to

fine-tune the text features towards our image-text match-

ing task and generate a text feature embedding Tf that has

the same dimension as the image feature embedding If out-

put by the image encoder. In sum, Tf = ΦITM−R(T) =
σ(WR×Sent-Bert(T)), where σ(·) is the sigmoid function.

Loss function Based on the image feature embedding

If and the text feature embedding Tf , we minimize a triplet

loss similar to that in [7, 15] as follows.

Lmatch = [α− S(If ,Tf ) + S(If , T̄f )]++

[α− S(If ,Tf ) + S(Īf ,Tf )]+ ,
(2)

where S(If ,Tf ) =
If ·Tf

‖If‖·‖Tf‖
, measuring the cosine simi-

larity between the image and the text features. The symbol

[·]+ denotes the function [x]+ = max(x, 0); and α serves

as a margin parameter. T̄f and Īf represent the hardest

negative samples [7] in a mini-batch for the positive pair

(If ,Tf ). Minimizing this triple loss requires that the dis-

tance from If to Tf be smaller than that from If to T̄f by

a margin α, and vice versa.

Moreover, it is noticed that negative mining [7] has a cru-

cial impact on the performance of the image-text matching.

In our model, we utilize the generated reports from RG-

branch as hard negative samples to further improve ITM-

branch. As the quality of the generated reports improves

over iterations, they become more and more similar to the

ground-truth ones, and therefore harder and harder to be dif-

ferentiated by ITM-branch. When they are used to grad-

ually join the training of image-text matching task, ITM-

branch will be enforced to enhance its feature learning so

that even finer mismatch between the image and the report

could be identified. For this purpose, we additionally intro-

duce a self-boosted triplet loss as follows:

Lmatch−gen = [α− S(If ,Tf ) + S(If ,T
g
f )]++

[α− S(If ,T
g
f ) + S(If , T̄f )],

(3)

where T
g
f refers to the text embedding of the generated re-

port from RG-branch and other symbols remain the same as

used in Eqn. 2. Minimizing this self-boosted triplet loss en-

forces ITM-branch to learn effective feature embedding so

that in the embedding space, the generated report T
g
f stays

closer to its corresponding image If than other reports T̄f ;

at the same time T
g
f is still farther than its ground-truth Tf

to the image If in order to enforce ITM-branch to differen-

tiate the generated and the ground-truth reports. During our
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training, the Lmatch−gen is only employed after k number

of epochs since the generated reports from RG-branch are

of poor quality at the early iterations and they cannot assist

as hard samples.

3.4. Selfboosted Training

The overall objective function of our model combines

the loss terms from both RG-branch and ITM-branch:

Lall = λCELCE + λfeatLfeat + λITMLITM , (4)

where

LITM =

{

Lmatch, epoch ∈ (0, k]
Lmatch−gen, epoch ∈ (k,N ]

(5)

The hyper-parameters λCE , λfeat, and λITM are simply set

to balance the three loss terms, and their values are given in

Section 4.

To simplify the optimization, we update RG-branch and

ITM-branch in an alternative way. That is, in some itera-

tions we fix RG-branch and learn ITM-branch, and in next

iterations we fix ITM-branch and learn RG-branch. This

pattern is repeated throughout the whole training procedure.

Please note that, as the two branches are highly entangled

in our model, the update of ITM-branch will affect the vi-

sual encoder and the loss of RG-branch; while the update

of RG-branch will affect the image encoder of ITM-branch

and generate harder samples to the latter. In this way, our

training ends up with a self-boosting manner: the improve-

ment of ITM-branch enhances RG-branch and the improve-

ment of RG-branch in turn pushes ITM-branch to evolve.

