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Abstract

Graph Edit Distance (GED) is a popular similarity mea-

surement for pairwise graphs and it also refers to the re-

covery of the edit path from the source graph to the target

graph. Traditional A* algorithm suffers scalability issues

due to its exhaustive nature, whose search heuristics heavily

rely on human prior knowledge. This paper presents a hy-

brid approach by combing the interpretability of traditional

search-based techniques for producing the edit path, as well

as the efficiency and adaptivity of deep embedding models

to achieve a cost-effective GED solver. Inspired by dynamic

programming, node-level embedding is designated in a dy-

namic reuse fashion and suboptimal branches are encour-

aged to be pruned. To this end, our method can be read-

ily integrated into A* procedure in a dynamic fashion, as

well as significantly reduce the computational burden with

a learned heuristic. Experimental results on different graph

datasets show that our approach can remarkably ease the

search process of A* without sacrificing much accuracy. To

our best knowledge, this work is also the first deep learning-

based GED method for recovering the edit path.

1. Introduction

Graph edit distance (GED) is a popular similarity mea-

sure for graphs, which lies in the core of many vision and

pattern recognition tasks including image matching [12],

signature verification [29], scene-graph edition [11], drug

discovery [32], and case-based reasoning [47]. In gen-

eral, GED algorithms aim to find an optimal edit path from

source graph to target graph with minimum edit cost, which

is inherently an NP-complete combinatorial problem [2]:

GED(G1,G2) = min
(e1,...,el)∈γ(G1,G2)

l∑

i=1

c(ei) (1)

where γ(G1,G2) denote the set of all possible “edit paths”

transforming source graph G1 to target graph G2. c(ei) mea-
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Figure 1. Top: an edit path between two simple graphs G1,G2.

Bottom: an example of querying images via GED, where only ge-

ometric information is involved. The last image shows an “unsim-

ilar” image based on GED measurement.

sures the cost of edit operation ei.

Exact GED solvers [2, 34] guarantee to find the optimal

solution under dynamic condition, at the cost of poor scal-

ability on large graphs, and these exact solvers heavily rely

on heuristics to estimate the corresponding graph similarity

based on the current partial solution. Recent efforts in deep

graph similarity learning [3, 4, 28] adopt graph neural net-

works [24, 36] to directly regress graph similarity scores,

without explicitly incorporating the intrinsic combinatorial

nature of GED, hence fail to recover the edit path. However,

the edit path is often of the central interest in many applica-

tions [11, 12] and most GED works [2, 33, 15, 46, 34] still

are more focused on finding the edit path itself.

As the growth of graph size, it calls for more scalable

GED solvers which are meanwhile expected to recover the

exact edit path. However, these two merits cannot both hold

by existing methods. As discussed above, deep learning-

based solvers have difficulty in recovering the edit path

while the learning-free methods suffer scalability issue. In

this paper, we are aimed to design a hybrid solver by com-

bining the best of the two worlds.

Specifically, we resort to A* algorithm [34] which is a

popular solution among open source GED softwares [10,

22], and we adopt neural networks to predict similarity

scores which are used to guide A* search, in replacement

of manually designed heuristics in traditional A*. We

want to highlight our proposed Graph Edit Neural Net-

work (GENN) in two aspects regarding the dynamic pro-
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gramming concepts: Firstly, we propose to reuse the previ-

ous embedding information given a graph modification (e.g.

node deletion) where among the states of A* search tree the

graph nodes are deleted progressively1; Secondly, we pro-

pose to learn more effective heuristic to avoid unnecessary

exploration over suboptimal branches to achieve significant

speed-up. It is worth noting that our learning method is no

longer an exact GED solver compared to the original A*

algorithm, and we significantly reduces the running time of

A* while preserving most of the accuracy, as shown in ex-

periments. The contributions made in this paper are:

1) We propose the first (to our best knowledge) deep net-

work solver for GED, where a search tree state selection

heuristic is learned by dynamic graph embedding. It out-

performs traditional heuristics in efficacy.

2) Specifically, we devise a specific graph embedding

method in the spirit of dynamic programming to reuse the

previous computation to the utmost extent. In this sense, our

method can be naturally integrated with the A* procedure

where a dynamical graph similarity prediction is involved

after each graph modification, achieving much lower com-

plexity compared to vanilla graph embeddings.

