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Abstract

To address the problem of long-tail distribution for the

large vocabulary object detection task, existing methods

usually divide the whole categories into several groups and

treat each group with different strategies. These methods

bring the following two problems. One is the training in-

consistency between adjacent categories of similar sizes,

and the other is that the learned model is lack of discrim-

ination for tail categories which are semantically similar

to some of the head categories. In this paper, we devise

a novel Adaptive Class Suppression Loss (ACSL) to effec-

tively tackle the above problems and improve the detection

performance of tail categories. Specifically, we introduce

a statistic-free perspective to analyze the long-tail distribu-

tion, breaking the limitation of manual grouping. According

to this perspective, our ACSL adjusts the suppression gra-

dients for each sample of each class adaptively, ensuring

the training consistency and boosting the discrimination for

rare categories. Extensive experiments on long-tail datasets

LVIS and Open Images show that the our ACSL achieves

5.18% and 5.2% improvements with ResNet50-FPN, and

sets a new state of the art. Code and models are available

at https://github.com/CASIA-IVA-Lab/ACSL.

1. Introduction

With the advent of deep Convolutional Neural Network,

researchers have achieved significant progress on object de-

tection task. Many efforts have been paid to refresh the
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Figure 1: The label distribution of LVIS [11] dataset. The x-axis

represents the sorted category index of LVIS. The y-axis is the

image number of each category.

record on classic benchmarks like PASCAL VOC [9] and

MS COCO [21]. However, these benchmarks usually have

limited quantities of classes and exhibit relatively balanced

category distribution. Whereas, in real-world scenarios,

data usually comes with a long-tail distribution. A few head

classes (frequent classes) contribute most of the training

samples, while the huge number of tail classes (rare classes)

are under-represented in data. Such extremely imbalanced

class distribution proposes new challenges for researchers.

An intuitive solution is to re-balance the data distribution

by re-sampling technique [12, 7, 28, 23]. By over-sampling
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the tail or under-sampling the head classes, a less imbal-

anced distribution could be artificially generated. Neverthe-

less, over-sampling usually brings undesirable over-fitting

issues on tail classes. And under-sampling may miss valu-

able information of head classes. The effectiveness of such

techniques is limited when the dataset is extremely imbal-

anced. To improve the performance of tail classes while

avoiding the over-fitting issue, Tan et al. [29] devises Equal-

ization Loss, which argues that the poor performance of

tail classes originates from the over-suppression of samples

from head classes. Since tail classes only contain few sam-

ples, they receive much more negative gradients than posi-

tive ones during training, thus they are consistently in a state

of being suppressed in most of the training time. In order to

prevent tail classifiers from being over-suppressed, Equal-

ization Loss proposes to ignore all negative gradients from

head classes. Balanced Group Softmax (BAGS) [18] puts

categories with similar numbers of training instances into

the same group and computes group-wise softmax cross-

entropy loss respectively. BAGS achieves relative balance

within each group, thus can effectively ameliorate the dom-

ination of the head classes over tail classes.

The above methods can efficaciously reduce the sup-

pression on tail classifiers. However, they need to parti-

tion the categories into several groups based on their cate-

gory frequency prior. Such hard division between head and

tail classes brings two problems, namely training inconsis-

tency between adjacent categories and lack of discrimina-

tive power for rare categories. As shown in Figure 1, when

two categories with similar instance statistics are divided

into two different groups, there exists a huge gap between

their training strategies. Such training inconsistency may

deteriorate the network’s performance. In general, it is sub-

optimal to distinguish the head and tail classes by the abso-

lute number of samples. In addition, it frequently happens

that two categories with high appearance similarity hold

totally different sample frequency for datasets with large

category vocabulary. For instance, category “sunglasses”

and “eye mask” belong to the head and tail classes, respec-

tively. To prevent the tail classifier “eye mask” from being

over-suppressed, the negative gradients from category “sun-

glasses” is ignored by the classifier of “eye mask”. Never-

theless, this can also reduce the differentiability between

these semantically similar cases in feature space, the classi-

fier of “eye mask” has a high chance to misclassify sample

“sunglasses” as “eye mask”. For those categories which be-

long to different groups but have high appearance similarity,

it is hard for the network to learn a discriminative feature

representation.

