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Abstract

Accurate vertebra localization and identification are re-

quired in many clinical applications of spine disorder di-

agnosis and surgery planning. However, significant chal-

lenges are posed in this task by highly varying patholo-

gies (such as vertebral compression fracture, scoliosis, and

vertebral fixation) and imaging conditions (such as limited

field of view and metal streak artifacts). This paper pro-

poses a robust and accurate method that effectively exploits

the anatomical knowledge of the spine to facilitate verte-

bra localization and identification. A key point localization

model is trained to produce activation maps of vertebra cen-

ters. They are then re-sampled along the spine centerline

to produce spine-rectified activation maps, which are fur-

ther aggregated into 1-D activation signals. Following this,

an anatomically-constrained optimization module is intro-

duced to jointly search for the optimal vertebra centers un-

der a soft constraint that regulates the distance between ver-

tebrae and a hard constraint on the consecutive vertebra in-

dices. When being evaluated on a major public benchmark

of 302 highly pathological CT images, the proposed method

reports the state of the art identification (id.) rate of 97.4%,

and outperforms the best competing method of 94.7% id.

rate by reducing the relative id. error rate by half.

1. Introduction

Localization and identification of spine vertebrae in 3-D

medical images are key enabling components for computer-

aided diagnosis of spine disorders [13]. As a prerequisite

step of downstream applications, high accuracies of verte-

bra localization and identification are frequently demanded.

In recent years, many studies have been reported to address

this problem, with substantial progress on public bench-

marks (e.g., the SpineWeb [1]. However, due to the simi-

lar appearances of the spine vertebrae, it remains a daunt-
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Figure 1. Example spine CT images from the SpineWeb bench-

mark dataset demonstrating the challenges. (a) small field of fiew,

(b) low image quality, (c,d) metal implants and severe compression

fracture.

ing task to identify vertebrae with a very high accuracy that

meets the requirements of clinical applications.

The challenges in distinguishing vertebrae with simi-

lar shapes/appearances are well recognized by the research

community [9, 24, 3]. Multiple methods have been pro-

posed to address them by exploiting the anatomical prior

knowledge: 1) the spatial order of vertebrae, and 2) the

distance between neighboring vertebrae. Spine anatom-

ical knowledge is incorporated into neural networks im-

plicitly using Bi-RNN [9], or explicitly using an informa-

tion aggregation layer considering the spatial distribution

prior of the vertebrae [24]. The anatomical prior has also

been used to post-process the neural network output [3].

While steady performance improvements are observed in

these works, the anatomical knowledge is still not fully uti-

lized. In particular, anatomy-inspired network architectures

like Bi-RNN [9] rely on the network to learn the anatomical

prior without the guaranteed respect to the prior. Building

the anatomical knowledge into a network layer [24] or the

optimization target [3] makes a compromise that turns the

hard constraint (which should be strictly enforced, e.g., the

spatial order) into soft constraints that can be violated. As

a result, previous methods may produce physically implau-
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sible predictions (e.g., vertebrae in reversed order, multiple

occurrences of the same vertebra).

Furthermore, while previous methods employ the infor-

mation exchange mechanisms (e.g., Bi-RNN [9] and mes-

sage passing [24]) to incorporate the global context, the

vertebra label is still classified individually at the output

stage for each vertebra without imposing the anatomical

constraints. Therefore, these methods completely depend

on the information exchange mechanisms to capture and

regulate the spatial relationships between vertebrae. Ex-

isting fusion mechanisms include 1) recurrent neural net-

work [9], which encourages the message passing between

vertebrae in a softly learned way instead of enforcing it in

an anatomy coherent manner; 2) aggregation of the neigh-

boring vertebrae’s activation maps [24] following the ver-

tebra distance prior, which is only reliable for short-range

relationships, leaving the global anatomical knowledge in-

sufficiently exploited. A specific optimization formulation

is used in [3] to jointly label the vertebrae by formulating a

global objective function. However, the Markov modeling

of vertebra labels employed in [3] is still limited to capture

the short-range relationships and the error accumulates with

the Markov steps.

