
AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling

Dilin Wang1, Meng Li1, Chengyue Gong2, Vikas Chandra1

1 Facebook 2 University of Texas at Austin

{wdilin, meng.li, vchandra}@fb.com, cygong@cs.utexas.edu

Abstract

Neural architecture search (NAS) has shown great

promise in designing state-of-the-art (SOTA) models that

are both accurate and efficient. Recently, two-stage NAS,

e.g. BigNAS, decouples the model training and searching

process and achieves remarkable search efficiency and ac-

curacy. Two-stage NAS requires sampling from the search

space during training, which directly impacts the accuracy

of the final searched models. While uniform sampling has

been widely used for its simplicity, it is agnostic of the model

performance Pareto front, which is the main focus in the

search process, and thus, misses opportunities to further

improve the model accuracy. In this work, we propose At-

tentiveNAS that focuses on improving the sampling strategy

to achieve better performance Pareto. We also propose al-

gorithms to efficiently and effectively identify the networks

on the Pareto during training. Without extra re-training or

post-processing, we can simultaneously obtain a large num-

ber of networks across a wide range of FLOPs. Our dis-

covered model family, AttentiveNAS models, achieves top-1

accuracy from 77.3% to 80.7% on ImageNet, and outper-

forms SOTA models, including BigNAS, Once-for-All net-

works and FBNetV3. We also achieve ImageNet accuracy

of 80.1% with only 491 MFLOPs. Our training code and

pretrained models are available at https://github.

com/facebookresearch/AttentiveNAS.

1. Introduction

Deep neural networks (DNNs) have achieved remark-

able empirical success. However, the rapid growth of net-

work size and computation cost imposes a great challenge

to bring DNNs to edge devices [16, 18, 38]. Designing net-

works that are both accurate and efficient becomes an im-

portant but challenging problem.

Neural architecture search (NAS) [45] provides a pow-

erful tool for automating efficient DNN design. NAS re-

quires optimizing both model architectures and model pa-

rameters, creating a challenging nested optimization prob-

lem. Conventional NAS algorithms leverage evolutionary

T
o

p
-1

v
al

id
at

io
n

ac
cu

ra
cy

200 300 400 500 600 700 80076

77

78

79

80

81

A0

A1

A2
A3

A4
A5

Attentive1A6-A6

(ffiFientnet
)B1etv2
)B1etv3
Big1as
2)A
Attentive1A6 (ours)

MFLOPs
Figure 1. Comparison of AttentiveNAS with prior NAS ap-

proaches [3, 10, 35, 36, 43] on ImageNet.

search [10, 11] or reinforcement learning [34], these NAS

algorithms can be prohibitively expensive as thousands of

models are required to be trained in a single experiment.

Recent NAS advancements decouple the parameter train-

ing and architecture optimization into two separate stages

[3, 8, 15, 43]:

• The first stage optimizes the parameters of all can-

didate networks in the search space through weight-

sharing, such that all networks simultaneously reach

superior performance at the end of training.

• The second stage leverages typical search algorithms,

such as evolutionary algorithms, to find the best per-

forming models under various resource constraints.

Such NAS paradigm has delivered state-of-the-art empirical

results with great search efficiency [3, 37, 43].

The success of the two-stage NAS heavily relies on the

candidate network training in the first stage. To achieve su-

perior performance for all candidates, candidate networks

are sampled from the search space during training, followed

by optimizing each sample via one-step stochastic gradient

descent (SGD). The key aspect is to figure out which net-

work to sample at each SGD step. Existing methods of-

ten use a uniform sampling strategy to sample all networks

6418



with equal probabilities [8, 15, 37, 43]. Though promising

results have been demonstrated, the uniform sampling strat-

egy makes the training stage agnostic of the searching stage.

More specifically, while the searching stage focuses on the

set of networks on the Pareto front of accuracy and infer-

ence efficiency, the training stage is not tailored towards

improving the Pareto front and regards each network can-

didate with equal importance. This approach misses the op-

portunity of further boosting the accuracy of the networks

on the Pareto during the training stage.

In this work, we propose AttentiveNAS to improve the

baseline uniform sampling by paying more attention to

models that are more likely to produce a better Pareto front.

We specifically answer the following two questions:

• Which sets of candidate networks should we sample

during the training?

• How should we sample these candidate networks ef-

ficiently and effectively without introducing too much

computational overhead to the training?

To answer the first question, we explore two different sam-

pling strategies. The first strategy, denoted as BestUp, in-

vestigates a best Pareto front aware sampling strategy fol-

lowing the conventional Pareto-optimal NAS, e.g., [4, 6,

7, 23]. BestUp puts more training budgets on improving

the current best Pareto front. The second strategy, denoted

as WorstUp, focuses on improving candidate networks that

yield the worst-case performance trade-offs. We refer to

these candidate networks as the worst Pareto models. This

sampling strategy is similar to hard example mining [14, 30]

by viewing networks on the worst Pareto front as hard train-

ing examples. Pushing the limits of the worst Pareto set

could help update the least optimized parameters in the

weight-sharing network, allowing all the parameters to be

fully trained.