At the first glance, the interaction between our RG-

branch and ITM-branch resembles that observed in Gen-

erative Adversarial Networks (GANs). Our RG-branch is

like the generator that produces realistic reports while our

ITM-branch is like the discriminator that differentiates the

generated and the ground-truth reports. However, we would

like to point out that our self-boosting mechanism is essen-

tially different from the adversarial training in GANs. First,

our RG-branch and ITM-branch do not compete but help

with each other. On the contrary, GANs play the two-player

min-max game between the generator and the discriminator

so that the generator minimizes the reward of the discrim-

inator. Such adversarial loss is not used in our approach.

Second, in most GANs (if not all), the generator and the

discriminator are two separated networks linked by the ad-

versarial loss, while our RG-branch and ITM-branch share

their visual/image encoder as one way of communication.

3.5. Remarks

It is noticed that in a very recent work [44], the image-

text matching was also used to help image captioning, how-

ever, in a substantially different way as ours. In [44] the at-

tentions pretrained by image-text matching are used to reg-

ularize the attentions used in report generation, while we

communicate the visual and text features between the two

tasks throughout the training. Moreover, in [44] the image-

text matching and report generation are two separate steps

and they are not tightly coupled and interact with each other,

which is in a sharp contrast to our self-boosting framework.

We also experimentally compare these two methods in Sec-

tion 4. Our results clearly exhibit the superiority of our

learning strategy over that of [44] by communicating both

the features and the generated samples between the two

tasks for progressive mutual improvement.

4. Experiments

4.1. Datasets

In this experiment, two datasets are used for the per-

formance evaluation. One (IU-Xray) represents the most

widely used benchmark for medical report generation,

while the other (COV-CTR) is employed to validate model

performance on the newly discovered disease COVID-19.

IU-Xray Indiana University Chest X-ray Collection (IU-

Xray) [5] is the most widely used publicly accessible dataset

in medical report generation task. It contains 3,955 fully

de-identified radiology reports, each of which is associated

with a frontal and/or lateral chest X-ray images, and 7,470

chest X-ray images in total. Each report is comprised of

several sections: Impression, Findings and Indication etc.

In this work, we filtered out reports without two complete

image views or without complete sections of “findings” and

“impression”, resulting in a smaller dataset with 3195 re-

ports associated with 6390 images. We tokenized all the

words in “findings” and “impression” and obtained 2,076

unique words. In addition, two special tokens, 〈start〉 and

〈end〉, are added to indicate the start and the end of a sen-

tence. We randomly picked 311 (10%) reports to form the

test set, which is comparable to the works in the litera-

ture [10, 36]. All evaluations are done on the test set.

COV-CTR COVID-19 CT Report dataset (COV-

CTR)[17] contains lungs CT images paired with their cor-

responding diagnostic chinese reports, in which the lungs

CT images are collected by [37] during the outbreak time

of COVID-19 and Li et al.[17] provided the correspond-

ing diagnostic report, constructing a new medical report

dataset. The COV-CTR dataset includes 728 images in total,

in which 349 for COVID-19 and 379 for Non-COVID. We

used the “jieba” software tool1 to tokenize all report words,

leading to 328 unique words or phrases in total. For a fair

comparison, we follow [17] to randomly split the data into

training, validation, and test sets with the radio 7:1:2.