In this work, we propose a vertebra localization and

identification method that jointly labels all vertebrae with

anatomical constraints to effectively utilize the anatomi-

cal knowledge. In particular, a key point localization U-

Net [15] is trained to predict activation maps for the 26

vertebra centers. Along the automatically calculated spine

centerline, the activation maps are warped to rectify the

spine and aggregated to form novel 1-D vertebra activa-

tion signals. Vertebra localization and identification tasks

are then formulated as an optimization problem on the 1-D

signals. The spatial order of the vertebrae is guaranteed us-

ing a hard constraint to limit the optimization search space.

The prior knowledge of the distance between vertebrae is

integrated via a soft constraint, i.e., a regularization term

in the objective function. The labels for all vertebrae are

searched jointly in the constrained search space, which al-

lows global message passing among the vertebrae and en-

sures the anatomical plausibility of the results. We evaluate

our method on a main public benchmark from SpineWeb

with a training set of 242 CTs and a testing test of 60 CTs.

Our method reports the new state-of-the-art identification

rate of 97.4%, significantly outperforming the previously

best competing method [3] that achieves a rate of 94.7%.

In summary, our contributions are four-fold. 1) We pro-

pose a simple yet effective approach to aggregate 3-D verte-

bra activation maps into 1-D signals so that the complexity

of the task is significantly reduced. 2) We exploit the spa-

tial order of the vertebrae as a hard constraint of the opti-

mization search space, which anatomically ensures plausi-

ble outputs. 3) We introduce the vertebra distance prior as

a soft constraint in optimization of the objective function,

flexibly leveraging the relation between vertebrae. 4) Our

method achieves the new state-of-the-art performance by

improving the identification accuracy from 94.7% to 97.4%

and equivalently cutting the error rate by half.

2. Related Work

Vertebra localization and identification task shares fun-

damental similarities with general landmarks detection

tasks, where various formulations and methods have

been proposed, including heatmap-base methods [22],

coordinate-based [19, 11] and graph-based methods [18,

25]. Specialized methods focusing on vertebra localization

and identification have also been extensively studied to op-

timize the performance by exploiting the a prior knowledge

of the spine anatomy.

Early works rely on hand-crafted low-level image fea-

tures and/or a priori knowledge. Glocker et al. [4] propose

to use regression forests and probabilistic graphical models

to handle arbitrary field-of-view CT scans. They [5] further

transform the sparse centroid annotations into dense proba-

bilistic labels for classifier training. Zhan et al. [26] use a

hierarchical strategy to learn detectors dedicated to distinc-

tive vertebrae and non-distinctive vertebrae. While these

methods produce promising results, due to the limited mod-

eling power of hand-crafted features, they lack robustness

and produce erroneous results on challenging pathological

images. In addition, they fail to exploit the global contex-

tual information to facilitate vertebra identification.

Deep neural networks are employed to detect spine ver-

tebrae and achieve substantially improved performance. A

few publications [2, 20] employ convolutional neural net-

work (CNN) to directly detect the vertebra centers. Fully

convolutional network (FCN) [10] has also been adopted

for the vertebra center detection task [9, 24, 14]. These

methods achieve the vertebra localization and identification

tasks jointly in one stage. Others employ multiple stages to

locate and identify the vertebrae, which can be categorized

into top-down [8, 12] or bottom-up strategies. A top-down

scheme locates the whole spine first and detects individual

vertebrae next. A bottom-up strategy first detects the land-

marks of all vertebrae and then classify them into the re-

spective vertebrae [23, 21].

Many techniques have studied the use of a prior knowl-

edge of spine anatomy to facilitate vertebra localization and

identification [2, 26, 9, 24, 3, 14, 17]. Domain expert knowl-

edge is used to categorize vertebrae into anchor and bundle

sets and treat them differently [26]. Markov modeling is

adopted to label vertebrae by preserving the consecutive or-

der [3]. Various attempts have been made to automatically

learn the knowledge in a data-driven manner [9, 24, 14, 17].