Therefore, in this paper, we present a novel Adaptive

Class Suppression loss (ACSL) to address the above two

problems. The design philosophy is simple and straight-

forward: We assume all categories are from “tail” group,

and adaptively generate suppression gradients for each cat-

egory according to their current learning status. To be spe-

cific, we propose to treat all object categories as scarce cate-

gories, regardless of the statistics of per-category instances,

thus eliminating the dilemma of manually defining the head

and tail. Furthermore, in order to alleviate the insufficient

learning and representation, we introduce an Adaptive Class

Suppression Loss to adaptively balance the negative gradi-

ents between different categories, which effectively boosts

the discriminative ability for tail classifiers. On the one

hand, the proposed method can exterminate several heuris-

tics and hyper-parameters of data distribution. On the other

hand, it can also avoid the problem caused by over-sampling

and under-sampling, and ensure the training consistency for

all classes and sufficient learning of rare or similar cate-

gories. Finally, it yields reliable and significant improve-

ments in detection performance on large-scale benchmarks

like LVIS and Open Images.

To sum up, this work makes the following three contri-

butions:

1. We propose a new statistic-free perspective to un-

derstand the long-tail distribution, thus significantly

avoiding the dilemma of manual hard division.

2. We present a novel adaptive class suppression loss

(ACSL) that can effectively prevent the training incon-

sistency of adjacent categories and improve the dis-

criminative power of rare categories.

3. We conduct comprehensive experiments on long-tail

object detection datasets LVIS and Open Images.

ACSL achieves 5.18% and 5.2% improvements with

ResNet50-FPN on LVIS and OpenImages respectively,

which validates its effectiveness.

2. Related Works

General Object Detection Current CNN-based object

detectors can be divided into anchor-based and anchor-

free detectors based on whether they depend on the an-

chor heuristic. Classic anchor-based detectors consist of

one-stage and two-stage approaches. Two-stage detec-

tors [27, 10, 6, 1, 25, 13, 19, 24] first generate coarse object

candidates by a Region Proposal Network (RPN). And then

the region features of these proposals will be extracted for

accurate classification and bounding box regression. One-

stage detectors [22, 37, 20, 3, 36, 35] have a more concise

structure. They make predictions on multiple feature maps

directly without proposal generation process, thus enjoying

higher computational efficiency.

Anchor-free pipelines abandon the anchor mechanism.

They first locate several predefined or self-learned key-

points and then group them to final detections. Corner-

Net [16, 17], ExtremeNet [38] and CenterNet [8] etc. rep-

resent one object as several predefined keypoints and detect
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by predicting these keypoints. RepPoints [34] proposes a

finer representation of objects as a set of sample points and

learns to arrange them in a manner that bounds the spa-

tial extent of an object. FCOS [30] solves object detec-

tion in a per-pixel prediction fashion. It predicts four dis-

tances for each location and filters those unreliable detec-

tions with novel centerness scores. They all perform well

on balanced datasets. However, directly applying them to

long-tail datasets achieves inferior performance due to the

imbalanced data distribution. Thus, our intention is to im-

prove the detectors’ performance on long-tail datasets.

Long-tail Recognition Re-sampling strategy is a typi-

cal technique for imbalanced datasets. Class-aware sam-

pling [28] and Repeat factor sampling [11] share the same

design philosophy that they aim to balance the data distri-

bution by adopting different sampling frequencies for dif-

ferent categories. Re-weighting [33, 14] is another widely

used method which works by assigning weights for differ-

ent training samples to emphasize the training of tail sam-

ples. Cui et al. [5] further proposes Class balanced loss

which first calculates the effective number of samples for

each category and uses the effective numbers to re-balance

the loss.

