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Abstract

As self-driving systems become better, simulating sce-

narios where the autonomy stack may fail becomes more

important. Traditionally, those scenarios are generated for

a few scenes with respect to the planning module that takes

ground-truth actor states as input. This does not scale and

cannot identify all possible autonomy failures, such as per-

ception failures due to occlusion. In this paper, we pro-

pose AdvSim, an adversarial framework to generate safety-

critical scenarios for any LiDAR-based autonomy system.

Given an initial traffic scenario, AdvSim modifies the ac-

tors’ trajectories in a physically plausible manner and up-

dates the LiDAR sensor data to match the perturbed world.

Importantly, by simulating directly from sensor data, we ob-

tain adversarial scenarios that are safety-critical for the full

autonomy stack. Our experiments show that our approach

is general and can identify thousands of semantically mean-

ingful safety-critical scenarios for a wide range of modern

self-driving systems. Furthermore, we show that the robust-

ness and safety of these systems can be further improved by

training them with scenarios generated by AdvSim.

1. Introduction

Self-driving vehicles (SDV) are safety critical applica-

tions in which the comprehensive testing is necessary before

real-world deployment. As the performance of self-driving

systems becomes better on natural and well-behaved scenar-

ios, it becomes of key importance to find scenarios where

the system is likely to fail. However, exhaustively searching

over all possible scenarios to identify safety critical ones is

computationally unfeasible, as there are exponentially many

scenario variations due to the combinatorial number of pos-

sible lane topologies, actor configurations, trajectories, ve-

locity profiles, appearance of actors and background, etc.

Conventional practice in industry for comprehensive

testing is a semi-autonomic process that relies on human

expertise to create an initial scenario set, where each sce-

Original Scenario AdvSim Scenario

Ego-vehicle Perturbed vehicle Collided actorPerturbed Trajectory

Figure 1: AdvSim modifies traffic scenarios in a physically

plausible manner to produce autonomy system failure. Here

the SDV collides with a crossing pedestrian after the behav-

ior of a nearby bus is modified by AdvSim. The collision is

indicated by the red arrow.

nario contains at most 1 or 2 “actors of interest” (e.g., ve-

hicles that interact with the SDV’s planned path) with spec-

ified initial locations and trajectories [34, 26]. Scenario

variations are then programmatically created by varying the

actors’ locations and velocity profiles. While such sce-

narios are valuable, they only evaluate simple interactions

with the SDV and do not test complex multi-actor inter-

actions, such as lane-merging and unprotected left-turns in

dense traffic scenes. They do not test the autonomy sys-

tem on the wide variety of scenarios that the SDV may en-

counter. Moreover, human involvement makes this process

time-consuming and difficult to scale. Manual design may

also result in missing testing configurations that identify un-

expected failure modes, as it is difficult to assess coverage.

To address this problem, recent works aim to automate

the scenario generation procedure by searching over the

set of possible scenarios and identifying high-risk ones ac-

cording to a specified cost function. Most previous works

[14, 43, 23, 11, 13] only consider a motion planning module

that has access to the ground-truth state of the actors in the

scene. This overlooks the fact that many adversarial sce-

narios often involve actors that are hard to identify due to

occlusion, or that have trajectory plans that can be difficult

to localize and forecast. Such issues in the perception and

motion forecasting modules of the autonomy system can

9909



Adversarial

Behavior

LiDAR 

Simulation

Point Clouds

Autonomy 

System+

!$%&

Cost Measure 

Black-box Optimization

Simulated Point Clouds

Perturbed 

Vehicle

Perturbed 

Trajectory

Collided 

Vehicle

Planned 

Trajectory

Safety-Critical Scenarios

Figure 2: Overview of our proposed adversarial scenario generation pipeline. Our goal is to perturb the maneuvers of

interactive actors in an existing scenario with adversarial behaviors that cause realistic autonomy system failures. Given an

existing scenario and its original sensor data, we perturb the scenario and update accordingly how the SDV would observe the

LiDAR sensor data based on the new scene configuration. We then evaluate the autonomy system on the modified scenario,

compute an adversarial objective, and update the proposed perturbation using a search algorithm.

generate compounding errors that ultimately cause planning

failures. While [30, 29, 1] test end-to-end image-based self-

driving systems, the adversarial scenarios they generate are

either generated at a small scale [1] or with respect to sim-

plified imitation learning models that do not reflect the au-

tonomy system of modern self-driving vehicles [30, 29].

Additionally, most past works either modify the scenario by

changing high-level actor behavior [14, 13, 22, 30, 29, 1],

or create physically unrealizable trajectories [43]. This does

not allow for physically-plausible fine-grained control of

the actor trajectory, such as creating a nudging actor.

In contrast, we want to find complex and realistic safety-

critical scenarios at scale for the full self-driving system.