Bi-directional recurrent neural network (RNN) is adopted

to enable the model to capture the spatial relations of pre-
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Figure 2. Overview of the proposed system. (a) 26 vertebra activation maps {Gv} produce by the key point localization nnU-Net, and the

all vertebrae activation map Ĝ produced by aggregating {Gv}. The centerline of the spine is marked in the activation maps. (b) Spine

rectification operator derived from the spine centerline s(t) in Ĝ. (b) Spine rectified activation maps G′

v
and Ĝ produced by applying spine

rectification on {Gv} and Ĝ. (c) The 1-D vertebra activation signals {Qv} and Q̂ produced by spatially aggregating {Gv} and Ĝ. (d) The

anatomically constrained optimization module applied on the 1-D activation signals.

dictions in different regions [9, 14]. A message passing

mechanism is used to exploit the prior distribution of the

distance between vertebrae to regulate the prediction [24].

Adversarial learning has also been employed to encode and

impose the anatomical prior [17]. The multi-stage methods

[8, 12, 23, 21] embed the knowledge of the spine anatomy

in their top-down and bottom-up representations.

3. Methods

Given a CT image/scan of size W ×H × L, denoted as

I ∈ R
W×H×L, the goal of vertebra localization and iden-

tification is to detect the centers of the spine vertebrae that

are present in I and identify their labels. There are in to-

tal 26 vertebra labels, including 7 cervical, 12 thoracic, 5

lumbar, and 2 sacrum vertebrae. The model takes the image

I as input and outputs the centers of the detected vertebrae

P = {xv, yv, zv}, v ∈ V , where V ⊆ {1, 2, . . . 26} de-

notes the indices of any detected vertebrae. For all images

in training, the vertebra center annotations P are provided.

Our proposed system consists of three steps: 1) training a

U-Net key point detection model to estimate 26 vertebra

activation maps; 2) spine rectification to produce 1-D ac-

tivation signal; 3) anatomically constrained optimization to

detect vertebra centers from the 1-D signal.

3.1. Generation of Vertebra Activation Map

In the first step, we train a key point localization model

using U-Net as the backbone network to produce activation

maps of 26 vertebra centers. This model is trained using

the widely adopted multi-channel activation map regression

approach. The multi-channel ground-truth activation maps

are generated using Gaussian distribution centered on the

spatial coordinates of the vertebra centers. The model is

trained using L2 loss on the predicted and ground-truth ac-

tivation maps. The produced activation maps are denoted as

Gv ∈ R
W×H×L, v ∈ {1, 2, . . . , 26}. Although each ac-

tivation map channel is trained to activate around the center

of the corresponding vertebra, due to the repetitive visual

patterns of the vertebrae, it is not uncommon for the heap

map to falsely activate on wrong vertebrae, or activate on

multiple vertebrae, as shown in Fig. 2(a).

Standard key point localization methods process the

model predicted activation map channels individually (e.g.,

taking the pixel with the maximum activation or taking the

centroid) to obtain the key point detection results. A similar

approach has also been adopted to produce vertebra local-

ization and identification results [2]. Instead of directly pro-

cessing the activation map channels to obtain vertebra cen-

ters, we propose an anatomy-driven processing to achieve
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robust and accurate vertebra localization and identification,

as described in the next two sections.

3.2. From 3D to 1D Spine Rectification

After obtaining the 3-D vertebra activation maps, we ex-

tract the centerline of the spine and aggregate them along

the centerline to produce a 1-D vertebra activation signal.

The 26 activation maps for individual vertebrae are com-

bined into one activation map:

Ĝ =

26
∑

v=1

Gv, (1)

which represents the probability of any vertebra center

without differentiating their indices. While the individual

activation map often falsely activates in wrong vertebrae

due to the repetitive image pattern, the activations are typ-

ically only around vertebra centers. Therefore, by combin-

ing them into one, the centers of all vertebrae are activated,

as shown in Fig. 2(a).