In addition, some works design specialized loss func-

tions or training strategies to tackle the imbalanced is-

sue. Equalization Loss [29] ignores the negative gradi-

ents from head samples to prevent the tail classifiers from

being over-suppressed. Cao et al. [2] proposes label-

distribution-aware margin loss motivated by minimizing a

margin-based generalization bound. Balanced Group Soft-

max [18] puts categories with similar sample numbers to

one group and applies softmax within each group. Balanced

Meta-Softmax [26] devises an unbiased extension of soft-

max to accommodate the label distribution shift between

training and testing. SimCal [31] proposes a simple calibra-

tion framework to more effectively alleviate classification

head bias with a bi-level class balanced sampling approach.

Kang et al. [15] design a decoupling training schema, which

first learns the representations and classifier jointly, then ob-

tains a balanced classifier by re-training the classifier with

class-balanced sampling.

The above methods can relieve the imbalanced training

to a great extent. However, they all depend on the class dis-

tribution which brings inconvenience when we apply them

to new long-tail datasets. In this paper, we devise a more

general loss function which does not rely on the category

frequency prior and can also handle the long-tail datasets

well.

3. Adaptive Class Suppression Loss

In this section, we start by analyzing the limitations of

group-based methods. Then, we introduce our proposed

Table 1: Experiments on LVIS with different groups.

Groups mAP APr APc APf

(0,5)[5,∞) 22.74 6.83 22.14 29.83

(0,50)[50,∞) 25.30 15.11 24.99 29.77

(0,500)[500,∞) 25.66 13.19 25.98 30.25

(0,5000)[5000,∞) 23.89 8.27 23.87 30.16

Adaptive Class Suppression Loss in detail and summary its

advantages compared with previous methods.

3.1. Limitations of Group­based Methods

To pursue a balanced training for tail classifiers, several

works propose to divide the whole categories into several

groups based on the category frequency prior and adopt dif-

ferent training strategies for different groups. For instance,

Equalization Loss [29] ignores the negative gradients from

samples of head categories to prevent the tail classifiers

from being dominated by negative signals. Balanced Group

Softmax [18] first puts categories with similar sample num-

bers into the same group and applies softmax cross-entropy

loss within each group.

The group-based methods show their ability to improve

the performance of tail classifiers. For these methods, how

to properly divide all categories into different groups is

of vital importance. We empirically find that the quality

of grouping directly impacts the performance. We choose

BAGS (one of the state-of-the-art group-based methods for

long-tail object detection) with ResNet50-FPN as an ex-

ample to illustrate the importance of proper grouping in

LVIS dataset. For clarity, we divide all categories into 2

groups rather than the default 4 groups. We utilize different

group partition strategies to train the detectors and report the

mAP , APr (r for rare categories), APc (c for common) and

APf (f for frequent) in Table 1. As we can see from this

table, the dividing line need to be settled in a proper range

(50˜500) to achieve satisfactory performance. Setting it to a

too large or small number all deteriorate the performance.

Since the proper grouping is the precondition of good

performance, it is necessary to divide groups based on the

data distribution when applying group-based methods to

other long-tail datasets. Nevertheless, different datasets

usually have various data distributions. A good group par-

tition for one dataset may be suboptimal for other datasets.

As shown in Figure 2, models can obtain the best perfor-

mance when the dividing line is set to 500 in LVIS. How-

ever, it is not a good partition for Open Images dataset since

it has fewer categories and each category has more samples.

Finding a proper group partition strategy for a new dataset

could be laborious and time-consuming, which will limit

the application of group-based methods in real-world sce-

narios. We naturally ask a question: can we devise a more

general method that can be directly applied to other long-
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Figure 2: The data distribution of LVIS and Open Images dataset.

The x-axis represents the sorted category index. Y-axis is the base-

10 logarithm of the instance number.
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Figure 3: An illustration of Sigmoid Cross-entropy Loss and our

proposed ACSL. The top two classes belong to head categories

and the bottom three classes belong to tail categories. For ACSL,

the hyper-parameter ξ is 0.7.

tail datasets without extra heuristics? To accomplish this

goal, we propose a novel Adaptive Class Suppression Loss

which does not need to perform group partition nor depend

on the category frequency prior. It can be easily combined

with different datasets seamlessly.

3.2. Formulation of ACSL

Based on the above analysis, we believe a satisfactory

loss function for long-tail datasets should have the follow-

ing two properties:

(i) The tail classifiers should be protected from being

over-suppressed by the overwhelming head samples.