The second question is also non-trivial as determining

the networks on both the best and the worst Pareto front is

not straightforward. We propose two approaches to leverage

1) the training loss and 2) the accuracy predicted by a pre-

trained predictor as the proxy for accuracy comparison. The

overall contribution can be summarized as follows:

• We propose a new strategy, AttentiveNAS, to improve

existing two-stage NAS with attentive sampling of net-

works on the best or the worst Pareto front. Different

sampling strategies, including BestUp and WorstUp,

are explored and compared in detail.

• We propose two approaches to guide the sampling to

the best or the worst Pareto front efficiently during

training.

• We achieve state-of-the-art ImageNet accuracy given

the FLOPs constraints for the searched Attentive-

NAS model family. For example, AttentiveNAS-

A0 achieves 2.1% better accuracy compared to Mo-

bileNetV3 with fewer FLOPs, while AttentiveNAS-A2

achieves 0.8% better accuracy compared to FBNetV3

with 10% fewer FLOPs. AttentiveNAS-A5 reaches

80.1% accuracy with only 491 MFLOPs.

2. Related Work and Background

NAS is a powerful tool for automating efficient neural ar-

chitecture design. NAS is often formulated as a constrained

optimization problem:

min
α2A

L(W ⇤

α
; Dval),

s.t. W ⇤

α
= argmin

Wα

L(Wα; D
trn),

FLOPs(α) < τ.

(1)

Here Wα is the DNN parameters associated with network

configuration α. A specifies the search space. Dtrn and

Dval represents the training dataset and validation dataset,

repetitively. L(·) is the loss function, e.g., the cross en-

tropy loss for image classification. FLOPs(α) measures

the computational cost induced by the network α, and τ is

a resource threshold. In this work, we consider FLOPs as

a proxy for computational cost. Other resource considera-

tions, such as latency and energy, can also be incorporated

into Eqn. (1) easily.

Solving the constrained optimization problem in Eqn. (1)

is notoriously challenging. Earlier NAS solutions often

build on reinforcement learning [34, 44, 45, 46] or evolu-

tionary algorithms [26, 27, 32, 39]. These methods require

enumerating an excessively large number of DNN architec-

tures {α} and training their corresponding model parame-

ters {Wα} from scratch to get accurate performance estima-

tions, and thus are extremely computationally expensive.

More recent NAS practices have made the search more

efficient through weight-sharing [4, 23, 25, 31]. They usu-

ally train a weight-sharing network and sample the candi-

date sub-networks by inheriting the weights directly to pro-

vide efficient performance estimation. This helps alleviate

the heavy computational burden of training all candidate

networks from scratch and accelerates the NAS process sig-

nificantly.

To find the small sub-networks of interest, weight-

sharing based NAS often solve the constrained optimiza-

tion in Eqn. (1) via continuous differentiable relaxation and

gradient descent [23, 38]. However, these methods are of-

ten sensitive to the hyper-parameter choices, e.g., random

seeds or data partitions [13, 41]; the performance rank cor-

relation between different DNNs varies significantly across

different trials [40], necessitating multiple rounds of trials-

and-errors for good performance. Furthermore, the model

6419



Layer-k…

MB block

…

Dynamic resolution

…

Dynamic depth

Softmax

Dynamic kernel size

Dynamic 

expansion ratio

Dynamic channel width

Layer-1 Layer-2

Figure 2. An illustration of the architecture sampling procedure in training two-stage NAS. At each training step, a single or several

sub-networks are sampled from a pre-defined search space. In our implementation, a sub-network is specified by a set of choices of

input resolution, channel widths, depths, kernel sizes, and expansion ratio. For example, in this case, the configuration of the selected

sub-network is highlighted with solid borderlines. Images are from ImageNet [12].

weights inherited from the weight-sharing network are of-

ten sub-optimal. Hence, it is usually required to re-train

the discovered DNNs from scratch, introducing additional

computational overhead.

2.1. Two-stage NAS

The typical NAS goal Eqn. (1) limits the search scope

to only small sub-networks, yielding a challenging opti-

mization problem that cannot leverage the benefits of over-

parameterization [1, 5]. In addition, NAS optimization de-

fined in Eqn. (1) is limited to one single resource constraint.

Optimizing DNNs under various resource constraints often

requires multiple independent searches.

To alleviate the aforementioned drawbacks, recently, a

series of NAS advances propose to breakdown the con-

strained optimization problem (1) into two separate stages:

1) constraint-free pre-training - jointly optimizing all pos-

sible candidate DNNs specified in the search space through

weight sharing without considering any resource con-

straints; 2) resource-constrained search - identifying the

best performed sub-networks under given resource con-

straints. Recent work in this direction include BigNAS [43],

SPOS[15], FairNAS [8], OFA [3] and HAT [37].

Constraint-free pre-training (stage 1): The goal of the

constraint-free pre-training stage is to learn the parameters

of the weight-sharing network. This is often framed as solv-

ing the following optimization problem:

min
W

Eα2A



L(Wα; D
trn)

�

+ γR(W ), (2)

where W represents the shared weights in the network.