The centerline of the spine is then computed from the

combined activation map Ĝ. It is extracted by tracing the

mass centers of the axial slices of Ĝ, calculated as the av-

erage coordinates of pixels with activation above 0.5. The

extracted centerline is denoted as s(t) = (x(t), y(t), z(t)),
where t is the arc-length parameterization. Given the spine

centerline, the activation maps Gv are warped so that the

centerline becomes straight after warping. Specifically, we

calculate a moving local coordinate system along the cen-

terline, denoted as 〈e1(t), e2(t), e3(t)〉. The three axes are

chosen as:

• e3(t): the tangent vector of the curve s(t).

• e2(t): the unit vector in the normal plane of s(t) with

the minimum angle to the y-axis of the image (i.e., the

patient’s front direction).

• e1(t): the cross product of e2(t) and e3(t).

Intuitively, the axes e1(t) and e2(t) span the normal plane

of the spine centerline, where e1(t) points at the patient’s

anterior direction and e2(t) directs at the patient’s right.

Given the centerline and the local coordinate systems, we

produce spine rectified activation maps G′

v and Ĝ′ by warp-

ing Gv and Ĝ, calculated as:

G′

v(x, y, z) = Gv(s(z) + e1(x) + e2(y)), (2)

where Gv(·) denotes the linear interpolation of Gv at the

given coordinate. This warping operator can be seen as re-

sampling Gv in the normal planes of the spine centerline. In

the rectified maps, the spine centerline is straight along the z
axis, as shown in Fig. 2(c). The anterior and right directions

of each vertebra are aligned with the x and y axes.

The rectified activation maps G′

v and Ĝ′ are further pro-

cessed to produce 1-D signals of vertebra activation, de-

noted as Qv and Q̂, respectively. Specifically, values in G′

v

are summed along the x and y axes, written as

Qv(z) =
∑

x,y

G′

v(x, y, z). (3)

The produced 1-D signal indicates the likelihood of vertebra

centers at given locations z on the spine centerline. The ad-

vantages of the 1-D signal are two-fold: 1) by aggregating

the activations in the normal plane, the signal of vertebra

centers is strengthened, resulting in more distinct activation

profile, 2) by reducing the spine localization search space

to 1-D, the searching complexity is significantly reduced,

making it possible and affordable to adopt more complex

optimization approaches. Despite the strengthened activa-

tion, false activations in the original activation maps are car-

ried over to the 1-D signal, resulting in false activations in

the 1-D signal, as shown in Fig. 2(c).

3.3. Anatomicallyconstrained Optimization

Problem Formulation. Given the 1-D response signals

{Qv} and Q̂, we localize and identify the vertebra centers

by solving an optimization problem. Denoting N as the

number of detected vertebrae and vl as the lowest index

among them, since the detected vertebrae must be consec-

utive, their indices can be represented by [vl, vl + N − 1].
The locations of the detected vertebrae are denoted as k =
{ki}i∈[0,N−1], where i is the vertebra’s index relative to vl.
Therefore, ki indicates the location of the vertebra with ab-

solute index vl + i. Note that since N can be represented

by k, we drop N from the parameters for the sake of no-

tation simplicity. The parameters (vl,k) are optimized to

minimize the following energy function:

L(vl,k) = −
N−1
∑

i=0

λvl+iQvl+i(ki)

+

N−2
∑

i=2

R(ki − ki−1, ki+1 − ki). (4)

Qvl+i(ki) is the activation value of the vertebra with the

absolute index v = vl+i. R(·, ·) is a regularization term that

encourages the distances between neighboring vertebrae to

be similar, written as:

R(a, b) = exp(max(
a

b
,
b

a
)). (5)

λv denotes the weights of the 26 vertebrae. Inspired by

the use of anchor vertebrae in [26], throughout our exper-

iments, we treat the two vertebrae at the ends of the spine

(C1: Cervical-1, C2: Cervical-2, S1: the first Sacrum, S2:

the last Sacrum) as anchors and set their weights λv as
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2. For all other vertebrae, the weights are set to 1. In-

tuitively, these vertebrae (C1, C2, S1, S2) at the ends of

the spine have more distinct appearances, and therefore are

given more weights than others.