In the meantime, negative gradients for easily con-

fused categories should be preserved for discrimina-

tive learning.

(ii) The loss function should better not depend on the label

distribution prior so that it can be seamlessly applied

to diverse datasets without re-calculating the new cat-

egory distribution statistics.

Giving a sample xs belonging to the head category k, its

label is a one-hot vector Y , in which yk equals to 1 and

yi(i 6= k) is set to 0. zi represents the network output

logit of category i. By applying the sigmoid function to

the logit zi (Equation (1)), we can obtain pi, the probabil-

ity of current sample belonging to category i. The binary

cross-entropy loss is formulated as Equation (2). Then we

can derive the gradient of the loss function with respect to

logit zi as in Equation (4). For tail category i 6= k, BCE

generates negative suppression gradients to force the clas-

sifier i to output low confidence. Such suppression gradi-

ents is beneficial to some extent. However, the excessive

suppression gradients derived from the head categories will

seriously hinder the positive activation of tail categories.

pi =
1

1 + e−zi
(1)

LBCE(xs) = −

C
∑

i=1

log(p̂i) (2)

where,

p̂i =

{

pi, if i = k

1− pi, if i 6= k
(3)

∂LBCE

∂zi
=

{

pi − 1, if i = k

pi, if i 6= k
(4)

Therefore, we devise a novel Adaptive Class Suppres-

sion Loss to protect the training of tail classifiers and adap-

tively choose which categories should be suppressed based

on the learning status. As shown in Equation (5), we mul-

tiply a binary weight term wi to the loss term −log(p̂i) for

category i. For category k, wi is set to 1 since the current

sample belongs to category k. For other categories i(i 6= k),
wi controls whether the network applies suppression on cat-

egory i. Here, we utilize the output confidence pi as a signal

to determine whether to suppress category i. If pi is larger

than the predefined threshold ξ, that means the network is

confused between category i and k. Hence, we set wi to 1 to

perform discriminative learning. Otherwise, wi will be set

to 0 to avoid numerous unnecessary negative suppression.

Rather than depending on the category distribution statis-

tics, our proposed ACSL only relies on the network output

confidences which saves the efforts of finding optimal cat-

egory statistics related hyper-parameters when switching to

a new dataset. The formulation is defined as follows:

LACSL(xs) = −

C
∑

i=1

wilog(p̂i) (5)
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where,

wi =











1, if i = k

1, if i 6= k and pi ≥ ξ

0, if i 6= k and pi < ξ

(6)

The gradient of the loss function with respect to zi can

be derived as Equation (7).

∂LACSL

∂zi
=

{

pi − 1, if i = k

wipi, if i 6= k
(7)

As shown in Figure 3, we give a simple illustration to

better understand how ACSL works. For sigmoid cross-

entropy loss (Figure 3(a)), it does not consider the imbal-

anced class distribution, and directly generate negative gra-

dients for all other categories (the weight vector is filled

with 1), thus leading to the tail categories receiving a large

number of suppression information continuously, which

severely reduces the discrimination ability of tail classifiers.

For the proposed ACSL, the network can adaptively gener-

ate suppression gradients for tail categories. As show in

Figure 3(b), the network simultaneously yields high confi-

dence 0.9 for category “D”, which means the category “A”

is semantically similar to the category “D”. Therefore, it

is necessary to generate negative suppression for category

“D”, but not for the remaining tail categories with low con-

fidences.

3.3. Advantages over Previous Methods

Compared with previous methods, the proposed ACSL

has the following three characters that makes it more suit-

able for the long-tail datasets:

ACSL takes the network learning status into considera-

tion. Previous methods [7, 28, 29, 18] only consider the

label distribution, while ignore the network learning status.

For instance, state-of-the-art Equalization Loss [29] calcu-

lates a binary weight for each category based on the sample

numbers. Once the dataset is given, the weight will be de-

termined and will not be changed during the whole training

process. ACSL adaptively choose which categories to sup-

press based on the output confidences, which takes the net-

work learning status into consideration, resulting in a more

efficient learning process.