Towards this goal, we frame the generation of worst-case

scenarios as a black box adversarial attack that can test any

LiDAR-based autonomy system. We explore adversarial

perturbations with respect to physically feasible changes in

actor behavior, since such perturbations provide insight into

the different types of driving situations that are challenging.

This contrasts previous works on black box attacks for per-

ception systems [46, 24, 50, 42, 47] that perturb appearance

and texture, but do not perturb actor behavior.

In this paper, we leverage real world traffic scenarios

available in standard self-driving datasets and optimize the

actors’ trajectories jointly to increase the risk of an auton-

omy system failure. As our perturbation modifies the ac-

tors’ trajectories, we need to adjust the sensor data to accu-

rately reflect the actors’ new locations. We therefore adopt a

high-fidelity LiDAR simulator [27] that modifies the sensor

data accordingly taking into account occlusions. After run-

ning the black-box autonomy system with modified sensor

data as input, we obtain the planned trajectory and evaluate

how adversarial the scenario was. Our adversarial objec-

tive captures multiple safety factors such as collisions, vio-

lations in traffic rules, and uncomfortable driving behaviors.

We demonstrate the flexibility and scalabity of our approach

by generating over 4000 adversarial scenarios for a wide

range of modern autonomy systems. Finally, we leverage

AdvSim-generated safety-critical scenarios in training and

further improve the safety of autonomy systems.

2. Related Work

We first give an overview of the development of mod-

ern autonomy stack. We then discuss the existing works on

safety-critical scenario generation for the planning module.

We also review works producing physically realizable ad-

versarial examples for self-driving perception systems.

Self-Driving System: Industry typically decomposes au-

tonomy systems into three sequential subtasks: object de-

tection (perception), motion forecasting (prediction), and

planning. However, these components are developed sep-

arately, and cannot correct compounding errors. Another

approach is end-to-end self-driving, which traces back to

the seminal work ALVINN [33]. Such direct control-based

methods have advanced significantly in recent years thanks

to deeper network architectures, more informative sensor

inputs, and scalable learning methods [6, 21, 12, 28, 18,

38, 5, 31]. Recently, interpretable neural motion plan-

ners [48, 49, 36] provide an alternative that inherits the ad-

vantages of traditional pipelines and end-to-end approaches,

by maintaining modularity and interpretability while en-

abling end-to-end learning. This first began with joint per-

ception and prediction [25, 10], which neural planners ex-

tended to include planning. Specifically, NMP [48] shared

feature representations between multiple subtasks and pre-

dicted a cost volume to represent the quality of possible

locations in planning. DSDNet [49] proposed an energy-

based model to parameterize the joint distribution of the ac-

tors’ future trajectories. P3 [36] developed a semantic occu-

pancy representation and generated consistent ego-vehicle

plans. Our work evaluates a wide range of autonomy sys-

tems, including modular and end-to-end interpretable ones.

Safety-Critical Scenario Generation: There are three

main components for generating safety-critical scenarios: a

scenario parameterization space to optimize over, a search

9910



Method L
iD

A
R

A
u

to
n

o
m

y

T
ra

j.
-b

as
ed

R
ea

l
d

at
a

S
ce

n
ar

io
s

#
A

ct
o

rs

BOAdv [1] X 2 2

Chen et al. [11] X 1 3

Klischat et al. [22] X 2 13

O’Kelly/Norden et al. [29, 30] X X 1 5

AdvSim (ours) X X X X 4,000+ 5

Table 1: Comparison with prior works. AdvSim produces

safety-critical scenarios that are physically plausible and ad-

versarial to full LiDAR-based autonomy systems in scale.

algorithm that identifies critical scenario parameters, and an

evaluation setting to evaluate the system under test. Previ-

ous works represent the action space of other agents either

as a Frenet frame [22], initial position and velocity [13, 14],

a high-level graph-based route [1], or steering and acceler-

ation [43]. We choose to represent the behavior of actors

as kinematic bicycle-model trajectories, allowing for phys-

ical feasibility and fine-grained behavior control. There are

many potential choices of the search algorithm used to iden-

tify scenarios that cause autonomy failure, such as policy

gradient [11, 43, 14], Bayesian optimization [1], evolution-

ary algorithms [22], and variants of monte-carlo sampling

[13, 29, 39]. We build a general scenario generation algo-

rithm and benchmark a wide variety of black-box search

algorithms, providing insight into which search algorithms

are effective. [11, 43, 14, 22] evaluate planners assuming

groundtruth perception. [1, 29] use CARLA [15] to evalu-

ate an image-based SDV planning algorithm. These works

consider simplified planning modules or image-based sys-

tems that do not reflect modern autonomy systems. More-

over, they generate scenarios only for a handful of scene

configurations. In contrast, we present an end-to-end ad-

versarial scenario generation system that takes into account

failures of the full autonomy stack. Our approach scales

to datasets with diverse traffic patterns and map configura-

tions. We summarize the differences of our paradigm with

prior works in Table 1.