In the above optimization formulation, we jointly search

the vertebra centers to maximize the total vertebra activation

score while keeping the distances between vertebra centers

regulated. The search space of (vl,k) implicitly imposes a

hard constraint that the detected vertebrae must be consec-

utive with the indices from vl to vl +N − 1.

Optimization Scheme. The optimization problem is

solved by an initialization step followed by iterative up-

dates. The parameters (vl,k) are searched in the space:

vl ∈ [1, 26], ki ∈ [0, L]. We initialize vl = 1 and the

vertebra centers k as the coordinates of local maxima of Q̂
sequentially (i.e., ki+1 > ki). After the initialization, we

iteratively apply three operations to search the parameters,

namely 1) offset, 2) fine-tune and 3) expansion.

In the offset operation, vl is optimized via exhaustive

search:

vl ← argmin
vl
L(vl,k). (6)

In the fine-tune operation, {kv} is optimized via Hill

Climbing optimization [16]:

k← argmin
k

L(vl,k). (7)

The fine-tune operation adjusts the vertebra centers to mini-

mize the total energy concerning both the individual activa-

tion Qv and the distance regularization.

In the expansion operation, a new vertebra center is in-

serted to k between (u, u + 1). Specifically, the expanded

k is denoted as E(k, u):

k← E(k, u) =











ki if i ≤ u

(ki + ki+1)/2 if i = u+ 1

ki+1 if i > u

(8)

The insertion location u is searched by minimizing the en-

ergy function below:

u = arg min
u∈[0,N−2]

L(vl, E(k, u)). (9)

The expansion operation addresses missed vertebrae that

are not captured by the local maxima of Q̂.

These three operations are iteratively applied until the

energy term starts to increase (i.e., indicating convergence).

The parameters (vl,k) associated with the lowest L dur-

ing the process are taken as the optimization output. The

pseudo code of the proposed optimization scheme is shown

in Algorithm 1. After localizing the vertebra centers from

the 1-D signals, their coordinates are mapped back to the

3-D CT image following the reverse spatial mapping of the

spine rectification to produce the final 3-D localization re-

sults.

Algorithm 1: Optimization

Input: Qv=1,...,26(z) and Q̂(z)
vl ← 1 ;

k← the coordinates of local maxima of Q̂(z) ;

Lmin ←∞ ;

while true do

vl ← argmin
vl

L(vl,k) // offset ;

if L(vl,k) < Lmin then

Lmin ← L(vl,k) ;

else

return (vl,k) associated with the lowest L ;

end

k← argmin
k

L(vl,k) // fine-tune ;

u← arg min
u∈[0,N−2]

L(vl, E(k, u)) ;

k← E(k, u) // expansion ;

end

Result: (vl, N,k)

4. Experiments

4.1. Experiment Setup

Dataset. We have conducted extensive experiments on the

public dataset provided by SpineWeb [1]. The dataset con-

sists of 302 CT scans with vertebra center annotations. This

dataset is commonly considered challenging and represen-

tative for this task, due to various pathologies and imaging

conditions that include severe scoliosis, vertebral fractures,

metal implants, and small field-of-view (FOV). In our ex-

periments, we adopt the same dataset split as previous meth-

ods [4, 2, 9, 24, 3], where 242 CT scans from 125 patients

are used for training and the remaining 60 CT scans are held

out for testing.