ACSL works in a more fine-grained sample level. Pre-

vious methods perform an identical operation on samples

from the same category. For example, Class balanced

loss [7] assigns the same weights for samples from one cat-

egory. Equalization loss [29] generates the same weight

masks for two samples if they all belong to the same cate-

gory. These methods all ignore the diversity of variant sam-

ples. In contrast, ACSL calculates the category weights for

a sample based on its output confidences. The generated

category weights for samples from the same category might

Table 2: Experimental results of ACSL with different ξ.

ξ mAP APr APc APf

baseline (1x) − 21.18 4.30 20.09 29.28

baseline (2x) − 22.28 7.38 22.34 28.17

ACSL

0.01 23.53 11.48 22.73 29.35

0.1 25.11 16.04 24.72 29.22

0.3 25.72 17.65 25.45 29.27

0.5 26.08 18.61 25.85 29.36

0.7 26.36 18.64 26.41 29.37

0.9 25.99 17.25 26.0 29.46

Table 3: Results with larger backbones ResNet101, ResNeXt-101-

64x4d and stronger detector Cascade R-CNN.

Models Method mAP APr APc APf

Faster R101
baseline 22.36 3.14 21.82 30.72

Ours 27.49 19.25 27.60 30.65

Faster X101
baseline 24.70 5.97 24.64 32.26

Ours 28.93 21.78 28.98 31.72

Cascade R101
baseline 25.14 3.96 24.55 34.35

Ours 29.71 21.72 29.43 33.26

Cascade X101
baseline 27.14 4.36 27.32 36.03

Ours 31.47 23.39 31.50 34.66

be different. Thus, ACSL can control the training of each

classifier in a more accurate way.

ACSL does not depend on the class distribution. The la-

bel distribution is indispensable for previous methods. They

need to know the class distribution in advance to design

sampling strategy [28, 11], determine the weights for sam-

ples [7] or divide categories into groups [18, 29]. This is

inefficient since the strategies must be re-designed based

on the new data distribution when we want to apply these

methods to new long-tail datasets. In comparison, ACSL

does not require the category frequency prior, which means

it can be applied to new long-tail datasets seamlessly. We

empirically find that ACSL works well on LVIS and Open

Images under the same hyper-parameter setting.

4. Experiments on LVIS

4.1. Dataset and Setup

To validate the effectiveness of the proposed ACSL, we

conduct comprehensive experiments on the long-tail Large

Vocabulary Instance Segmentation (LVIS) dataset [11]. In

this work, we use the LVIS-v0.5, which contains 1230 cat-

egories with both bounding box and instance mask annota-

tions. We train the models with 57k train images and re-

port the accuracy on 5k val images. LVIS divides all cat-

egories into 3 groups based on the number of images that
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(a) The AP on frequent categories (b) The AP on common categories (c) The AP on rare categories

Figure 4: The AP of baseline and ACSL on frequent, common and rare categories, respectively. Both models are trained with ResNet50-

FPN backbone. The x-axis is the sorted class index. The y-axis means the precision.

contain those categories: frequent (>100 images), common

(11-100 images) and rare (<10 images). We use the official

evaluation API1 to evaluate all the models. Besides the offi-

cial metrics mAP , the APr (AP for rare classes), APc (AP

for common classes) and APf (AP for frequent classes) are

also reported.

4.2. Implementation Details

We choose the classic two-stage detector Faster R-CNN

with FPN structure as the baseline. The training image is re-

sized such that the shorter edge is 800 pixels and the longer

edge is no more than 1333. When training, we use 8 GPUs

with a total batch size 16. The optimizer is stochastic gra-

dient descent (SGD) with momentum 0.9 and weight decay

0.0001. The initial learning rate is 0.02 with 500 iterations’

warm up. For 1x training schedule, learning rate decays

to 0.002 and 0.0002 at epoch 8 and 11, respectively. The

training stops at the end of epoch 12. When testing, we first

apply Non-Maximum Suppression with IoU threshold 0.5

to remove duplicates. Then, the top 300 detections will be

selected as the final results. Other hyper-parameter settings

like anchor scales and anchor ratios follow the default set-

tings in MMDetection [4].