3) Experiments on real-world graphs show that our

learning-based approach is more accurate than manually de-

signed inexact solvers [15, 33]. It also runs much faster than

A* exact GED solvers [6, 34] that ensures global optimum

by exhaustive search, with comparable accuracy.

2. Related Work

2.1. Traditional GED Solvers

Exact GED solvers. For small-scale problems, an exhaus-

tive search can be used to find the global optimum. Exact

methods are mostly based on tree-search algorithms such

as A* algorithm [34], whereby a priority queue is main-

tained for all pending states to search, and the visiting order

is controlled by the cost of the current partial edit path and

a heuristic prediction on the edit distance between the re-

maining subgraphs [33, 46]. Other combinatorial optimiza-

tion techniques, e.g. depth-first branch-and-bound [2] and

linear programming lower bound [27] can also be adopted

to prune unnecessary branches in the searching tree. How-

ever, exact GED methods are too time-consuming and they

suffer from poor scalability on large graphs [1].

Inexact GED solvers aim to mitigate the scalability issue

by predicting sub-optimal solutions in (usually) polynomial

time. Bipartite matching based methods [15, 33, 46] so far

show competitive time accuracy trade-off [7], where edge

edition costs are encoded into node costs and the resulting

bipartite matching problem can be solved by either Hungar-

ian [25, 33] or Volgenant-Jonker [15, 21] algorithm. Beam

1To distinguish the “nodes” in graphs and the “nodes” in the search

tree, we name “state” for the ones in the search tree.

search [22] is the greedy version of the exact A* algorithm.

Another line of works namely approximate graph match-

ing [13, 20, 42, 44, 49] are closely related to inexact GED,

and there are efforts adopting graph matching methods e.g.

IPFP [26] to solve GED problems [8]. Two drawbacks in

inexact solvers are that they rely heavily on human knowl-

edge and their solution qualities are relatively poor.

2.2. Deep Graph Similarity Learning

Regression-based Similarity Learning. The recent suc-

cess in machine learning on non-euclidean data (i.e. graphs)

via GNNs [16, 24, 36, 50] has encouraged researchers to

design approximators for graph similarity measurements

such as GED. SimGNN [3] first formulates graph similar-

ity learning as a regression task, where its GCN [24] and

attention [38] layers are supervised by GED scores solved

by A* [22]. Bai et al. [4] extends their previous work by

processing a multi-scale node-wise similarity map using

CNNs. Li et al. [28] propose a cross-graph module in feed-

forward GNNs which elaborates similarity learning. Such a

scheme is also adopted in information retrieval, where [14]

adopts a convolutional net to predict the edit cost between

texts. However, all these regression models can not predict

an edit path, which is mandatory in the GED problem.

Deep Graph Matching. As another combinatorial prob-

lem closely related to GED, there is increasing attention in

developing deep learning graph matching approaches [18,

19, 39] since the seminal work [45], and many researchers

[35, 39, 40, 43] start to take a combinatorial view of graph

matching learning rather than a regression task. Compared

to graph similarity learning methods, deep graph matching

can predict the edit path, but they are designated to match

similarly structured graphs and lack particular mechanisms

to handle node/edge insertion/deletions. Therefore, modi-

fication is needed to fit deep graph matching methods into

GED, which is beyond the scope of this paper.

2.3. Dynamic Graph Embedding

The major line of graph embedding methods [16, 24, 36,

50] assumes that graphs are static which limit their appli-

cation on real-world graphs that evolve over time. A line

of works namely dynamic graph embedding [31, 30, 48]

aims to solve such issue, whereby recurrent neural net-

works (RNNs) are typically combined with GNNs to cap-

ture the temporal information in graph evolution. The appli-

cations include graph sequence classification [30], dynamic

link prediction [31], and anomaly detection [48]. Dynamic

graph embedding is also encountered in our GED learning

task, however, all these aforementioned works cannot be ap-

plied to our setting where the graph structure evolves at dif-

ferent states of the search tree, instead of time steps.
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Figure 2. A partial edit path as one state of A* search tree. Given

the partial solution p = (u� → v�, uN → vN), the edge edition

(u�uN → v�vN) can be induced from node editions.