Wα is a sub-network of W specified by architecture α and

R(W ) is the regularization term. An example of R(W ),
proposed in BigNAS [43], is formulated as follows,

R(W ) = L(wαs
;Dtrn) + L(wαl

;Dtrn) + η kW k22,
(3)

where αs and αl represents the smallest and the largest can-

didate sub-networks in the search space A, respectively. η

is the weight decay coefficient. This is also referred to as

the sandwich training rule in [43].

In practice, the expectation term in Eqn. (2) is often

approximated with n uniformly sampled architectures and

solved by SGD (Figure 2). Note that both smaller and larger

DNNs are jointly optimized in Eqn. (2). This formula-

tion allows to transfer knowledge from larger networks to

smaller networks via weight-sharing and knowledge distil-

lation, hence improving the overall performance [3, 43].

Resource-constrained searching (stage 2): After the

pre-training in stage 1, all candidate DNNs are fully opti-

mized. The next step is to search DNNs that yield the best

performance and resource trade-off as follows,

{α⇤

i } = argmin
αi2A

L(W ⇤

αi
; Dval), (4)

s.t. FLOPs(αi) < τi, 8i.

Here W ⇤ is the optimal weight-sharing parameters learned

in stage 1. The overall search cost of this stage is often low,

since there is no need for re-training or fine-tuning. Fur-

thermore, Eqn. (4) naturally supports a wide range of de-

ployment constraints without the need of further modifica-

tions, yielding a more flexible NAS framework for machine

learning practitioners.

3. NAS via Attentive Sampling

The goal of NAS is to find the network architectures

with the best accuracy under different computation con-

straints. Although optimizing the average loss over α 2 A
in Eqn. (2) seems to be a natural choice, it is not tailored

for improving the trade-off between task performance and

DNN resource usage. In practice, one often pays more in-

terest to Pareto-optimal DNNs that form the best trade-offs

as illustrated in Figure 3.

6420



Best Pareto architecture set

Worst Pareto architecture setT
as

k
 p

er
fo

rm
an

ce

Model size (e.g., FLOPs)

Figure 3. An illustration of best and worst Pareto architecture set.

Adapting the constraint-free pre-training goal in Eqn. (2)

for better solutions in Eqn. (4) is not yet explored for two-

stage NAS in the literature. Intuitively, one straightforward

idea is to put more training budgets on models that are likely

to form the best Pareto set, and train those models with more

data and iterations. In practice, increasing the training bud-

get has been shown to be an effective technique in improv-

ing DNN performance.

However, it may also be important to improve the worst

performing models. Pushing the performance limits of the

worst Pareto set (Figure 3) may lead to a better optimized

weight-sharing graph, such that all trainable components

(e.g., channels) reach their maximum potential in contribut-

ing to the final performance. In addition, the rationale of

improving on the worst Pareto architectures is similar to

hard example mining [21, 29, 30, 33], by viewing the worst

Pareto sub-networks as difficult data examples. It can lead

to more informative gradients and better exploration in the

architecture space, thus yielding better NAS performance.

In this work, we study a number of Pareto-aware sam-

pling strategies for improving two-stage NAS. We give a

precise definition of the best Pareto architecture set and the

worst Pareto architecture set in section 3.1 and then present

our main algorithm in section 3.2.

3.1. Sub-networks of Interest

Best Pareto architecture set: Given an optimization state

W (the parameters of our weight-sharing graph), a sub-

network α is considered as a best Pareto architecture if there

exists no other architecture a0 2 A that achieves better per-

formance while consuming less or the same computational

cost, i.e., 8α0 2 A, if FLOPs(α0)  FLOPs(α), then,

L(Wα
0 ;Dval) > L(Wα;D

val).

Worst Pareto architecture set: Similarly, we define an

architecture α as a worst Pareto architecture if it is always

dominated in accuracy by other architectures with the same

or larger FLOPs, i.e., L(Wα
0 ;Dval) < L(Wα;D

val) for

any α
0 satisfies FLOPs(α0) � FLOPs(α).

3.2. Pareto-attentive pre-training

In Eqn. (2), all candidate networks are optimized with

equal probabilities. We reformulate (2) with a Pareto-

attentive objective such that the optimization focus on ei-

ther the best or the worst Pareto set. We first rewrite the

expectation in Eqn. (2) as an expected loss over FLOPs as

follows,

min
W

E
π(τ)Eπ(α|τ)



L(Wα; D
trn)

�

, (5)

where τ denotes the FLOPs of the candidate network. It is

easy to see that Eqn. (5) reduces to Eqn. (2) by setting π(τ)
as the prior distribution of FLOPs specified by the search

space A and π(α | τ) as a uniform distribution over archi-

tectures conditioned on FLOPs τ . Here, we drop the regu-

larization term R(W ) for simplicity.

Pareto-aware sampling can be conducted by setting

π(α | τ) to be an attentive sampling distribution that always

draws best or worst Pareto architectures. This optimization

goal is formulated as follows,

min
W

E
π(τ)

X

π(α|τ)



γ(α)L(Wα; D
trn)

�

, (6)

where γ(α) is defined to be 1 if and only if α is a candidate

network on the best or the worst Pareto front, otherwise 0.