Metrics. We adopt the two commonly used evaluation met-

rics: identification rate and localization error. Identifica-

tion rate measures the percentage of vertebrae that are suc-

cessfully identified. A vertebra is considered as correctly

identified if the detected vertebra center and the ground

truth are mutually the closest and their distance is within

20 mm. Localization error measures the mean and standard

deviation of localization errors (in mm) of correctly identi-

fied vertebrae. The evaluation metrics are calculated for the

vertebrae overall, as well as separately for different spine

regions (i.e., cervical, thoracic and lumbar vertebrae).

4.2. Implementation Details

We trained our model on a workstation with Intel Xeon

CPU E5-2650 v4 CPU @ 2.2 GHz, 132 GB RAM, and

4 NVIDIA TITAN V GPUs. Our method is implemented

in PyTorch. The key point localization model is imple-

mented using nnU-Net [7] [6]. CT images are re-sampled
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Table 1. Comparison of our method with state-of-the-art methods on the SpineWeb test set of 60 CT images. The mean and standard

deviation of the localization error (mm) and the identification rate (%) for different spine regions and their averages are reported.

Method

Cervical Thoracic Lumbar All

Mean

Error

Std of

Error

Id

Rate

Mean

Error

Std of

Error

Id

Rate

Mean

Error

Std of

Error

Id

Rate

Mean

Error

Std of

Error

Id

Rate

Glocker et al. [5] 6.81 10.0 88.8 17.6 22.3 61.8 13.1 12.5 79.9 13.2 17.8 74.0

McCouat et al. [12] 3.93 5.27 90.6 6.61 7.40 79.8 5.39 8.70 92.0 5.60 7.10 85.8

Jakubicek et al. [8] 4.21 - - 5.34 - - 6.64 - - 5.08 3.95 90.9

Chen et al. [2] 5.12 8.22 91.8 11.4 16.5 76.4 8.42 8.62 88.1 8.82 13.0 84.2

Sekuboy et al. [17] 5.90 5.50 89.9 6.80 5.90 86.2 5.80 6.60 91.4 6.20 4.10 88.5

Yang et al. [24] 5.60 4.00 92.0 9.20 7.90 81.0 11.0 10.8 83.0 8.60 7.80 85.0

Liao et al. [9] 4.48 4.56 95.1 7.78 10.2 84.0 5.61 7.68 92.2 6.47 8.56 88.3

Qin et al. [14] 2.20 5.60 90.8 3.40 6.50 86.7 2.90 4.30 89.7 2.90 5.80 89.0

Chen et al. [3] 2.50 3.66 89.5 2.63 3.25 95.3 2.19 1.82 100 2.56 3.15 94.7

Ours 2.40 1.18 96.8 2.35 1.28 97.8 3.19 1.69 97.2 2.55 1.40 97.4

to 0.3 × 0.3 × 1.25 mm spacing. During training, we crop

3-D patches of size 128 × 160 × 64 voxels from each CT

scan as input. For inference, we apply the trained model

on non-overlapping patches of the same size to obtain the

localization activation maps for the full image. The SGD

optimizer with a learning rate of 0.01, a weight decay of

3e-5 and a mini-batch size of 2 is used to train the model

for 1, 000 epochs.

4.3. Quantitative Comparison with Previous State
oftheart Methods

We compare our method with 9 baseline methods, in-

cluding a classic method with hand-crafted feature [4],

multi-stage methods [12, 8], techniques with data-driven

anatomical prior [9, 24, 17, 14] and methods with anatomy

inspired architectures [2, 3]. The results are summarized in

Table 1. Overall, our method significantly outperforms all

comparative methods, reporting an id. rate of 97.4% and

a mean error of 2.55mm. The closest competitor, Chen et

al. [3], reports an id. rate of 94.7% and a mean error of 2.56

mm. We reduce the id. error rate significantly from 5.3%

to 2.6%, by absolute 2.7% (or relative 50.9%). When eval-

uated on three spine regions separately, the id. rates of our

method are still better than all comparison methods, except

for the lumbar region when compared to Chen et al. [3]. On

cervical and thoracic spines, our method achieves the high-

est id. rates of 96.8% and 97.8%, respectively.