3. Our Approach

3.1. Preliminaries on A* Algorithm for GED

To exactly solve the GED problem, researchers usually

adopt tree-search based algorithms which traverse all pos-

sible combinations of edit operations. Among them, A* al-

gorithm is rather popular [33, 22, 34, 10] and we base our

learning method on it. In this section, we introduce nota-

tions for GED and discuss the key components in A*.

GED aims to find the optimal edit path with minimum

edit cost, to transform the source graph G1 = (V1, E1) to the

target graph G2 = (V2, E2), where |V1| = n1, |V2| = n2.

We denote V1 = {u1, ..., un1
}, V2 = {v1, ..., vn2

} as the

nodes in the source graph and the target graph, respectively,

and ǫ as the “void node”. Possible node edit operations in-

clude node substitution ui → vj , node insertion ǫ → vj
and node deletion ui → ǫ, and the cost of each operation

is defined by the problem. As shown in Fig. 2, the edge

editions can be induced given node editions, therefore only

node editions are explicitly considered in A* algorithm.2

Alg. 1 illustrates a standard A* algorithm in line with

[33, 34]. A priority queue is maintained where each state of

the search tree contains a partial solution to the GED prob-

lem. As shown in Fig. 2, the priority of each state is defined

as the summation of two metrics: g(p) representing the cost

of the current partial solution which can be computed ex-

actly, and h(p) means the heuristic prediction of GED be-

tween the unmatched subgraphs. A* always explores the

state with minimum g(p) + h(p) at each iteration and the

optimality is guaranteed if h(p) ≤ hopt(p) holds for all par-

tial solutions [33], where hopt(p) means the optimal edit

cost between the unmatched subgraphs.

A proper h(p) is rather important to speed up the al-

gorithm, and we discuss three variants accordingly: 1) If

h(p) = hopt(p), the optimal path can be found greedily.

2Node substitution can be viewed as node-to-node matching between

two graphs, and node insertion/deletion can be viewed as matching nodes

in source/target graph to the void node, respectively. The concepts “match-

ing” and “edition” may interchange with each other through this paper.

Algorithm 1: A* Algorithm for Exact GED

Input: Graphs G1 = (V1, E1), G2 = (V2, E2), where

V1 = {u1, ..., un1
}, V2 = {v1, ..., vn2

}
1 Initialize OPEN as an empty priority queue;

2 Insert (u1 → w) to OPEN for all w ∈ V2;

3 Insert (u1 → ǫ) to OPEN;

4 while no solution is found do

5 Select p with minimum (g(p) + h(p)) in OPEN;

6 if p is a valid edit path then

7 return p as the solution;

8 else

9 Let p contains {u1, ..., uk} ⊆ V1 and W ⊆ V2;

10 if k ≤ n1 then

11 Insert p ∪ (uk+1 → vi) to OPEN for all

vi ∈ V2\W ;

12 Insert p ∪ (uk+1 → ǫ) to OPEN;

13 else

14 Insert p ∪
⋃

vi∈V2\W
(ǫ → vi) to OPEN;

Output: An optimal edit path from G1 to G2.

However, computing hopt(p) requires another exponential-

time solver which is intractable. 2) Heuristics can be uti-

lized to predict h(p) where 0 ≤ h(p) ≤ hopt(p). Hungar-

ian bipartite heuristic is among the best-performing heuris-

tic whose time complexity is O((n1 + n2)
3). In our ex-

periments, Hungarian-A* [34] is adopted as the traditional

solver baseline. 3) Plain-A* is the simplest, where it always

holds h(p) = 0 and such strategy introduces no overhead

when computing h(p). However, the search tree may be-

come too large without any “look ahead” on the future cost.

The recent success of graph similarity learning [3, 4, 28]

inspires us to predict high-quality h(p) which is close to

hopt(p) in a cost-efficient manner via learning. In this pa-

per, we propose to mitigate the scalability issue of A* by

predicting h(p) via dynamic graph embedding networks,

where h(p) is efficiently learned and predicted and the sub-

optimal branches in A* are pruned. It is worth noting that

we break the optimality condition h(p) ≤ hopt(p), but the

loss of accuracy is acceptable, as shown in experiments.

3.2. Graph Edit Neural Network

3.2.1 Node Embedding Module

The overall pipeline of our GENN is built in line with

SimGNN [3], and we remove the redundant histogram mod-

ule in SimGNN in consideration of efficiency. Given input

graphs, node embeddings are computed via GNNs.