1https://github.com/fxsjy/jieba

2438



Dataset Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE CIDEr

Show-Tell [30] 0.346 0.214 0.141 0.095 0.320 0.239

Att2in [26] 0.399 0.249 0.172 0.126 0.321 0.341

AdaAtt [22] 0.436 0.288 0.203 0.150 0.354 0.265

Topdown [1] 0.375 0.237 0.167 0.123 0.319 0.336

Transformer[28] 0.422 0.264 0.177 0.120 0.338 0.268

IU-Xray M2transformer[3] 0.463 0.318 0.214 0.155 0.335 0.349

Grounded [44] 0.446 0.301 0.237 0.176 0.343 0.395

CoAtt†[10] 0.455 0.288 0.205 0.154 0.369 0.277

HGRG-Agent†[18] 0.438 0.298 0.208 0.151 0.322 0.343

KERP†[16] 0.482 0.325 0.226 0.162 0.339 0.280

Ours 0.487 0.346 0.270 0.208 0.359 0.452

Show-Tell [30] 0.665 0.613 0.578 0.549 0.684 0.631

Att2in [26] 0.674 0.614 0.574 0.542 0.588 0.686

AdaAtt [22] 0.689 0.636 0.596 0.563 0.709 0.729

Topdown [1] 0.705 0.663 0.622 0.586 0.720 0.968

Transformer[28] 0.683 0.636 0.590 0.558 0.719 0.721

COV-CTR M2transformer[3] 0.733 0.662 0.620 0.582 0.750 1.289

Grounded [44] 0.753 0.708 0.665 0.627 0.776 1.381

CoAtt†[10] 0.709 0.645 0.603 0.552 0.718 0.672

Vision-BERT†[4] 0.710 0.653 0.606 0.558 0.747 0.684

ASGK† [17] 0.712 0.659 0.611 0.570 0.746 0.680

Ours 0.810 0.766 0.721 0.679 0.790 2.371

Table 1. Comparison on IU-Xray (upper part) and COV-CTR datasets (lower part). † indicates the results are quoted from the published

literature. Specifically, we quote the results from [16] for IU-xray, and from [17] for COV-CTR. For other methods in comparison, their

results are obtained by re-running the publicly released codes on these two datasets using the same training-test partition as our method.

4.2. Experimental Settings

Evaluation Metrics To evaluate the quality of the

generated text report, we utilize the widely used BLEU

scores[23], ROUGE-L[19] and CIDER[29] as evaluation

metric. We compute those metrics by the standard image

captioning evaluation tool2.

Implementation Details We use the paired data as the

input for IU-Xray dataset and concatenate the features of

frontal and lateral images. The margin parameter α in

Eqn. 2 and 3 is set to 0.2 and λCE , λfeat, λITM = 2, 10, 1
in Eqn. 4, respectively. The word embedding size and topic

vector size were respectively set to 300 and 512. We train

our model using Adam optimizer [12] with mini-batch size

of 16. The learning rate are set to be 0.0001 and 0.0002,

respectively, for RG-branch and ITM-branch with a total 30

epochs. We set k = 10 in Eqn. 3, training ITM branch

with the regular triplet loss for the first 10 epochs and the

self-boosted triple loss for the rest.

4.3. Results and Discussion

Comparison with SOTA We compare our model with

7 state-of-the-art image captioning methods. These in-

clude the classic model Show-tell [30], different attention-

based methods including AdaAtt [22], Att2in [1], and Top-

down [26], methods using advanced NLP models including

2https://github.com/tylin/coco-caption

Dataset Model B@4 Rouge CIDEr

baseline 0.128 0.307 0.359

baseline+ITM 0.155 0.321 0.372

baseline+ITM+FLL 0.169 0.330 0.391

IU-Xray baseline+ITM+STL 0.176 0.345 0.418

Ours-RL 0.193 0.352 0.426

Ours 0.208 0.359 0.452

baseline 0.573 0.659 0.722

baseline+ITM 0.611 0.704 1.243

COV-CTR baseline+ITM+FLL 0.637 0.729 1.617

baseline+ITM+STL 0.658 0.761 1.953

Ours-RL 0.672 0.783 2.014

Ours 0.679 0.790 2.371

Table 2. Ablation studies. “Baseline” refers to RG-branch only.

“ITM”, “FLL”, “STL” and “RL” stand for ”Image-Text Match-

ing”, ”Feature Level Loss” (Lfeat in Eqn. 1), ”Self-boosted

Triplet Loss” (Eqn. 3), and “Reinforcement Learning”, respec-

tively. B@4 is the BLEU score uses 4-grams.