We note that Chen et al. [3] significantly outperforms the

other baseline methods in the id. rate. The advantage can

be attributed mainly to the adoption of the hard physical

constraint imposed by the Markov modeling, which ensures

the output to be anatomically plausible. Despite the perfor-

mance gain, it has a noticeable tendency to achieve higher

id. rate on lumbar spine (i.e. ranked 1st out of 10) but lower

id. rate on cervical spine (i.e. ranked 7th out of 10). This is

because their method employs Markov model to trace ver-

tebrae from one end of the spine (i.e. lumbar) to the other

end (i.e. cervical). The Markov model successfully regulate

the consecutive vertebra indices, which leads to significant

performance gain compared to previous methods without

such regulation. However, the error can accumulate along

with the number of Markov steps as the process goes toward

the cervical end. In contrast, our method globally searches

and identifies the vertebrae with the constraint of consecu-

tive vertebra indices, which eliminates the directional bias

caused by Markov model [3] and results in consistent per-

formance in all spine regions.

4.4. Ablation Study

4.4.1 Effects of the Proposed Components

The spine rectification and anatomically constrained opti-

mization are at the core of our method. In this section, we

analyze their effects and behavior via an ablation study of

the following alternative methods. The most naive alter-

native to the iterative optimization is to take the maximum

location of individual 3-D activation map Gv as the center

of the v-th vertebrae, denoted as base model. A slightly

more sophisticated approach is to take the maximum loca-

tion of individual 1-D activation signal Qv as the center of

the v-th vertebrae. Since this approach employs the spine

rectification, it is denoted as base+rectify. In the above

two approaches, since there is no constraint applied, phys-

ically implausible vertebra orders that violate the anatomy

can be produced. A more advanced variation is to take the

locations of local maximums of Q̂ as candidates of con-

secutive vertebrae and determine vl following Equation 6.

This approach ensures the consecutive order of the pre-

dicted vertebrae on top of spine rectification, thus referred

to as base+rectify+order. Note that this approach is equiv-

alent to our method that stops after the offset operation in

the first optimization iteration. Since our method employs

both spine rectification and anatomically constrained opti-
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Figure 3. Visualization of five sets of final results by five methods. Dataset (1-5): (1) CTs of cervical spine, (2-4) CTs of thoracic and

lumbar spine, (5) CTs with metal implant. Methods (a-e): (a) base, (b) base+rect+order w.o. λ, (c) base+rect+order, (d) base+rect+optim

w.o. λ, (e) base+rect+optim (ours). The ground-truth vertebra centers are marked by yellow dots and labels. The correct and incorrect

predicted vertebra centers are marked in green and red colors, respectively. A line is drawn between the ground-truth and predicted centers

of the same vertebra for better visualization of the localization error.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 All

Vertebra Index

80
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100

Id
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R

a
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base+ rect+ opt im base+ rect+ opt im  wo. λ base+ rect+ order base+ rect+ order wo. λ

Figure 4. Comparisons of base+rect+order and base+rect+optim with and without using vertebrae weights. The identification rates (%) for

each vertebra and their averages are reported.

mization, it is referred to as base+rectify+optim.

The results of the ablation study are summarized in

Table 2 and Fig. 4. Visualizations of illustrative image

example results are shown in Fig. 3. The purpose of

spine rectification is to enable applying anatomical con-

straints in the downstream processing. Therefore, employ-

ing spine rectification without imposing anatomical con-

straints does not bring any performance gain, as shown by

the comparison between base and base+rect. By impos-

ing an effective/meaningful constraint of the vertebra or-

der, base+rect+order ensures physically plausible results

and significantly improves the id. rate over base+rect from

81.4% to 91.2%. By employing the proposed anatomically

constraint optimization, base+rect+optim is able to regulate

the distance between predicted vertebrae while preserving

the physically plausible vertebra order. As a result, the id.

rate is further improved from 91.2% to 97.4%. We also ob-

serve that while the overall id. rate improves significantly,

the id. rate for the cervical region is consistently high using

the different methods. This is because the cervical verte-

brae have a more distinct appearance and can be reliably

recognized.