Initialization. Firstly, the node embeddings are initial-

ized as the one-hot encoding of the node degree. For graphs

with node labels (e.g. molecule graphs), we encode the node

labels by one-hot vector and concatenate it to the degree

embedding. The edges can be initialized as weighted or un-
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node with cached embedding

Figure 3. Our proposed GENN-A*. Left: Node embedding. Input graphs are fed into GNN to extract node-level embeddings. These

embeddings are cached to be reused in the following computation. Middle: A* search tree. The state in the search tree is a matching of

nodes between graphs. All matched nodes are masked (light color) and the unmatched subgraphs (dark color) will be involved to predict

h(p). Right: Dynamic graph similarity prediction. Cached embeddings are loaded for nodes in the unmatched subgraphs, and a graph-

level embedding is obtained via attention. Finally the predicted graph similarity s(p) ∈ (0, 1) is obtained from graph-level embeddings by

neural tensor network and transformed to the heuristic score h(p).

weighted according to different definitions of graphs.

GNN backbone. Based on different types of graph

data, Graph Convolutional Network (GCN) [24] is utilized

for ordinary graph data (e.g. molecule graphs and program

graphs) and SplineCNN [16] is adopted for graphs built

from 2D images, considering the recent success of adopting

spline kernels to learn geometric features [18, 35]. The node

embeddings obtained by the GNN backbone are cached for

further efficient dynamic graph embedding. We build three

GNN layers for our GENN in line with [3].

A* is inherently a dynamic programming (DP) algorithm

where matched nodes in partial solutions are progressively

masked. When solving GED, each state of A* contains a

partial solution and in our method embedding networks are

adopted to predict the edit distance between two unmatched

subgraphs. At each state, one more node is masked out in

the unmatched subgraph compared to its parent state. Such

a DP setting differs from existing so-called dynamic graph

embedding problems [31, 30, 48] and calls for efficient cues

since the prediction of h(p) is encountered at every state

of the search tree. In this section, we discuss and com-

pare three possible dynamic embedding approaches, among

which our proposed GENN is motivated by DP concepts.

3.2.2 Dynamic Embedding with A* Search Tree

Vanilla GNN. The trivial way of handling the dynamic con-

dition is that when the graph is modified, a complete feed-

forward pass is called for all nodes in the new graph. How-

ever, such practice introduces redundancy. We denote n as

the number of nodes, F as embedding dimensions, and K
as the number of GNN layers. Assuming fully-connected

graph as the worst case, the time complexity of vanilla GNN

is O(n2FK + nF 2K) and no caching is needed.

Exact Dynamic GNN. As shown in the second row of

Fig. 4, when a node is masked, only its neighboring nodes

are affected. If we cache all intermediate embeddings of the

Vanilla 
GNN

Exact 
Dynamic 

GNN

Our 
GENN

masked node updated embedding

Conv1 Conv2 Conv3

Conv1 Conv2 Conv3

Query Mask node

masked edge cached embedding

cached graph
embedding

Figure 4. Comparison of three graph neural network variants for

dynamic graph embedding in A* algorithm. We assume three

graph convolution layers in line with our implementation. In

vanilla GNN, a complete forward pass is required for all nodes

which contains redundant operations. The exact dynamic GNN

caches all intermediate embeddings and only the 3-hop neighbors

of the masked node are updated. Finally, our proposed GENN re-

quires no convolution operation and is the most efficient.

forward pass, one can compute the exact embedding more

efficiently. Based on the message-passing nature of GNNs,

at the k-th convolution layer, only the k-hop neighbors of

the masked node are updated. However, the worst-case time

complexity is still O(n2FK+nF 2K) (for fully-connected

graphs), and it requires O(nFK) memory cache for all con-

volution layers. If all possible subgraphs are cached for

best time efficiency, the memory cost grows to O(n2nFK)
which is unacceptable. Experiment result shows that the

speed-up of this strategy is negligible with our testbed.

Our GENN. As shown in the last row of Fig. 4, we firstly

perform a forward convolution and cache the embeddings

of the last layer. During A* algorithm, if some nodes are

masked out, we simply delete them from the last convolu-

tion layer and feed the remaining nodes into the similar-

ity prediction module. Our GENN involves single forward

pass which is negligible, and the time complexity of loading

caches is simply O(1) and the memory cost is O(nF ).