To solve this optimization, in practice, we can approx-

imate the expectation over π(τ) with n Monte Carlo sam-

ples of FLOPs {τo}. Then, for each targeted FLOPs τo,

we can approximate the summation over π(α | τo) with k
sampled architectures {a1, · · · , ak} ⇠ π(α | τo) such that

FLOPs(αi) = τo, 81  i  k as follows,

min
W

1

n

nX

τo⇠π(τ)

 kX

αi⇠π(α|τo)

γ(αi)L(Wαi
;Dtrn)

�

. (7)

Let P (α) denote the performance estimation of a model

α with parameters Wα. If the goal is to focus on best Pareto

architectures, we assign γ(αi) = I(P (αi) > P (αj), 8 j 6=
i), where I(·) is an indicator function. If the goal is to focus

on worst Pareto architectures, we set γ(αi) = I(P (αi) <
P (αj), 8 j 6= i).

Algorithm 1 provides a meta-algorithm of our attentive

sampling based NAS framework, dubbed as AttentiveNAS.

We denote the sampling strategy of always selecting the

best performing architecture to train as Bestup and the strat-

egy of always selecting the worst performing architecture to

train as WorstUp.

An ideal choice for the performance estimator P (α)
is to set it as the negative validation loss, i.e., P (α) =
�L(Wα;D

val). However, this is often computationally

expensive since the validation set could be large. In this

6421



Algorithm 1 AttentiveNAS: Improving Neural Architec-

ture Search via Attentive Sampling

1: Input: Search space A; performance estimator P
2: while not converging do

3: Draw a min-batch of data

4: for i 1 : n do

5: Sample a target FLOPs τ0 according the FLOPs

prior distribution specified by the search space A
6: Uniformly sample k subnetworks {α1, · · · ,αk}

following the FLOPs constraint τ0
7: (a) if BestUp-k: select the sub-network with the

best performance to train according to P
8: (b) if WorstUp-k: select the sub-network with

the worst performance to train according to P
9: end for

10: Compute additional regularization terms and back-

propagate; see Eqn. (7).

11: end while

work, we experiment with a number of surrogate perfor-

mance metrics that could be computed efficiently, including

predicted accuracy given by pre-trained accuracy predictors

or mini-batch losses. Our approximation leads to a variety

of attentive architecture sampling implementations, as we

discuss in the following experimental results section.

4. Experimental Results

In this section, we describe our implementation in detail

and compare with prior art NAS baselines. Additionally,

we provide comparisons of training and search time cost in

Appendix E. We evaluate the inference latency and transfer

learning performance of our AttentiveNAS models in Ap-

pendix F and G, respectively.

4.1. Search Space

We closely follow the prior art search space design in

FBNetV3 [10] with a number of simplifications. In par-

ticular, we use the same meta architecture structure in

FBNetV3 but reduce the search range of channel widths,

depths, expansion ratios and input resolutions. We also

limit the largest possible sub-network in the search space

to be less than 2, 000 MFLOPs and constrain the smallest

sub-network to be larger than 200 MFLOPs. In particular,

our smallest and largest model has 203 MFLOPs and 1, 939
MFLOPs, respectively. The search space is shown in Ap-

pendix D.

Note that our search space leads to better DNN solutions

compared to those yield by the BigNAS [43] search space.

Compared with the BigNAS search space, our search space

contains more deeper and narrower sub-networks, which

achieves higher accuracy under similar FLOPs constraints.

We provide detailed comparisons in Appendix D.

4.2. Training and Evaluation

Sampling FLOPs-constrained architectures: One key

step of AttentiveNAS is to draw architecture samples fol-

lowing different FLOPs constraints (see Eqn. (7) or step 6 in

Algorithm 1). At each sampling step, one needs to first draw

a sample of target FLOPs τ0 according to the prior distri-

bution π(τ); and then sample k architectures {a1, · · · , ak}
from π(α | τ0).

In practice, π(τ) can be estimated offline easily. We first

draw a large number of m sub-networks from the search

space randomly (e.g. m � 106). Then, the empirical ap-

proximation of π(τ) can be estimated as

π̂(τ = τ0) =
#(τ = τ0)

m
,

where #(τ = τ0) is the total number of architecture sam-

ples that yield FLOPs τ0. We also round the real FLOPs

following a step t to discretize the whole FLOPs range. We

fix t = 25 MFLOPs in our experiments.

To draw an architecture sample given a FLOPs con-

straint, a straightforward strategy is to leverage rejection

sampling, i.e., draw samples uniformly from the entire

search space and reject samples if the targeted FLOPs con-

straint is not satisfied. This naive sampling strategy, how-

ever, is inefficient especially when the search space is large.