5286



Table 2. Results of the ablation study analyzing the effects of proposed components in our method and the use of vertebra weight λ.

Model

Cervical Thoracic Lumbar All

Mean

Error
Std

Id

Rate

Mean

Error
Std

Id

Rate

Mean

Error
Std

Id

Rate

Mean

Error
Std

Id

Rate

base 2.24 1.25 96.8 2.53 1.53 76.0 2.67 1.66 75.2 2.46 1.48 81.9

base+rect 2.46 1.64 95.8 2.32 1.63 73.8 3.14 1.70 79.3 2.54 1.68 81.4

base+rect+order 2.55 1.83 94.2 2.31 1.54 89.4 3.19 1.71 91.0 2.57 1.70 91.2

base+rect+optim 2.40 1.18 96.8 2.35 1.28 97.8 3.19 1.69 97.2 2.55 1.40 97.4

base+rect+order wo. λ 2.54 1.84 93.7 2.33 1.25 87.2 3.15 1.69 86.9 2.57 1.58 89.0

base+rect+optim wo. λ 2.40 1.18 96.3 2.38 1.28 94.1 3.15 1.68 92.4 2.55 1.39 94.4

4.4.2 Effect of the Vertebra Weights λ

The vertebra weights λ also play an important role by en-

couraging the optimization to focus more on the vertebrae

that can be reliably detected by the key point localization

model. To analyze the contribution of the vertebra weights,

we conduct an experiment to compare the performances of

base+rect+order and our method with and without using

vertebra weights. As summarized in Table 2, employing

vertebra weights leads to improved performance on both

base+rect+order and our method. In particular, the over-

all identification rate is improved from 89.0% and 94.4% to

91.2% and 97.4% on these two methods, respectively. The

mean error is not affected much by employing the vertebra

weights, which suggests that the vertebra weights have little

effect on the accuracy of correctly identified vertebrae.

4.5. Analysis and Discussion of Failure Cases

In Fig. 5, we demonstrate three failure cases of our

method. It shows that extreme pathology and/or low qual-

ity may degrade the performance of our method. In par-

ticular, the first case has severe vertebral compression frac-

tures, which significantly reduces the height of the vertebrae

as well as the space margins between them. The second

case has low imaging quality, making it difficult to differ-

entiate the boundary between vertebrae. Consequently, we

observe missed detection and false positive results in these

two cases, respectively. In the last scenario, the vertebra

centers are correctly located but labels are off by one. The

underlying cause of this failure case is the lack of distinct

vertebra that can be reliably recognized. In particular, the

more distinct L5 and sacrum vertebrae are not in the field of

view. The imaging appearance of T12 vertebrae (the lowest

vertebra with rib) is affected by the metal implant.

5. Conclusion & Discussion

In this paper, we present a highly robust and accurate

vertebra localization and identification approach. Based on

thorough evaluations on a major public benchmark dataset

(i.e., SpineWeb), we demonstrate that by rectifying the

spine (via converting and effectively simplifying 3-D detec-

tion activation maps into 1-D detection signals) and jointly

Figure 5. Examples of failure cases. The visualization scheme is

the same as in Figure 3.

localizing all vertebrae following the anatomical constraint,

our method achieves the new state-of-the-art performance

and outperforms previous methods by significantly large

quantitative margins. The effectiveness of each proposed

algorithmic component has been validated using our abla-

tion studies.

By analyzing the failure cases, we observe that se-

vere pathologies and extreme imaging conditions may still

negatively impact the model’s performance on robustness.

Therefore, future research efforts should be conducted to

further investigate feasible methodologies to improve the

robustness against these corner cases of severe vertebral

compression fractures, very low imaging contrasts, strong

imaging noises such as metal imaging artifacts, and lack of

visually distinct anchor vertebrae.
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