5244



Our design of GENN is mainly inspired by DP: given

modification on the input graph (node deletion in our A*

search case), the DP algorithm reuses the previous results

for further computations for best efficiency. In our GENN,

the node embeddings are cached for similarity computa-

tion on its subgraphs. In addition, DP algorithms tend

to minimize the exploration space, and our learned h(p)
prunes sub-optimal branches more aggressively than tradi-

tional heuristics which speeds up the A* search.

3.2.3 Graph Similarity Prediction

After obtaining the embedding vectors from cache, the at-

tention module and neural tensor network are called to pre-

dict the similarity score. For notation simplicity, our discus-

sions here are based on full-sized, original input graphs.

Attention module for graph-level embedding. Given

node-level embeddings, the graph-level embedding is ob-

tained through attention mechanism [38]. We denote X1 ∈
R

n1×F ,X2 ∈ R
n2×F as the node embeddings from GNN

backbone. The global keys are obtained by mean aggrega-

tion followed with nonlinear transform:

X̄1 = mean(X1), X̄2 = mean(X2) (2)

k1 = tanh(X̄1W1),k2 = tanh(X̄2W1) (3)

where mean(·) is performed on the first dimension (node

dimension) and W1 ∈ R
F×F is learnable attention

weights. Aggregation coefficients are computed from

k1,k2 ∈ R
1×F and X1,X2:

c1 = δ(X1k
⊤
1 · α), c2 = δ(X2k

⊤
2 · α) (4)

where α = 10 is the scaling factor and δ(·) means sigmoid.

The graph-level embedding is obtained by weighted sum-

mation of node embeddings based on aggregation coeffi-

cients c1 ∈ R
n1×1, c2 ∈ R

n2×1:

g1 = c⊤1 X1,g2 = c⊤2 X2 (5)

Neural Tensor Network for similarity prediction.

Neural Tensor Network (NTN) [37] is adopted to measure

the similarity between g1,g2 ∈ R
1×F :

s(G1,G2) = f(g1W
[1:t]
2 g⊤

2 +W3cat(g1,g2) + b) (6)

where W2 ∈ R
F×F×t,W3 ∈ R

t×2F ,b ∈ R
t are learn-

able, the first term means computing g1W2[:, :, i]g
⊤
2 for all

i ∈ [1...t] and then stacking them, f : Rt → (0, 1) denotes

a fully-connected layer with sigmoid activation, and cat(·)
means to concat along the last dimension. t controls the

number of channels in NTN and we empirically set t = 16.

In line with [3], the model prediction lies within (0, 1)
which represents a normalized graph similarity score with

the following connection to GED:

s(G1,G2) = exp (−GED(G1,G2)× 2/(n1 + n2)) (7)

Algorithm 2: The Training Procedure of GENN-A*

Input: Training set of graphs pairs {(Gi,Gj)} with

similarity score labels {sgt(Gi,Gj)}.

1 while not converged do # training with GT labels

2 Randomly sample (Gi,Gj) from training set;

3 Compute s(Gi,Gj) by vanilla GENN;

4 Update parameters by MSE(s(Gi,Gj), s
gt(Gi,Gj));

5 while not converged do # finetune with optimal path

6 Randomly sample (Gi,Gj) from training set;

7 Solve the optimal edit path p∗ and GED(p∗) by A*;

8 Call GENN on (Gi,Gj) and cache the embeddings;

9 for partial edit path p ⊆ p∗ do

10 compute g(p) and hopt(p) = GED(p∗)− g(p);
11 sopt(p) = exp(−2hopt(p)/(n′

1 + n′
2));

12 compute s(p) from cached GENN embeddings;

13 Update parameters by MSE(s(p), sopt(p));

Output: GENN with learned parameters.

For partial edit path encountered in A* algorithm, the pre-

dicted similarity score s(p) can be transformed to h(p) fol-

lowing Eq. 7:

h(p) = −0.5(n′
1 + n′

2) log s(p) (8)

where n′
1, n

′
2 means the number of nodes in the unmatched

subgraph. The time complexities of attention and NTN are

O((n′
1 + n′

2)F
2) and O(n′

1n
′
2Ft), respectively. Since the

convolution layers are called only once which is negligible,

and the time complexity of loading cached GENN embed-

ding is O(1), the overall time complexity of each predic-

tion is O((n′
1 + n′

2)F
2 + n′

1n
′
2Ft). Our time complexity

is comparable to the learning-free heuristic [34, 9] which is

O(min(n′
1, n

′
2)

2 max(n′
1, n

′
2)).