When we conduct experiments with ACSL or other spe-

cialized loss functions designed for long-tail datasets, we

focus on the classification subnet of Faster R-CNN and re-

place the softmax cross-entropy loss with these specialized

loss functions. Inspired by [15], we decouple the train-

ing of feature representation and the classifier. We train a

naive Faster R-CNN detector in the first stage and fine-tune

the classifier in the second stage. In object detection, the

background samples are negative samples for all categories.

We adopt a simple strategy to chase a relative balance for

each classifier. Since the ratio between the image numbers

of rare, common and frequent categories is approximately

1:10:100, we randomly choose 1%, 10% background sam-

ples for rare and common categories, respectively.

1 https://github.com/lvis-dataset/lvis-api

4.3. Ablation Study

We take the Faster R-CNN with ResNet50-FPN back-

bone as the baseline model. As we first train a naive Faster

R-CNN detector for 12 epochs in the first stage and then

fine-tune the classifier with ACSL for another 12 epochs,

the total training epoch is 24. We also report the results of

the baseline model trained with 24 epochs for a fair com-

parison. As the results in Table 2, the baseline (1x) model

has a relatively high precision on frequent categories but an

extremely low accuracy on rare categories, merely 4.3%.

More training iterations bring benefits to rare and common

categories and lift the overall mAP by 1.1%. Even so, the

performance of rare categories is still unsatisfactory, which

shows the bottleneck of the baseline model lies in the tail

classes.

ACSL introduces a hyper-parameter ξ to define the eas-

ily confused categories. It is a trade-off between reliving

over-suppression on tail classes and chasing discriminative

learning. A small ξ means that most of the categories will be

suppressed, which will suppress too much on tail categories.

However, for an extremely large ξ, the network will only

suppress categories with extremely high confidences while

ignore most of the other categories, thus will weaken the

classifier’s discriminative power. To explore how ξ influ-

ences the performance, we conduct experiments with sev-

eral different values and report the results in Table 2. As

shown in this table, setting ξ to 0.01 improves the preci-

sion but the improvements are limited. As ξ grows larger,

the mAP and APr also increase which proves that prop-

erly increasing ξ relieves the suppression on tail classifiers.

When ξ increases to 0.7, the model achieves the best perfor-

mance. The overall mAP is 26.36%, surpassing the base-

line model by considerable 5.18%. Nevertheless, continu-

ing to increase its value deteriorates the performance since

it will weaken the discriminative power of the classifier. We

empirically find ξ = 0.7 works best under current setting.

4.4. Generalization on Stronger Models

To verify the generalization of our method, we fur-

ther conduct experiments on stronger backbones and de-
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Table 4: Comparison with state-of-the-art methods on LVIS-v0.5 val dataset. Bold numbers denote the best results among all models.

“ms” means multi-scale testing.

Methods backbone mAP APr APc APf AP@0.5 AP@0.75 APs APm APl

Focal Loss [20]

ResNet-50

21.95 10.49 22.42 25.93 35.15 23.91 18.66 28.59 31.46

CBL [5] 23.9 11.4 23.8 27.3 − − − − −
LDAM [2] 24.5 14.6 25.3 26.3 − − − − −
RFS [11] 24.9 14.4 24.5 29.5 41.6 25.8 19.8 30.6 37.2

LWS [15] 24.1 14.4 24.4 26.8 − − − − −
SimCal [31] 23.4 16.4 22.5 27.2 − − − − −

EQL [29]

ResNet-50 25.06 11.92 25.98 29.14 40.14 27.30 20.08 31.50 38.67

ResNet-101 26.05 11.45 27.14 30.51 41.30 27.83 20.35 33.73 40.75

ResNeXt-101-64x4d 28.04 15.03 29.14 31.87 44.06 30.07 22.19 34.52 42.97

BAGS [18]

ResNet-50 25.96 17.65 25.75 29.54 43.58 27.15 20.26 32.81 40.10

ResNet-101 26.39 16.80 25.82 30.93 43.44 27.63 20.29 34.39 41.07

ResNeXt-101-64x4d 27.83 18.78 27.32 32.07 45.83 28.99 21.92 35.65 43.11

ACSL (Ours)