To speedup the FLOPs-constrained sampling process,

we propose to approximate π(α | τ) empirically. Assume

the network configuration is represented by a vector of dis-

crete variables α = [o1, · · · , od] 2 R
d, where each element

oi denotes one dimension in the search space, e.g., channel

width, kernel size, expansion ratio, etc. See Table 2 for a

detailed description of our search space. Let π̂(α | τ) de-

note an empirical approximation of π(α | τ), for simplicity,

we relax,

π̂(α | τ = τ0) /
Y

i

π̂(oi | τ = τ0).

Let #(oi = k, τ = τ0) be the number of times that the pair

(oi = k, τ = τ0) appears in our architecture-FLOPs sample

pool. Then, we can approximate π̂(oi | τ = τ0) as follows,

π̂(oi = k | τ0) =
#(oi = k, τ = τ0)

#(τ = τ0)
.

Now, to sample a random architecture under a FLOPs con-

straint, we directly leverage rejection sampling from π̂(α |
τ), which yields much higher sampling efficiency than sam-

pling from whole search space directly. To further reduce

the training overhead, we conduct the sampling process in

an asynchronous mode on CPUs, which does not slow down

the training process on GPUs.

Training details: We closely follow the BigNAS [43]

training settings. See Appendix A.

6422



(a) Kendall’s τ = 0.89 (b) Kendall’s τ = 0.87 (c) Kendall’s τ = 0.88
A

cc
ac

tu
al

(s
0

,
ep

3
0

)

A
cc

ac
tu

al
(s

0
,

ep
3

6
0

)

A
cc

ac
tu

al
(s

1
,

ep
3

6
0

)

M
F

L
O

P
s

Acc predicted (s0, ep30) Acc predicted (s0, ep30) Acc predicted (s0, ep30)

Figure 4. Rank correlation between the predicted accuracy and the actual accuracy estimated on data. Here acc predicted is the accuracy

prediction by using our accuracy predictor and acc actual denotes the real model accuracy estimated on its corresponding testing data

partition by reusing the weight-sharing parameters. s0 and s1 denotes random partition with seed 0 and seed 1, respectively. ep30 and 360

denotes 30 epochs of training and 360 epochs training, respectively.

Evaluation: To ensure a fair comparison between differ-

ent sampling strategies, we limit the number of architectures

to be evaluated to be the same for different algorithms. We

use evolutionary search on the ImageNet validation set to

search promising sub-networks following [37] 1. We fix the

initial population size to be 512, and set both the mutate

and cross over population size to be 128. We run evolution

search for 20 iterations and the total number of architectures

to be evaluated is 5248.

Note that when comparing with prior art NAS baselines,

we withheld the original validation set for testing and sub-

sampled 200K training examples for evolutionary search.

See section 4.5 for more details.

Since the running statistics of batch normalization layers

are not accumulated during training, we calibrate the batch

normalization statistics before evaluation following [42].

4.3. Attentive Sampling with Efficient Performance
Estimation

The attentive sampling approach requires selecting the

best or the worst sub-network from a set of sampled can-

didates. Exact performance evaluation on a validation set

is computationally expensive. In this part, we introduce

two efficient algorithms for sub-network performance es-

timation:

• Minibatch-loss as performance estimator: for each ar-

chitecture, use the training loss measured on the cur-

rent mini-batch of training data as the proxy perfor-

mance metric;

• Accuracy predictor as performance estimator: train an

accuracy predictor on a validation set; then for each

architecture, use the predicted accuracy given by the

accuracy predictor as its performance estimation.

1https : / / github . com / mit - han - lab / hardware -

aware-transformers

The first approach is intuitive and straightforward. For

the second approach, it is widely observed in the literature

[8, 40] that the performance rank correlation between dif-

ferent sub-networks learned via weight-sharing varies sig-

nificantly across different runs, resulting in extremely low

Kendall’s τ values. If this is still the case for the two-

stage NAS, a pre-trained accuracy predictor cannot gener-

alize well across different setups. Hence, it is important to

first understand the performance variation of candidate sub-

networks in different training stages and settings.

Settings for training accuracy predictors: We proceed

as follows: 1) we first split the original training dataset

into 90% of training and 10% of testing; 2) we conduct the

constraint-free pre-training on the sub-sampled training set.

We limit the training to be 30 epochs, hence only introduc-

ing less than 10% of the full two-stage NAS computation

time. Once the training is done, we randomly sample 1024

sub-networks and evaluate their performance on the sub-

sampled testing data partition; 3) we split the 1024 pairs of

sub-networks and their accuracies into equally sized train-

ing and evaluation subsets. We train a random forest re-

gressor with 100 trees as the accuracy predictor and set the

maximum depth to be 15 per tree.

Results on the effectiveness of accuracy predictors: For

all testing sub-networks, we measure the rank correla-

tion (Kendall’s τ ) between their predicted accuracies and

their actual accuracies measured on the subsampled testing

dataset.

As shown in Figure 4 (a), the Kendall’s τ between

the predicted accuracies and the actual accuracies is 0.89,

which indicates a very high rank correlation.