3.2.4 Supervised Dynamic Graph Learning

The training of our GENN consists of two steps: Firstly,

GENN weights are initialized with graph similarity score

labels from the training dataset. Secondly, the model is fine-

tuned with the optimal edit path solved by A* algorithm.

The detailed training procedure is listed in Alg. 2.

Following deep graph similarity learning peer meth-

ods [3, 4], our GENN weights are supervised by ground

truth labels provided by the dataset. For datasets with rel-

atively small graphs, optimal GED scores can be solved as

ground truth labels. In cases where optimal GEDs are not

available, we can build the training set based on other mean-

ingful measurements, e.g. adopting semantic node match-

ing ground truth to compute GED labels.

We further propose a finetuning scheme of GENN to bet-

ter suit the A* setting. However, tuning GENN with the

states of the search tree means we require labels of hopt(p),
while solving the hopt(p) for an arbitrary partial edit path
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Method
Edit AIDS LINUX Willow-Cars

Path mse (×10−3) ↓ ρ ↑ p@10 ↑ mse (×10−3) ↓ ρ ↑ p@10 ↑ mse (×10−3) ↓ ρ ↑ p@10 ↑

SimGNN [3] × 1.189 0.843 0.421 1.509 0.939 0.942 - - -

GMN [28] × 1.886 0.751 0.401 1.027 0.933 0.833 - - -

GraphSim [4] × 0.787 0.874 0.534 0.058 0.981 0.992 - - -

GENN (ours) × 1.618 0.901 0.880 0.438 0.955 0.527 - - -

Beam Search [22] X 12.090 0.609 0.481 9.268 0.827 0.973 1.820 0.815 0.725

Hungarian [33] X 25.296 0.510 0.360 29.805 0.638 0.913 29.936 0.553 0.650

VJ [15] X 29.157 0.517 0.310 63.863 0.581 0.287 45.781 0.438 0.512

GENN-A* (ours) X 0.839 0.953 0.866 0.324 0.991 0.962 0.599 0.928 0.938

Table 1. Evaluation on benchmarks AIDS, LINUX and Willow-Cars. Our method can work either in a way involving explicit edit path

generation as traditional GED solvers [33, 15, 34], or based on direct similarity computing without deriving the edit distance [3, 28, 4].

The evaluation metrics are defined and used by [3, 4]: mse stands for mean square error between predicted similarity score and ground

truth similarity score. ρ means the Spearman’s correlation between prediction and ground truth. p@10 means the precision of finding the

closest graph among the predicted top 10 most similar ones. Willow-Cars is not compared with deep learning methods because optimal

GED labels are not available for the training set. The AIDS and LINUX peer method results are quoted from [4].

is again NP-complete. Instead of solving as many hopt(p)
as needed, here we propose an efficient way of obtaining

multiple hopt(p) labels by solving the GED only once.

Theorem 1. (Optimal Partial Cost) Given an optimal edit

path p∗ and the corresponding GED(p∗), for any partial

edit path p ⊆ p∗, there holds g(p) + hopt(p) = GED(p∗).

Proof. If g(p) + hopt(p) > GED(p∗), then the minimum

edit cost following p is larger than GED(p∗), therefore p
is not a partial optimal edit path, which violates p ⊆ p∗.

If g(p) + hopt(p) < GED(p∗), it means that there exists a

better edit path whose cost is smaller than GED(p∗), which

violates the condition that p∗ is the optimal edit path. Thus,

g(p) + hopt(p) = GED(p∗).

Based on Theorem 1, there holds hopt(p) = GED(p∗)−
g(p) for any partial optimal edit path. Therefore, if we solve

an optimal p∗ with m node editions, (2m−1) optimal partial

edit paths can be used for finetuning. In experiments, we

randomly select 200 graph pairs for finetuning since we find

it adequate for convergence.

4. Experiment

4.1. Settings and Datasets

AIDS dataset contains chemical compounds evaluated

for the evidence of anti-HIV activity3. AIDS dataset is pre-

processed by [3] who remove graphs more than 10 nodes

and the optimal GED between any two graphs is provided.