Physically Realizable Adversarial Examples: Physical

adversarial perturbations expose real world threats for per-

ception. Most previous works deal with threat models in

the image space [7, 3, 47, 16] by imposing physical con-

straints such as different view angles and distances [7, 3]

and color distortion [16, 47]. Recently, other works perturb

meshes [46] or photo-realistic properties such as surface

normals and lighting conditions [24, 50]. In self-driving, re-

cent works focus on the robustness of LiDAR-based percep-

tion. Specifically, [9, 42] generate objects that are either in-

visible or detrimental to object detectors and [8, 41] directly

spoof the LiDAR points using laser devices. [51, 45] craft

adversarial vehicle textures in CARLA. We instead gener-

ate realistic adversarial maneuvers by other agents such that

Algorithm 1 Generating Adversarial Scenarios

Require: Sensory input x, initial state s0 of the perturbed

actor, adversarial objective Ladv, number of queries N .

1: Pick the perturbed actor vadv heuristically

2: Generate physically plausible trajectories set Tadv
3: Initialize observation set H = ∅

4: for k = 1, . . . , N do

5: Select δ(k) based on black-box algorithms and his-

torical observations H.

6: τ
(k)
adv = Πτ∈Tadv

[

BICYCLE
(

s0, δ
(k)

)]

⊲ (Sec 3.2)

7: x
(k)
adv = f(x, τ

(k)
adv, τsdv) ⊲ (Sec 3.3)

8: Run the autonomy system and obtain the optimal

SDV plan τ
(k)
0 = τ∗0 (x

(k)
adv)

9: Calculate the adversarial loss of the optimal plan:

L
(k)
adv = Ladv(τ

(k)
0 ,x

(k)
adv) ⊲ (Sec 3.4)

10: Update observation set H = H ∪
{

(τ
(k)
adv,L

(k)
adv)

}

11: end for

12: τ∗adv = argmax
τ
(k)
adv,k∈[N ]

L
(k)
adv

the scenario is safety critical for autonomy.

3. Generating Safety-Critical Scenarios

Our objective is to generate realistic challenging scenar-

ios that cause autonomy system failure. We frame our ob-

jective as a black box adversarial attack that exercises every

component of the autonomy system, including object detec-

tion, motion forecasting and motion planning. As we search

over the space of realistic perturbations in actor motions of

an existing scenario, we must update the sensor data that the

SDV observes and then evaluate the autonomy system. Our

approach, AdvSim, works as follows: we first perturb the

actors’ motion trajectories in an existing scenario, and gen-

erate the sequence of LiDAR point clouds that reflect the

change in actor locations. With the adjusted sensor data, we

run the autonomy stack and get the planned SDV motion

path. Finally, we evaluate the output path with a proposed

adversarial objective and adjust the scenario perturbation to

be more challenging. An overview is shown in Fig. 2.

In what follows, we first define the autonomy system and

our attack formulation in Sec 3.1. We then describe how we

parameterize the adversarial actors’ behaviors (Sec 3.2) and

conduct realistic LiDAR simulation to generate new LiDAR

sweeps (Sec 3.3). Finally, we describe our adversarial ob-

jective and the suite of black-box optimization algorithms

we benchmark to generate worst-case behaviors in Sec 3.4.

3.1. Problem Setup

Let V = {v0,v1, . . .vM} be the set of vehicles that

compose the scene, where v0 denotes the SDV, M is the

number of other vehicles. The objective of a self-driving
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Figure 3: Realistic LiDAR simulation for scenario perturbations. Given a scenario perturbation on the actors’ motions,

the previously recorded LiDAR data is modified to accurately reflect the updated scene configuration. We remove the original

actor LiDAR observations and replace with simulated actor LiDAR observations at the perturbed locations, while ensuring

sensor realism. The above example perturbs all actors left by 5 meters.

system is to find the best planned trajectory τ∗0 according

to a cost function C that comfortably and safely maneuvers

around the scene, given the available sensor data inputs x:

τ∗0 (x) = argmin
τ0

C(τ0,x) (1)

where τ0 is the SDV’s planned trajectory. As x consists of

raw sensor data (i.e., LiDAR point clouds), High-Definition

maps, and other relevant information (e.g., previous SDV

states, traffic light states), this minimization represents the

full autonomy system, not just the planning module.

Our goal is to increase the risk of the self-driving car

by perturbing the behaviors of other actors in a physically

plausible manner for an existing traffic scenario. Without

loss of generality, we consider perturbing a single actor in

the following discussion for brevity, but we apply AdvSim

for multi-actor perturbations in experiments.