Since the weight-sharing parameters are constantly up-

dated at each training step (Eqn. (7)), would the perfor-

mance rank between different sub-networks remains stable

throughout the training stage? To verify, we further ex-

6423



75 76 77 78
WoUsW8p-3 (loss)

BesW8p-3 (loss)

WoUsW8p-10 (acc)

BesW8p-10 (acc)

WoUsW8p-50 (acc)

BesW8p-50 (acc)

8nifoUm

75 76 77 78
WoUsW8p-3 (loss)

BesW8p-3 (loss)

WoUsW8p-10 (acc)

BesW8p-10 (acc)

WoUsW8p-50 (acc)

BesW8p-50 (acc)

8nifoUm

Top-1 validation accuracy Top-1 validation accuracy

(a) 200 - 250 MFLOPs (b) 250 - 300 MFLOPs

Figure 5. Results on ImageNet of different sampling strategies. Each box plot shows the the performance summarization of sampled

architecture within the specified FLOPs regime. From left to right, each horizontal bar represents the minimum accuracy, the first quartile,

the sample median, the sample third quartile and the maximum accuracy, respectively.

R
el

at
iv

e
ac

c
w

.r
.t

.
U

n
if

o
rm

200 300 400 500 600 700
−0.4

−0.2

0.0

0.2

0.4

WoUstUp-50 (acc)
BestUp-50 (acc)
WoUstUp-10 (acc)
BestUp-10 (acc)
BestUp-3 (loss)
WoUstUp-3 (loss)

MFLOPs (±10)

Figure 6. Comparison of Pareto-set performance with the Uniform

sampling baseline.

tend the step 2) above for 360 epochs and measure the rank

correlation between the predicted accuraries and their ac-

tual accuraries on the testing sub-networks set. Figure 4

(b) shows that the accuracy predictor trained via early stop-

ping at epoch 30 also provides a good estimation in pre-

dicting the actual accuracy measured via using the weight-

sharing parameters learned at epoch 360, yielding a high

rank correlation of 0.87. Our results also generalize to dif-

ferent random data partitions. As shown in Figure 4 (c),

we use the accuracy predictor trained on data partition with

random seed 0 to predict the architecture performance on

data partition with random seed 1. The Kendall’ τ is 0.88,

indicating significant high rank correlation. Our findings

provide abundant evidence that justifies the choice of us-

ing pre-trained accuracy predictors for sub-network perfor-

mance estimation in Algorithm 1. It also shows the robust-

ness of the weight-sharing NAS.

4.4. NAS with Efficient Attentive Sampling

Settings: AttentiveNAS requires specifying: 1) the atten-

tive architecture set, either the best Pareto front (denoted as

BestUp) or the worst Pareto front (denoted as WorstUp);

2) the number of candidate sub-networks (k) to be evalu-

ated at each sampling step, see Step 6 in Algorithm 1; and

3) the performance estimator, e.g., the minibatch loss based

performance estimation (denoted as loss) or the predicted

accuracies based performance estimation (denoted as acc).

We name our sampling strategies accordingly in the follow-

ing way,

{BestUp / WorstUp}
| {z }

1) attentive architecture set

� k
|{z}

2) #candidates

({loss/acc})
| {z }

3) performance estimator

,

In general, we would like to set k to be a relative large

number for better Pareto frontier approximation. For our

accuracy predictor based implementation, we set k = 50
as default, yielding sample strategies BestUp-50 (acc)

and WorstUp-50 (acc).

We also study an extreme case, for which we generate

the potential best or worst Pareto architecture set in an

offline mode. Specifically, we first sample 1 million ran-

dom sub-networks and use our pretrained accuracy predic-

tor to predict the best or the worst Pareto set in an offline

mode. This is equivalent to set k as a large number. We

use BestUp-1M (acc) and WorstUp-1M (acc) to

denote the algorithms that only sample from the offline best

or the offline worst Pareto set, respectively.

For our minibatch loss based sampling strategies

BestUp-k (loss) and WorstUp-k (loss), these

methods require to forward the data batch for k � 1 more

times compared with the Uniform baseline (k = 1). We

limit k = 3 in our experiments to reduce the training over-

head.

Results: We summarize our results in Figure 5 and Fig-

ure 6. In Figure 5, we group architectures according to

their FLOPs and visualize five statistics for each group of

sub-networks, including the minimum, the first quantile, the

median, the third quantile and the maximum accuracy. In

Figure 6, we report the maximum top-1 accuracy achieved

6424



by different sampling strategies on various FLOPs regimes.

For visualization clarity, we plot the relative top-1 accuracy

gain over the Uniform baseline. We have the following ob-

servations from the experimental results:

1) As shown in Figure 5 (a) and (b), pushing up the

worst performed architectures during training leads to

a higher low-bound performance Pareto. The min-

imum and the first quartile accuracy achieved by

WorstUp-50 (acc) and WorstUp-1M (acc)

are significantly higher than those achieved by

BestUp-50 (acc), BestUp-1M (acc)) and

Uniform.

2) WorstUp-1M (acc) consistently outperforms over

BestUp-1M (acc) in Figure 5 (a) and (b). Our

findings challenge the traditional thinking of NAS by

focusing only on the best Pareto front of sub-networks,

e.g., in [4, 23].