Following [3], we define the node edition cost c(ui →
vj) = 1 if ui, vj are different atoms, else c(ui → vj) = 0.

The node insertion and deletion costs are both defined as

1. The edges are regraded as non-attributed, therefore edge

substitution cost = 0 and edge insertion/deletion cost = 1.

LINUX dataset is proposed by [41] which contains Pro-

gram Dependency Graphs (PDG) from the LINUX kernel,

3https://wiki.nci.nih.gov/display/NCIDTPdata/

AIDS+Antiviral+Screen+Data

and the authors of [3] also provides a pre-processed ver-

sion where graphs are with maximum 10 nodes and optimal

GED values are provided as ground truth. All nodes and

edges are unattributed therefore the substitution cost is 0,

and the insertion/deletion cost is 1.

Willow dataset is originally proposed by [12] for se-

mantic image keypoint matching problem, and we validate

the performance of our GENN-A* on computer vision prob-

lems with the Willow dataset. All images from the same

category share 10 common semantic keypoints. “Cars”

dataset is selected in our experiment. With Willow-Cars

dataset, graphs are built with 2D keypoint positions by De-

launay triangulation, and the edge edition cost is defined

as c(Ei → Ej) = |Ei − Ej | where Ei, Ej are the length

of two edges. Edge insertion/deletion costs of Ei are de-

fined as |Ei|. All edge lengths are normalized by 300 for

numerical concerns. The node substitution has 0 cost, and

c(ui → ǫ) = c(ǫ → vj) = ∞ therefore node inser-

tion/deletion are prohibited. We build the training set la-

bels by computing the edit cost based on semantic keypoint

matching relationship, and it is worth noting such edit costs

are different from the optimal GEDs. However, experiment

results show that such supervision is adequate to initialize

the model weights of GENN.

Among all three datasets, LINUX has the simplest def-

inition of edit costs. In comparison, AIDS has attributed

nodes and Willow dataset has attributed edges, making

these two datasets more challenging than LINUX dataset.

In line with [3], we split all datasets by 60% for training,

20% for validation, and 20% for testing.

Our GENN-A* is implemented with Pytorch-

Geometric [17] and the A* algorithm is implemented

with Cython [5] in consideration of performance. We

adopt GCN [24] for AIDS and LINUX datasets and

SplineCNN [16] for 2D Euclidean data from Willow-Cars

(#kernels=16). The number of feature channels are defined

as 64, 32, 16 for three GNN layers. Adam optimizer [23] is

used with 0.001 learning rate and 5 × 10−5 weight decay.
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Figure 5. Average search tree size w.r.t. problem size (n1 + n2). The search tree reduces significantly when the problem size grows,

especially on more challenging AIDS and Willow-Cars where about ×4 state number reductions are achieved via GENN.

Source Graph

GENN-A*=1.68
Optimal=1.40

GENN-A*=1.79
Optimal=1.26

GENN-A*=1.91
Optimal=1.91

GENN-A*=2.18
Optimal=2.18

GENN-A*=2.83
Optimal=2.83 GENN-A*=2.90

Optimal=2.90 GENN-A*=3.10
Optimal=3.01

GENN-A*=3.11
Optimal=3.11

Most Similar Graphs:

Least Similar Graphs:

Figure 6. The visualization of a query on Willow-Cars dataset by

GENN-A*. All of the 4 most similar graphs are close to the source

graph in terms of poses and graph structures, yet the 4 least similar

ones vary greatly in their poses and appearances. Green letters

mean our GENN-A* solves the optimal GED.

We set batch size=128 for LINUX and AIDS, and 16 for

Willow. All experiments are run on our workstation with

Intel i7-7820X@3.60GHz and 64GB memory. Paralleliza-

tion techniques e.g. multi-threading and GPU parallelism

are not considered in our experiment.

4.2. Peer Methods

Hungarian-A* [34] is selected as the exact solver base-

line, where Hungarian bipartite matching is used to predict

h(p). We reimplement Hungarian-A* based on our Cython

implementation for fair comparison. We also select Hun-

garian solver [33] as the traditional inexact solver baseline

in our experiments. It is worth noting that Hungarian bipar-

tite matching can be either adopted as heuristic in A* algo-

rithm (Hungarian heuristic for A*), or to provide a fast sub-

optimal solution to GED (Hungarian solver), and readers

should distinguish between these two methods. Other inex-

act solvers are also considered including Beam search [22]

which is the greedy version of A* and VJ [15] which is an

variant from Hungarian solver.