We characterize the behavior of an adversary by the tra-

jectory τadv it will take in the future. As the perturbed ac-

tor’s trajectory τadv differs from its original behavior in the

sensor data, the vehicle position and the occlusions it gen-

erates will change (see Fig. 3). Therefore, we must simu-

late the new LiDAR data given the adversary trajectory τadv
and SDV trajectory τsdv to evaluate the system (Eq. 1). The

generation of point clouds in the perturbed traffic scene is

given as follows:

xadv = f(x, τadv, τsdv) (2)

where f(·) denotes the realistic LiDAR simulation (Sec 3.3)

for perturbed input xadv given the adversary’s trajectory

and original sensor data sequence x.

We then define an adversarial objective Ladv which we

maximize to generate scenarios as follows

τ∗adv = argmax
τadv

Ladv(τ
∗
0 ,xadv), (3)

where τ∗0 = τ∗0 (xadv) is the optimal SDV’s planned trajec-

tory under simulated scene xadv. The design of the adver-

sarial loss Ladv is deferred to Sec 3.4.

3.2. Modeling Adversarial Behaviors

To produce physically feasible actor behaviors, we pa-

rameterize the trajectory τadv = {st}
T
t=0 as a sequence of

kinematic bicycle model states st = {xt, yt, θt, vt, κt, at}
in the next T timesteps. Here (x, y) is the center position of

the perturbed actor, θ is the heading, v and a are the forward

velocity and acceleration, and κ is the vehicle path’s curva-

ture. Candidate adversary trajectories can be generated by

perturbing the change of curvature κ̇t and acceleration val-

ues at within set bounds at different timesteps, and using the

kinematic bicycle model to compute the other states [32].

Moreover, to enlarge the space of sampled adversarial

behaviors, we also allow the perturbation of initial states

(x0, y0, θ0, v0) within set bounds. In summary, the pertur-

bation space can be depicted as

δ = {∆s0, (a0, κ̇t|t=0) , . . . , (aT−1, κ̇t|t=T−1)} .

To increase the perturbed trajectory’s plausibility, we en-

sure it does not collide with other actors or the original ex-

pert trajectory of the SDV. In practice, we do this by first

performing rejection sampling to create a set of physically

feasible trajectories Tadv and then projecting the trajectory

generated by δ on to the physically feasible set, measured

by L2 distance. Our search space is low-dimensional and

conducive to query-based black box optimization, while

still allowing for fine-grained actor motion control.

3.3. Realistic LiDAR Simulation

Given an initial traffic scenario and the corresponding

adversarial perturbation to the actors’ behaviors, we discuss

how we modify the existing real LiDAR sweeps to reflect

the perturbation. We adopt the high-fidelity LiDARsim [27]

simulator, which leverages real world data to generate re-

alistic background meshes and dynamic object assets, and

then applies physics-based raycasting and machine learning

to generate realistic LiDAR point clouds. Given a modified

scene configuration, we use LiDARsim to render a simu-

lated point cloud, and then update the real LiDAR sweep
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with the modified regions. We choose to update the sensor

data for modified regions only rather than generating the full

sweep to speed up the query function f in Eq. 2. Specif-

ically, we cache the simulated background LiDAR (Fig. 3

Step 1b) as the SDV trajectory is fixed during the actor per-

turbation. The sensor perturbation is illustrated in Fig. 3.

Modifying the LiDAR sensor data to reflect the scenario

perturbation is non-trivial, as the LiDAR’s sensing charac-

teristics cause specific visibility artifacts that should exist in

the generated scene to be realistic and physically accurate.

We perform two main steps for sensor simulation for modi-

fied scenarios: actor removal (removing the existing benign

actors’ LiDAR point cloud and filling the LiDAR shadow

created) and actor addition (inserting the adversarial actors’

LiDAR point cloud, while accounting for occlusion).

Removing Actors: Given an original LiDAR point cloud

(Fig. 3a), we first remove the points within the bounding

boxes of perturbed actors and simulate background points

(Fig. 3b) using LiDARsim’s background mesh. We then

convert the simulated and real LiDAR sweeps into a range

image, allowing us to identify the specific rays missing in

the real LiDAR sweep (Fig. 3c) that exist in the simulated

LiDAR. By taking the element-wise minimum ray distance

between the range images, we can merge the LiDAR point

clouds. Fig. 3d shows the synthetic point clouds (red: simu-

lated points; blue: original real points) after actor removal.