ResNet-50 26.36 18.64 26.41 29.37 42.38 28.63 20.43 33.11 40.21

ResNet-101 27.49 19.25 27.60 30.65 43.45 29.69 21.11 34.96 42.00

ResNeXt-101-64x4d 28.93 21.78 28.98 31.72 45.54 31.19 22.16 35.81 43.43

ResNet-50 (ms) 27.24 17.86 27.42 30.76 44.46 28.54 20.96 34.40 41.68

ResNet-101 (ms) 28.23 17.42 28.40 32.32 44.73 30.13 21.86 35.43 44.06

ResNeXt-101-64x4d (ms) 29.47 20.30 29.45 33.15 46.82 31.55 22.52 37.32 45.51

tectors. We replace the ResNet50 backbone with larger

ResNet101 and ResNeXt-101-64x4d. The results are sum-

marized in Table 3. Experimental results reveal that ACSL

can still achieve competitive results on larger backbones.

With ResNet101 backbone, ACSL outperforms the baseline

model by 5.13% mAP . And we observe that ACSL brings

significant performance gains for rare categories with vari-

ous backbones (16.11% APr improvements for ResNet101,

for instance), which demonstrates the advantage of ACSL

when tackling with long-tail datasets. The advantage of

ACSL still exists when we use a larger backbone ResNeXt-

101. The mAP of ACSL is 4.23% higher than the baseline

model for ResNeXt-101. Moreover, the utilization of ACSL

is not limited to a certain type of detector. It can be eas-

ily combined with other detectors such as Cascade R-CNN.

For Cascade R-CNN, we replace the softmax cross-entropy

loss with ACSL on all 3 heads and fine-tune the classifiers’

weights in the second training stage. With ResNet-101 Cas-

cade R-CNN detector, ACSL achieves 29.71% mAP , sur-

passing baseline model by 4.57% mAP . When using larger

backbone ResNeXt-101, the overall mAP can be further

pushed to 31.47%, outperforming the baseline by a signifi-

cant 4.33%. It is worth noticing that ACSL obtains the best

performance on the overall mAP , APr and APc, which

further proves ACSL’s ability to tackle long-tail datasets.

4.5. Performance Analysis

In order to have a more intuitive sense of how ACSL

influences the network’s performance, we visualize the per-

formance of baseline and ACSL on different categories in

Figure 4. Figure 4(a) shows the AP on frequent cate-

gories. The two curves almost overlap with each other

which demonstrates that ACSL does not harm the training

of head classifiers. For common categories (Figure 4(b)),

ACSL begins to show its advantages over baseline model.

The precision curve of ACSL almost covers that of the base-

line model, which shows that ACSL brings moderate im-

provements for common categories. As the decreasing of

categories’ sample numbers, the advantages of ACSL be-

comes more significant. As showed in Figure 4(c), ACSL

outperforms baseline by a landslide. The integral area of

the orange curve (ACSL) is much larger than that of the

blue one (baseline). These three figures indicate that ACSL

is able to improve the performance of tail categories without

sacrificing the precision of head classes.

4.6. Comparison with State of the Arts

In this section, we compare the performance of the pro-

posed ACSL with other state-of-the-art methods and report

the results in Table 4. All the models adopt Faster R-CNN

with FPN structure. As shown in the table, without any

bells and whistles, our single ResNet-50 model achieves

26.36% mAP . It surpasses other competitive methods,

including Equalization Loss (25.06% mAP ) and BAGS

(25.96% mAP ). And we do observe that the performance

gain comes from the tail classes (rare and common cate-

gories). Among all the single ResNet-50 models, ACSL

obtains the best performance on rare (18.64%) and common

categories (26.41%). In the meantime, it does not sacri-

fice the precision of head categories in exchange for the im-
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Table 5: Experiments on Open Images with different backbones.

Backbone Methods AP

ResNet50-FPN
baseline 55.1

ours 60.3

ResNet101-FPN
baseline 56.3

ours 61.6

ResNet152-FPN
baseline 57.4

ours 62.8

provements on tail classes. The observations above exhibit

the ability of ACSL to tackle the class imbalance problem

in long-tail datasets.