For regression-based deep graph similarity learning

methods, SimGNN [3], GMN [28] and GraphSim [4] are

compared. Our GENN backbone is simplified from these

models, because time efficiency is our main concern.

Method AIDS LINUX Willow-Cars

Hungarian-A* [34] 30.542 2.332 188.234

GENN-A* (ours) 16.235 2.177 78.481

Table 2. Averaged time (sec) for solving GED problems.

Vanilla GNN Exact Dynamic GNN GENN (ours) Hungarian [34]

time 2.329 3.145 0.417 0.358

Table 3. Averaged time (msec) of different methods to predict

h(p). Statistics are collected on LINUX dataset.

4.3. Results and Discussions

The evaluation in line with [4] is presented in Tab. 1,

where the problem is defined as querying a graph in the

testing set from all graphs in the training set. The sim-

ilarity score is defined as Eq. 7. Our regression model

GENN has comparable performance against state-of-the-art

with a simplified pipeline, and our GENN-A* best performs

among all inexact GED solvers. We would like to point out

that mse may not be a fair measurement when comparing

GED solvers with regression-based models: Firstly, GED

solvers can predict edit paths while such a feature is not sup-

ported by regression-based models. Secondly, the solutions

of GED solvers are upper bounds of the optimal values, but

regression-based graph similarity models [3, 4, 28] predicts

GED values on both sides of the optimums. Actually, one

can reduce the mse of GED solvers by adding a bias to the

predicted GED values, which is exactly what the regression

models are doing.

The number of states which have been added to OPEN

in Alg. 1 is plotted in Fig. 5, where our GENN-A* signifi-

cantly reduces the search tree size compared to Hungarian-

A*. Such search-tree reduction results in the speed-up of

A* algorithm, as shown in Tab. 2. Both evidences show

that our GENN learns stronger h(p) than Hungarian heuris-

tic [34] whereby redundant explorations on suboptimal so-

lutions are pruned. We further compare the inference time

of three discussed dynamic graph embedding method in

Tab. 3, where our GENN runs comparatively fast against

Hungarian heuristic, despite the overhead of calling Py-

Torch functions from Cython. Exact Dynamic GNN is even
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Figure 7. The scatter plots of our proposed GENN-A* (red), inexact Hungarian solver [33] (blue, upper bound), our GENN network (cyan)

and Hungarian heuristic for A* [34] (yellow, lower bound) on AIDS, LINUX and Willow-Cars datasets. The left two columns are GED

solvers and the right two columns are methods used to predict h(p) in A* algorithm. Every dot is plotted with optimal GED value on x-axis

and the solved (or predicted) GED value on y-axis. Optimal black dots are plotted as references. Our GENN-A* (red) achieves tighter

upper bounds than inexact Hungarian solver [33] (blue), where a significant amount of problems are solved to optimal. Our regression

model GENN (cyan) also predicts more accurate h(p) than Hungarian heuristic [34] (yellow), resulting in reduced search tree size of

GENN-A* compared to Hungarian-A*.

slower than the vanilla version, since its frequent caching

and loading operations may consume additional time. It is

worth noting that further speedup can be achieved by im-

plementing all algorithms in C++ and adopting parallelism

techniques, but these may be beyond the scope of this paper.

In Fig. 7 we show the scatter plot of GENN-A* and

inexact Hungarian solver [33] as GED solvers, as well as

GENN and Hungarian heuristic as the prediction methods

on h(p). Our GENN-A* benefits from the more accurate

prediction of h(p) by GENN, solving the majority of prob-

lem instances to optimal. We also visualize a query example

on Willow-Car images in Fig. 6 done by our GENN-A*.

5. Conclusion

This paper has presented a hybrid approach for solv-

ing the classic graph edit distance (GED) problem by inte-

grating a dynamic graph embedding network for similarity

score prediction into the edit path search procedure. Our

approach inherits the good interpretability of classic GED

solvers as it can recover the explicit edit path between two

graphs while it achieves better cost-efficiency by replacing

the manual heuristics with the fast embedding module. Our

learning-based A* algorithm can reduce the search tree size

and save running time, at the cost of little accuracy lost.
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