Adding Actors: Once we have removed the selected ac-

tors from the LiDAR sweep, we update the LiDAR with the

actors at their new locations. We first render the simulated

LiDAR for the actors at their new locations using LiDAR-

sim’s vehicle asset bank (Fig. 3e). Fig. 3f shows the real

LiDAR point cloud with the added actors. However, when

a LiDAR ray hits an object, the remaining path of the ray be-

comes occluded, creating a LiDAR shadow. Similar to the

actor removal process, we create range images of the simu-

lated and real LiDAR, and merge the LiDAR point clouds,

thereby removing the LiDAR points of the now-occluded

regions (Fig. 3g) and obtaining the final modified LiDAR

sweep (Fig. 3h). The generated scenes are realistic and

match the desired perturbation in actors’ motions (Fig. 3).

3.4. Adversarial Scenario Search

Since we aim for a general adversarial scenario gener-

ation framework, we consider the autonomy system as a

black box, where we access the evaluation scores through

limited queries. Our goal is to find the perturbation that

maximizes the SDV’s planned trajectory cost. In this sec-

tion, we introduce the adversarial objective we optimize to

produce worst-case scenarios and detail the search algo-

rithms applied. We then summarize the AdvSim algorithm.

Adversarial Objective: To induce autonomy system fail-

ures, we propose a combination of three costs as our adver-

sarial loss function. These costs are similar to those auton-

omy systems [37, 52] attempt to minimize over in Eq. 1. We

first include lIL, an imitation-learning based cost that en-

courages the SDV’s output plan to deviate from the recorded

human trajectory in the original scenario. We compute this

as a smooth ℓ1 distance between output trajectory τ∗0 and

the ground-truth for the entire scenario horizon. We also

compute a cumulative collision cost ltcol that encourages the

perturbation to cause the SDV to collide with other actors

in the scene. Finally, we add a safety cost cts(xadv, τ
∗
0 ) that

encourages the output plan τ∗0 to have lane violations and be

dangerous (i.e. high accelerations and jerk) at each timestep

t. The full adversarial loss is defined as:

Ladv = min
τ0

[

lIL +
∑

t

ltcol +
∑

t

cts(xadv, τ
∗
0 )

]

Our use of multiple different costs allows us to identify dif-

ferent types of autonomy system failures, such as unnatural

trajectories, collisions, and hard braking.

Search Algorithms: AdvSim is a framework that can use

any black-box search algorithm to identify autonomy sys-

tem failures. The search algorithm attempts to find the

safety critical scenarios by maximizing the adversarial ob-

jective Ladv in Eq. 2. The search algorithm queries the au-

tonomy system with a candidate perturbation τadv to obtain

a query pair (τadv,Ladv) and maintains a history H of past

query pairs to generate the next candidate perturbation. We

study a wide variety of black-box search algorithms includ-

ing (1) Bayesian optimization [40, 35] (BO), (2) genetic al-

gorithms [2] (GA), (3) random search [17] (RS) and (4) gra-

dient estimation methods (NES [19] and Bandit-TD [20]).

Specifically, BO maintains a surrogate model and select the

next candidate based on the acquisition function and cur-

rent model states. For GA algorithms, a group of candidate

trajectories are evolved to maximize the objective and the

best candidate is preserved at each iteration. For RS, the

perturbations sampled from a pre-defined orthonormal ba-

sis are added or subtracted to original input iteratively. An-

other branch of query-based black-box search algorithms

estimate the gradient through the target model. Specifically,

NES maximizes the expectation of the objective under one

search distribution and Bandit-TD further leverages tempo-

ral information to improve the query efficiency.

Overall Adversarial Scenario Generation Algorithm:

We summarize our proposed AdvSim framework in Algo-

rithm 1. Given an initial traffic scene, we pick the actors

to be perturbed using heuristics, such as the closest reach-

able actors, and then sample physically plausible trajecto-

ries Tadv to ensure that our perturbations remain in this set.
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Planning Metrics ↓ Perception ↑ Prediction Metrics

Collision (%) L2 human Comfortable AP / F1 occ. (%) L2 center / F1 occ.

up to 3s up to 5s @3s @5s Lat. (m/s2) Jerk (m/s3) @3s @5s

IL: End-to-end Imitation Learning [6]

Original 5.7 20.4 4.25 8.74 – – – – –

Adv. scenes 8.9 (+3.2) 25.2 (+4.8) 5.48 (+1.30) 10.77 (+2.03) – – – – –

NMP: Neural Motion Planner [48] AP (IoU = 0.7) L2 center (↓)

Original 2.6 14.5 3.30 9.31 3.46 6.08 81.7 1.43 2.80

Adv. scenes 14.2 (+11.6) 42.2 (+27.7) 4.82 (+1.52) 13.24 (+3.93) 3.59 (+0.13) 7.28 (+0.97) 72.7 (-9.0) 1.63 (+0.20) 3.21 (+0.41)