The advantages of ACSL becomes more significant

when it is combined with larger backbones. With ResNet-

101 backbone, ACSL achieves 27.49% mAP , outperform-

ing Equalization Loss and BAGS by 1.44% and 1.1%

mAP , respectively. For stronger backbone ResNeXt-101-

64x4d, ACSL obtains a 28.93% mAP , surpassing the coun-

terparts of Equalization Loss (28.04% mAP ) and BAGS

(27.83% mAP ). When applying multi-scale testing strat-

egy, the performance can be further improved. Finally, our

best model achieves 29.47% mAP .

5. Experiments on Open Images

Open Images V5 is the largest existing object detection

dataset which contains a total of 16M bounding boxes for

600 object classes on 1.9M images. For such a large scale

dataset, it is hard to maintain a relatively balanced class dis-

tribution. In fact, it suffers from severe class imbalance.

For instance, the most frequent category “Man” contains

378077 images, which is 126 thousand times of the rarest

category “Paper cutter” (3 images). The whole dataset con-

sists of three parts: train, validation and test. All models

are trained with 1.7M train images and evaluated on val-

idation dataset. When performing evaluation, we use the

official evaluation code for Open Images which evaluates

only at IoU threshold 0.5. To reduce the training time on

such a large dataset, we use the large batch training frame-

work LargeDet [32] to train our models.

To testify the effectiveness of ACSL, we conduct ex-

periments with various backbones including ResNet50,

ResNet101 and ResNet152. The hyper-parameter ξ of

ACSL is set to 0.7, the same value as in LVIS. Since objects

in Open Images have multiple labels, we train the models

under multiple label setting. The experimental results are

summarized in Table 5. As shown in this table, the mod-

els trained with ACSL outperform the baseline models by a

large margin. For ResNet50-FPN detector, ACSL achieves

60.3% AP , 5.2% higher than the baseline. For larger back-

bone ResNet152, our model obtains 62.8% AP , surpass-

ing the baseline by 5.4% AP . To validate that the perfor-

Table 6: The detailed precision on some of the tail categories of

Open Images.

Spa Scr Fac Cas Hor

img num 38 46 49 53 54

baseline 35.0 46.6 17.8 19.9 8.3

ACSL 41.6(+6.6) 55.6(+9.0) 80.9(+63.1) 47.5(+27.6) 16.6(+8.3)

Slo Obo Squ Bin Ser

img num 103 93 97 109 106

baseline 25.0 22.2 29.1 42.7 40.2

ACSL 45.0(+20) 83.3(+61.1) 50.3(+21.2) 61.5(+18.8) 73.2(+33)

Table 7: Comparison with other methods on Open Images. All

models are trained with ResNet50-FPN backbone and evaluated

on 500 categories.

Method AP

Class Aware Sampling [28] 56.50

Equalization Loss [29] 57.83

Ours 61.70

mance gains mainly come from the rare categories, we ex-

tract the precisions of some rare categories and list them

in Table 6. We can observe that ACSL achieves remark-

able performance improvements for rare categories. For

rare category “Face powder” (“Fac” for short), the perfor-

mance gain is 63.1% AP . As shown in this table, ACSL

brings considerable improvements to other rare categories,

leading to higher overall precision.

We also compare our method with other methods on

Open Images dataset. The results are summarized in Ta-

ble 7. From Table 7, we can observe the performance ad-

vantage of our method with the same backbone. And the

effectiveness of our method can be adequately validated.

6. Conclusion

In this work, we present a novel adaptive class sup-

pression loss (ACSL) for long-tail datasets. ACSL is

able to prevent the classifiers of tail categories from be-

ing over-suppressed by the samples from head categories.

In the meantime, it preserves the discriminative power be-

tween easily confused categories. Equipped with ACSL,

the models can achieve higher precision, especially on tail

classes. Experimental results on long-tail datasets LVIS and

Open Images validate its effectiveness. We will also ap-

ply the proposed ACSL to the long-tail image classification

datasets in the future work.
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