3) Improving models on the worst Pareto front leads to a

better performed best Pareto front. For example, as we

can see from Figure 5 and 6, WorstUp-50 (acc)

outperforms Uniform around 0.3% of top-1 accu-

racy on the 200± 10 MFLOPs regime. WorstUp-1M

(acc) also improves on the Uniform baseline.

4) As we can see from Figure 6, the best Pareto front fo-

cused sampling strategies are mostly useful at medium

FLOPs regimes. BestUp-50 (acc) starts to out-

perform WorstUp-50 (acc) and Uniform when

the model size is greater than 400 MFLOPs.

5) Both WorstUp-3 (loss) and BestUp-3

(loss) improves on Uniform, further validating

the advantage of our attentive sampling strategies.

6) As we can see from Figure 6, BestUp-3 (loss)

achieves the best performance in general. Com-

pared with BestUp-50 (acc) and BestUp-1M

(acc), BestUp-3 (loss) yields better explo-

ration of the search space; while comparing with

Uniform, BestUp-3 (loss) enjoys better ex-

ploitation of the search space. Our findings suggest

that a good sampling strategy needs to balance the ex-

ploration and exploitation of the search space.

4.5. Comparison with Prior NAS Approaches

In this section, we pick our winning sampling strat-

egy BestUp-3 (loss) (denoted as AttentiveNAS in Ta-

ble 1), and compare it with prior art NAS baselines on

ImageNet, including FBNetV2 [36], FBNetV3 [10], Mo-

bileNetV2 [28], MobileNetV3 [17], OFA [3], FairNAS [8],

Proxyless [4], MnasNet [34], NASNet [46], Efficient-

Net [35] and BigNAS [43].

For fair comparison, we withhold the original ImageNet

validation set for testing and randomly sample 200k Ima-

geNet training examples as the validation set for searching.

Since all models are likely to overfit at the end of training,

we use the weight-sharing parameter graph learned at epoch

30 for performance estimation and then evaluate the discov-

ered best Pareto set of architectures on the unseen original

ImageNet validation set. We follow the evolutionary search

protocols described in Section 4.2

We summarize our results in both Table 1 and Figure 1.

AttentiveNAS significantly outperforms all baselines, es-

tablishing new SOTA accuracy vs. FLOPs trade-offs.

Group Method MFLOPs Top-1

200-300 (M)

AttentiveNAS-A0 203 77.3

MobileNetV2 0.75⇥ [28] 208 69.8

MobileNetV3 1.0⇥ [17] 217 75.2

FBNetv2 [36] 238 76.0

BigNAS [43] 242 76.5

AttentiveNAS-A1 279 78.4

300-400 (M)

MNasNet [34] 315 75.2

AttentiveNAS-A2 317 78.8

Proxyless [4] 320 74.6

FBNetv2 [36] 325 77.2

FBNetv3 [10] 343 78.0

MobileNetV3 1.25⇥ [17] 356 76.6

AttentiveNAS-A3 357 79.1

OFA (#75ep) [3] 389 79.1

EfficientNet-B0 [35] 390 77.1

FairNAS [8] 392 77.5

400-500 (M)

MNasNet [34] 403 76.7

BigNAS [43] 418 78.9

FBNetv2 [36] 422 78.1

AttentiveNAS-A4 444 79.8

OFA (#75ep) [3] 482 79.6

NASNet [46] 488 72.8

AttentiveNAS-A5 491 80.1

>500 (M)

EfficientNet-B1 [35] 700 79.1

AttentiveNAS-A6 709 80.7

FBNetV3 [10] 752 80.4

EfficientNet-B2 [35] 1000 80.1
Table 1. Comparison with prior NAS approaches on ImageNet.

5. Conclusion

In this paper, we propose a variety of attentive sampling

strategies for training two-stage NAS. We show that our

attentive sampling can improve the accuracy significantly

compared to the uniform sampling by taking the perfor-

mance Pareto into account. Our method outperforms prior-

art NAS approaches on the ImageNet dataset, establishing

new SOTA accuracy under various of FLOPs constraints.

6425



References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A conver-

gence theory for deep learning via over-parameterization. In

International Conference on Machine Learning, pages 242–

252. PMLR, 2019. 3
[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101–mining discriminative components with random

forests. In European conference on computer vision, pages

446–461. Springer, 2014. 13
[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once-for-all: Train one network and specialize it

for efficient deployment. arXiv preprint arXiv:1908.09791,

2019. 1, 3, 8, 12, 13
[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018. 2, 8, 13
[5] Yuan Cao and Quanquan Gu. Generalization bounds of

stochastic gradient descent for wide and deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 10836–10846, 2019. 3
[6] An-Chieh Cheng, Jin-Dong Dong, Chi-Hung Hsu, Shu-

Huan Chang, Min Sun, Shih-Chieh Chang, Jia-Yu Pan, Yu-

Ting Chen, Wei Wei, and Da-Cheng Juan. Searching to-

ward pareto-optimal device-aware neural architectures. In

Proceedings of the International Conference on Computer-

Aided Design, pages 1–7, 2018. 2
[7] Ting-Wu Chin, Ari S Morcos, and Diana Marculescu.