PLT: Jointly Learnable Behavior and Trajectory Planning [37] AP (IoU = 0.7) L2 center (↓)

Original 1.3 12.1 1.74 5.10 3.22 1.91 83.5 1.75 3.32

Adv. scenes 5.5 (+4.2) 31.6 (+19.5) 2.55 (+0.81) 7.32 (+2.22) 3.51 (+0.29) 2.38 (+0.47) 75.2 (-7.7) 1.96 (+0.21) 3.75 (+0.43)

P3: Perceive, Predict, and Plan [36] F1 occ. (@0s) F1 occ. (%, ↑)

Original 0.8 8.5 1.58 4.74 3.09 1.79 64.9 49.7 48.6

Adv. scenes 3.9 (+2.9) 32.0 (+23.5) 2.28 (+0.70) 6.63 (+1.89) 3.18 (+0.09) 2.18 (+0.30) 63.2 (-1.7) 47.5 (-2.2) 45.9 (-2.7)

Table 2: Evaluation of modern autonomy systems on original and AdvSim generated scenarios.

Training Testing
Collision L2 human Lat. acc. Jerk

(% up to 5s) @5s (m/s3) (m/s2)

Standard
Original 8.5 4.74 3.09 1.79

Adv. scenes 32.0 6.63 3.18 2.18

CL train
Original 7.0 4.88 3.28 1.81

Adv. scenes 21.1 5.98 3.33 2.08

Robust train
Original 7.3 4.76 3.29 1.75

Adv. scenes 17.7 5.72 3.31 2.04

Table 3: Robust training P3 with augmented scenarios.

We then obtain the perturbation δ
(k) at iteration k based on

historical observations H using a selected black-box search

algorithm (L. 5). We roll out the kinematics bicycle model

states with initial state s0 and the perturbation δ
(k), and

project onto the feasible set Tadv to obtain the adversarial

trajectories for the perturbed actors (L. 6). After that, we

update the sensor data accordingly (L. 7) and evaluate the

full autonomy system on generated scenarios to compute

Ladv (L. 8-9). Finally, after running the procedure for N
iterations, we obtain the adversarial behaviors of perturbed

actors as well as corresponding simulated LiDAR data.

4. Experiments

We now showcase applying AdvSim to generate worst-

case scenarios for several autonomy systems using a large

scale self-driving dataset. In Sec. 4.1 we discuss the dataset

and the autonomy systems under test, as well as how we

evaluate the generated scenarios’ effectiveness. In Sec. 4.2

we analyze how the AdvSim-generated scenarios affect au-

tonomy performance. We also show robust training on the

generated scenarios improves autonomy systems.

4.1. Experimental Setup

Dataset We evaluate our approach on a self-driving

dataset, UrbanScenarios, which has 5,000 driving logs of

25 seconds each. Our dataset is collected across multiple

cities in North America, and contains different types of map

layouts and varying traffic densities. We curate the dataset

and select interesting candidate scenarios to apply AdvSim

on, where the SDV in the original scenario “interacts” with

other vehicles. Specifically, we sample 100 trajectories per

SDV behavior (e.g., keep lane, lane change) in the SDV’s

Frenet frame [44] and calculate the trajectory collision rate

with other actors’ motion paths. We select the 6s scenario

from each log that has the largest collision rate. After data

curation, we obtain 3953 train and 409 val scenarios.

Autonomy Systems We evaluate the effectiveness of the

proposed framework on the following models: (a) Imita-

tion Learning (IL), where the future states of the SDV are

predicted directly from the fused LiDAR and map features

with L2 loss; (b) PLT [37], a modular autonomy system

where the detection and prediction are trained jointly with

the backbone used in [36], and the planning is accomplished

using a learnable combination of interpretable safety costs;

(c, d) NMP [48] and P3 [36], two end-to-end interpretable

motion planners. NMP predicts a cost-map directly from

fused features with detection and prediction jointly trained

as auxiliary tasks. P3 predicts a novel differentiable seman-

tic occupancy representation used as safety-cost for plan-

ning. Please see supplementary for implementation details.

Metrics: In this paper, we focus on an open-loop scenario

evaluation setting, in which the evaluated autonomy system

takes the past 1s LiDAR data as input and outputs a 5s tra-

jectory plan. We then unroll the 5s plan and the other actors’

trajectories for 5s and evaluate the autonomy system’s per-

formance during that time. Following [49, 37, 36], we adopt

standard planning metrics to measure the autonomy sys-

tems’ performance on our adversarial scenarios, and com-

pare how much more challenging they are relative to the

original scenario set. Specifically, collision rate is the per-

centage of scenarios that cause the SDV to collide with an-

other actor during a certain time frame (up to 3 or 5s). L2

distance to the human trajectory represents how well the

model imitated the human driving. Jerk and lateral accel-

eration indicate how comfortable the planned SDV trajec-
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Legend

Original 

Scenes

Adv. 