Transformer [4] and M2transformer [3], and the very re-

cent method Grounded [44] that also takes advantage of the

image-text matching task to improve image captioning but

in a completely different manner as ours. For these meth-

ods, we download the codes released publicly and re-run

them on these two datasets with the same experiment setting

as ours. Moreover, we also compare with 3 state-of-the-

art medical report generation models: CoAtt [10], HGRN-
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Figure 2. Examples of the generated report on IU-xray(upper part) and COV-CTR dataset (lower part). We compare our results with the

ground truth report and the other two methods: Show-Tell [30] and Grounded [44]. Highlighted sentences are the key information in the

ground truth report that is only generated by our method.

Agent [18], KERP [16]. Since medical report generation

models do not release the codes, we have to quote their per-

formance from [16] that is often referred to in this field.

As shown in Table 1, on both datasets, our self-boosting

method achieves the best performance over almost all eval-

uation metrics among the comparing methods. The two

very recent image captioning methods M2transformer [3]

and Grounded [44] perform better than other existing meth-

ods, but still lose to ours. Especially, our advantages over

Grounded [44] fully demonstrate the benefit to jointly train

the two tasks of report generation and image-text match-

ing in our proposed self-boosting manner. It is also noted

that, our performance improvement on CIDEr is most sig-

nificant. Cross-referring to Table 2, even without the re-

inforcement learning on CIDEr (denoted as Ours-RL), our

method is still the best performer on CIDEr on both datasets

and the advantage is pronounced3. This is a positive sign for

radiographic reports, since CIDEr focuses on key informa-

tion by down-weighting the common words in all reports.

In addition, we also conduct qualitative comparison

among our method, the classic ShowTell model [30], and

the most recent and closest method of Grounded [44]. Two

examples of the generated reports are visually compared in

Fig. 2, one from each of the two datasets. A wider visual

comparison among more examples and methods is provided

in our supplement. Please note that COV-CTR reports are

generated and evaluated in Chinese.They are simply trans-

lated into English by Google Translate4 for display. As

can be observed, our proposed model can significantly im-

prove the quality of the generated reports, consistent with

the above quantitative analysis. For example, our gener-

ated report correctly describes “the osseous structures” in

the first example, and points out “the boundary is fuzzy”

and “the density is uneven” in the second example, while

the other two methods missed such information.

Ablation Study We conduce an ablation study to single

3It is noted that Grounded [44] also uses RL on CIDEr for refinement.
4https://translate.google.com/

out the contributions of each component in our proposed

method, as presented in Table 2. We take the RG branch

of our proposed pipeline as the baseline to verify the per-

formance improvements brought by ITM-branch and our

self-boosted training strategy. In Table 2, there are four

components: ITM, FLL, STL and RL, representing Image-

Text matching, Feature-Level Loss, Self-boosted Loss and

Reinforcement Learning, respectively. The symbols “+”

or “-” indicate the inclusion or exclusion of the follow-

ing component. The benefit of using the auxiliary image-

text matching task can be well reflected by the improve-

ment from “baseline” to “baseline+ITM”. As shown, the

performance can be further boosted by additionally utiliz-

ing feature-level loss (“baseline+ITM+FLL”) in RG-branch

and the self-boosted triplet loss (“baseline+ITM+STL”) in

ITM-branch, proving their indispensability in our proposed

method. Moreover, as mentioned, even removing the re-

finement by reinforcement learning, our model still signifi-

cantly outperforms the comparing methods in Table 1.

5. Conclusions

In this work, we improve the diagnostic report genera-

tion by additionally utilizing an auxiliary image-text match-

ing task to learn strongly correlated visual and text features

to describe fine-grained differences among radiographic im-

ages. We show how to achieve this by deeply coupling the

two tasks and encouraging the cooperative interactions be-

tween them. By communicating the learned features and

the newly generated samples, the two tasks could mutually

boost each other in a progressive way. As experimentally

verified, our generated reports could better capture the sub-

tle but critical information in radiographic images.
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