Pareco: Pareto-aware channel optimization for slimmable

neural networks. arXiv preprint arXiv:2007.11752, 2020. 2
[8] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-

nas: Rethinking evaluation fairness of weight sharing neural

architecture search. arXiv preprint arXiv:1907.01845, 2019.

1, 2, 3, 6, 8, 11
[9] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

policies from data. arXiv preprint arXiv:1805.09501, 2018.

11
[10] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-

jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew

Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe

search using neural acquisition function. arXiv preprint

arXiv:2006.02049, 2020. 1, 5, 8, 11
[11] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei

Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming

Wu, Yangqing Jia, et al. Chamnet: Towards efficient net-

work design through platform-aware model adaptation. In

Proceedings of the IEEE Conference on computer vision and

pattern recognition, pages 11398–11407, 2019. 1
[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 3
[13] Xuanyi Dong and Yi Yang. Nas-bench-102: Extending

the scope of reproducible neural architecture search. arXiv

preprint arXiv:2001.00326, 2020. 2
[14] Chengyue Gong, Tongzheng Ren, Mao Ye, and Qiang Liu.

Maxup: A simple way to improve generalization of neural

network training. arXiv preprint arXiv:2002.09024, 2020. 2
[15] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. In

European Conference on Computer Vision, pages 544–560.

Springer, 2020. 1, 2, 3
[16] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015. 1
[17] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 1314–1324, 2019. 8, 12
[18] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 1
[19] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018. 12
[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Fi-

rat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee, Jiquan

Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient

training of giant neural networks using pipeline parallelism.

Advances in Neural Information Processing Systems, 2018.

13
[21] SouYoung Jin, Aruni RoyChowdhury, Huaizu Jiang, Ashish

Singh, Aditya Prasad, Deep Chakraborty, and Erik Learned-

Miller. Unsupervised hard example mining from videos for

improved object detection. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 307–324,

2018. 4
[22] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei.

Collecting a large-scale dataset of fine-grained cars. Second

Workshop on Fine-Grained Visual Categorization, 2013. 13
[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018. 2, 8, 13
[24] Maria-Elena Nilsback and Andrew Zisserman. Automated

flower classification over a large number of classes. In 2008

Sixth Indian Conference on Computer Vision, Graphics &

Image Processing, pages 722–729. IEEE, 2008. 13
[25] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018. 2
[26] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789, 2019. 2
[27] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,

Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin.

Large-scale evolution of image classifiers. arXiv preprint

arXiv:1703.01041, 2017. 2
[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018. 8, 12

6426



[29] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick.

Training region-based object detectors with online hard ex-

ample mining. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 761–769,

2016. 4
[30] Evgeny Smirnov, Aleksandr Melnikov, Andrei Oleinik,

Elizaveta Ivanova, Ilya Kalinovskiy, and Eugene Luck-

yanets. Hard example mining with auxiliary embeddings.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, pages 37–46, 2018. 2,

4
[31] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios

Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-

culescu. Single-path nas: Designing hardware-efficient con-

vnets in less than 4 hours. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases,

pages 481–497. Springer, 2019. 2
[32] Masanori Suganuma, Mete Ozay, and Takayuki Okatani. Ex-

ploiting the potential of standard convolutional autoencoders

for image restoration by evolutionary search. arXiv preprint

arXiv:1803.00370, 2018. 2
[33] Yumin Suh, Bohyung Han, Wonsik Kim, and Kyoung Mu

Lee. Stochastic class-based hard example mining for deep

metric learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 7251–

7259, 2019. 4
[34] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2820–2828, 2019. 1, 2, 8,

12, 13
[35] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 1, 8, 12, 13
[36] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-

dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,

Kan Chen, et al. Fbnetv2: Differentiable neural architecture

search for spatial and channel dimensions. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12965–12974, 2020. 1, 8
[37] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng

Zhu, Chuang Gan, and Song Han. Hat: Hardware-aware

transformers for efficient natural language processing. arXiv

preprint arXiv:2005.14187, 2020. 1, 2, 3, 6
[38] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 10734–10742, 2019. 1, 2
[39] Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of

the IEEE international conference on computer vision, pages

1379–1388, 2017. 2
[40] Antoine Yang, Pedro M Esperança, and Fabio M Car-

lucci. Nas evaluation is frustratingly hard. arXiv preprint

arXiv:1912.12522, 2019. 2, 6
[41] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,

Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards

reproducible neural architecture search. In International

Conference on Machine Learning, pages 7105–7114, 2019.

2
[42] Jiahui Yu and Thomas S Huang. Universally slimmable net-

works and improved training techniques. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1803–1811, 2019. 6
[43] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,

Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-

aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling

up neural architecture search with big single-stage models.

arXiv preprint arXiv:2003.11142, 2020. 1, 2, 3, 5, 8, 11
[44] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin

Liu. Practical block-wise neural network architecture gener-

ation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2423–2432, 2018. 2
[45] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016. 1, 2, 12
[46] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018. 2, 8

6427