Scenes

A (IL) B (NMP) C (PLT) D (P3)

Road Past Trajectory Future Trajectory Ego-vehicle Perturbed vehicle Collided actorPerturbed Trajectory Other actors

Figure 4: Visualization of autonomy system’s output plan on original and corresponding adversarial scenes. A: IL avoids the

high-speed lane-changing vehicle behind but collides with the front one. B: NMP collides with the merging vehicle. C: PLT

collides with one vehicle and two occluded pedestrians at crossroads. D: P3 collides with the crossing pedestrian.

tories are. Additionally, all evaluated autonomy systems,

except for IL, generate intermediate perception and predic-

tion representations. We therefore also report perception

and motion forecasting metrics to see how the adversarial

scenarios specifically impact these system components. For

NMP and PLT planners, for detection we report Average

Precision (AP) of bounding box detections at an Intersec-

tion of Union (IoU) of 0.7, and for motion forecasting we

report the L2 prediction error of predicted actor trajecto-

ries at future timesteps. Similarly, for the P3 planner, we

adopt the F1-score of the occupancy prediction at different

timesteps (t = 0 for detection and t > 0 for prediction). All

reported metrics are for vehicles in the ego-coordinate view

range of x ∈ [−72m, 72m], y ∈ [−40m, 40m].

4.2. Experimental Results

Evaluations on Modern Autonomy Systems: We eval-

uate our AdvSim framework on the autonomy systems in

Table 2. Here, we only consider perturbing a single vehi-

cle in the traffic scene and adopted Bayesian optimization

(BO) [40, 35] as the black-box search algorithm. Exper-

iments show that AdvSim is effective in generating chal-

lenging scenarios for different systems, leading to an aver-

age collision rate of 32.8%, over 200% more compared to

the original set. The adversarial scenarios also provide in-

sights to how different autonomy systems compare. While

NMP and PLT have similar drops in perception and mo-

tion forecasting, we observe that PLT is more robust to Ad-

vSim scenarios than NMP on planning metrics, indicating

the benefits of using a learning-based and hand-crafted cost

function. We show qualitative examples of adversarial sce-

narios for each autonomy system in in Fig. 4. Unlike prior

work, our generated scenarios cause the SDV to collide with

other non-perturbed actors in the scene (Fig. 4, A, C, D).

Safer Planner with Challenging Scenarios: We investi-

gate whether the robustness of the autonomy systems can

be improved with our generated scenarios. We test several

Source

Target
IL NMP PLT P3

IL [6] 25.2% 17.1% 9.5% 6.8%

NMP [48] 24.9% 42.2% 14.5% 14.0%

PLT [37] 21.2% 21.5% 31.6% 13.1%

P3 [36] 26.4% 24.2% 22.2% 32.0%

Table 4: Transferability of generated safety-critical scenar-

ios across different autonomy systems.

training schemes. First, we propose a curriculum learn-

ing (CL) [4] baseline where we first train on standard ex-

amples till convergence (easy examples), and then train on

real challenging scenarios selected based on reachable ac-

tors (Sec 4.1) (hard examples). Then, we propose a robust-

training approach to leverage simulated worst-case scenar-

ios. Specifically, we use AdvSim to generate a large num-

ber of adversarial scenarios to augment the training data.

As discussed in Sec 3.2, the original expert trajectory is

still a valid planning solution to mimic in the new scenario

with respect to collisions, as we impose constraints on the

perturbation. This allows us to re-train autonomy systems

with scenarios produced by AdvSim using the same expert

trajectories as ground truth. Table 3 demonstrates that CL

helps improve the performance on both original and adver-

sarial scenarios. Robust training with AdvSim-generated

scenarios further improves performance across most plan-

ning metrics, highlighting the value of AdvSim scenarios

for improving autonomy systems. In Fig. 5, we show a qual-

itative example of an adversarial scenario for standard P3

and robust-trained P3 with AdvSim. Finally, we investigate

the generalization of robust training by evaluating robustly

trained PLT and P3 with safety-critical scenarios generated

for other autonomy systems (see supplementary).

Transferability of Adversarial Scenarios: We study the

transferability of adversarial scenarios across different au-

tonomy systems in Table 4, where Source denotes the au-

tonomy system used to identify failure scenarios and Target
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Standard Training Robust Training with AdvSim

Figure 5: Visualization of standard P3 and robust-trained

P3 with AdvSim on one challenging scenario. Standard P3

changes lane to avoid the reversing bus yet is rear-ended

from behind. After robust training with AdvSim, the system

bypasses the bus smoothly and returns to its original lane.

#Actors
Collision L2 human Lat. acc. Jerk F1 occ.

(%, 5s) @5s (m/s2) (m/s3) (% @5s)

Original 8.5 4.74 3.09 1.79 48.6

m = 1 32.0 6.63 3.18 2.18 45.9
m = 2 33.5 7.21 3.28 2.26 42.1
m = 3 30.6 7.10 3.38 2.24 39.2
m = 4 28.4 7.36 3.73 2.46 33.5
m = 5 26.9 7.86 4.62 2.62 30.5

Table 5: Generating safety-critical scenarios for P3 with dif-

ferent number of perturbed actors m.

denotes the autonomy system evaluated on these scenarios.

We report the cumulative collision rate up to 5s. Results on

additional metrics are in supplementary. Table 4 shows that

generating adversarial scenarios with the same target auton-

omy system usually leads to the best performance. Scenar-

ios simulated w.r.t the more robust P3 system (see original

in Table 2) have stronger transferability.

Investigation on Attack Configurations: We now study

how the number of the perturbed actors and the search al-

gorithm used affect scenario generation. In Table 5, the

planning metrics (L2 human, jerk and lateral acceleration)

and the prediction metrics become worse as the number of

perturbed actors m increase. This indicates AdvSim gener-

ated more complicated traffic configurations when perturb-

ing multiple actors simultaneously. However, we observed

the collision rate decreases when m ≥ 3. This may be

because we sampled finite trajectories for each actor, and

attacking withmultiple actors simultaneously increases the

difficulty of finding physical plausible candidates to opti-

mize over. We also benchmark a wide range of black-box

algorithms in Table 6. See supplementary for the imple-

mentation details. We found that BO [35] is most efficient,

since the perturbation space is low dimensional and the cost

measure is not smooth w.r.t the perturbation (thus harder for

gradient-estimation based approaches).

Ablation Studies: We conduct ablation studies on pro-

posed adversarial objective. As shown in Table 7, imitation-

Algorithms
Collision L2 human Lat. acc. Jerk #Query. GPU

(%, 5s) @5s (m/s2) (m/s3) Hour

Original 8.5 4.74 3.09 1.79 – –

GA [2] 23.3 6.29 3.13 2.10 1600 1.33
NES [19] 19.1 6.07 3.17 2.05 400 0.33

Bandit-TD [20] 14.6 5.90 3.12 2.02 100 0.08
RS [17] 14.7 4.35 3.14 1.97 100 0.08
BO [35] 28.5 6.63 3.18 2.18 75 0.06

Table 6: Comparisons of different blackbox algorithms in

scenario generation for P3.

#ID
IL Collision Safety Collisions L2 human Lat. acc. Jerk

ℓim
∑

t ℓ
t
col

∑

t c
t
s (% up to 5s) @5s (m/s3) (m/s2)

M0 X X X 29.5 6.12 3.33 2.17
M1 X 14.8 7.06 3.22 2.31
M2 X 30.6 5.31 3.01 1.86
M3 X X 32.0 6.63 3.18 2.18
M4 X 9.0 5.30 3.52 2.08
M5 X X 30.6 5.61 3.44 2.07

Table 7: Ablation studies on adversarial objective design.

Collisions L2 human Lat. acc. Jerk

(% up to 5s) @5s (m/s3) (m/s2)

Closest distance [1] 13.5 5.57 3.16 2.00
Max-margin loss [36] 18.3 5.76 3.02 1.96

M3 32.0 6.63 3.18 2.18

Table 8: Comparison with other adversarial objective loss.

learning based cost lIL, cumulative collision cost
∑

t ℓ
t
col

and safety cost
∑

t c
t
s are optimized for L2 human, colli-

sions, and comfort planning metrics, respectively. The hy-

brid loss function (M0) can generate worst-case scenarios

with respect to multiple metrics. If some planning metrics

are particularly interesting in practice (e.g., collisions for

testing), we could use a subset of the proposed costs. Un-

less otherwise stated, we adopt M3 in other experiments

since the collisions are of key importance in evaluating au-

tonomy systems. Furthermore, we compare M0 with other

baseline adversarial objective in Table 8: (1) minimizing the

closest distance to the ego-car [1], (2) maximize the train-

ing cost proposed in [36]. Experiments show our design

outperforms other baselines on all planning metrics.

5. Conclusion

In this work we present a novel adversarial framework

to generate worst-case scenarios for modern autonomy sys-

tems. Our approach identifies physically plausible failure

cases that impose risks to full autonomy stack by simulat-

ing the sensor data based on the perturbed behaviors. We

demonstrate that AdvSim can generate failure cases at scale

for a wide range of systems. More importantly, we leverage

these scenarios in training to further improve the robustness

and safety of the autonomy system. We hope that leveraging

this framework will allow for safer self-driving vehicles.
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