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Abstract

Learning discriminative image representations plays a

vital role in long-tailed image classification because it can

ease the classifier learning in imbalanced cases. Given the

promising performance contrastive learning has shown re-

cently in representation learning, in this work, we explore

effective supervised contrastive learning strategies and tailor

them to learn better image representations from imbalanced

data in order to boost the classification accuracy thereon.

Specifically, we propose a novel hybrid network structure be-

ing composed of a supervised contrastive loss to learn image

representations and a cross-entropy loss to learn classifiers,

where the learning is progressively transited from feature

learning to the classifier learning to embody the idea that bet-

ter features make better classifiers. We explore two variants

of contrastive loss for feature learning, which vary in the

forms but share a common idea of pulling the samples from

the same class together in the normalized embedding space

and pushing the samples from different classes apart. One

of them is the recently proposed supervised contrastive (SC)

loss, which is designed on top of the state-of-the-art unsu-

pervised contrastive loss by incorporating positive samples

from the same class. The other is a prototypical supervised

contrastive (PSC) learning strategy which addresses the in-

tensive memory consumption in standard SC loss and thus

shows more promise under limited memory budget. Exten-

sive experiments on three long-tailed classification datasets

demonstrate the advantage of the proposed contrastive learn-

ing based hybrid networks in long-tailed classification.

1. Introduction

In the real world, the image classes are normally pre-

sented in a long-tailed distribution [25]. While some com-

mon classes (head classes) can have sufficient image sam-

ples, some uncommon or rare categories (tail classes) can be

underrepresented by limited samples. The data imbalance

poses great challenge to learning unbiased classifiers.

Most existing work addresses the data imbalance issue by

Figure 1. Illustration of cross-entropy (upper), standard supervised

contrastive (SC) (bottom left), and prototypical supervised con-

trastive (PSC) (bottom right) loss based feature learning for long-

tailed image classification. Cross-entropy loss learns skewed fea-

tures, which can result in biased classifiers. Supervised contrastive

learning (bottom two) learns more intra-class compact and inter-

class separable features, which ease classifier learning. In standard

SC learning, an anchor sample together with positive samples from

the same class are pulled together and the anchor is pushed away

from negatives from other classes. In PSC learning, each sample

is pulled towards the prototype (marked by star) of its class and

pushed away from prototypes of other classes.

mitigating the data shortage in tail classes in order to prevent

the model from being dominated by the head classes. Typi-

cal methods include data re-sampling [1, 8, 35, 4, 28], loss

re-weighting [26, 7, 30, 33], margin modification [3], and

data augmentation [19, 6, 29]. Recently a new line of work

is proposed which approaches long-tailed image classifica-

tion by decoupling the representation learning and classifier

learning into two stages [15, 37, 36]. The shared motiva-

tion of such work [15, 37, 36] is that image feature learning

and classifier learning may favor different data sampling

strategies and thus the focus thereon is to identify suitable

sampling strategies for these two tasks. Specifically, they

find under cross-entropy loss, random data sampling can

benefit feature learning more while class-balanced sampling
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is a better option for classifier learning. Despite promis-

ing accuracy achieved, these methods leave the question of

whether typical cross-entropy is an ideal loss for learning

features from imbalanced data untouched. Intuitively, as

shown in Fig. 1, the feature distribution learned from typical

cross-entropy can be highly skewed, which can lead to biased

classifiers [24, 12] that harm long-tailed classification.

In this work, we explore effective contrastive learning

strategies and tailor them to learn better image represen-

tations from imbalanced data in order to boost long-tailed

image classification. Specifically, we propose a novel hybrid

network structure composed of a contrastive loss for learning

image representations and a cross-entropy loss to learn clas-

sifiers. To embody the idea that better features make better

classifiers, we follow a curriculum to progressively transit

the learning from feature learning to classifier learning. We

realize two variants of supervised contrastive learning strate-

gies, as shown in Fig. 1, which vary in the forms but share

a common idea of pulling the samples from the same class

together in the normalized embedding space and pushing

the samples from different classes apart. By doing this, less

skewed features and consequently less biased classifiers are

expected to be obtained.

The first contrastive learning we explore to learn fea-

tures in imbalanced scenario is the recently proposed super-

vised contrastive (SC) learning [18], which is extended from

the state-of-the-art unsupervised contrastive learning [5]

by incorporating different within-class samples as positives

for each anchor. Following unsupervised contrastive learn-

ing [5, 9] that have two independent stages for feature learn-

ing and classifier learning, the original SC learning [18]

learns features using SC loss first and then freezes the fea-

tures to learn classifiers. We argue in this paper such two-

stage learning may not be an optimal choice in fully su-

pervised scenario, which can harm the compatibility of the

features and classifiers. We propose a hybrid framework to

jointly learn features and classifiers, and empirically demon-

strate the advantage of our joint learning mode.

One issue of incorporating within-class positive samples

in SC learning is that it leads to extra memory consumption.

In SC learning [18], the distances to positives from the same

class are contrasted with the distances to negatives from

other classes, which results in memory consumption linear

to the product of the positive size and negative size. Due to

this, when under limited memory budget, the negative size

needs to be shrunk. This can compromise the quality of the

features learned from contrastive loss [5], especially when

dealing with dataset that has a large number of classes, e.g.,

iNaturalist [11].

To address the aforementioned memory bottleneck from

SC loss, we further propose a prototypical supervised con-

trastive (PSC) learning strategy, which shares the similar

goal with standard SC learning but avoids explicitly sam-

pling positives and negatives. In PSC learning, we learn a

prototype for each class and force each sample to be pulled

towards the prototype of its class and pushed away from

prototypes of all the other classes. In this sense, the PSC

strategy enables more flexible and efficient data sampling

akin to softmax-based cross-entropy. It observes advantages

when dealing with large-scale dataset under limited memory

budget. In addition, the PSC loss has some other appealing

properties that can benefit imbalanced classification, such

as less sensitive to data sampling and the potential to cap-

ture finer within-class data distribution by using multiple

prototypes per class.

Experiments on three long-tailed image classification

datasets demonstrate the proposed contrastive learning based

hybrid networks can obviously outperform the cross-entropy

based counterparts and establish new state-of-the-art long-

tailed image classification performance. The contributions

of this work can be summarized as follows:

• We propose a novel hybrid network structure for long-

tailed image classification. The network is designed to

be composed of a contrastive loss for feature learning

and a cross-entropy loss for classifier learning. These

two learning tasks are performed following a curricu-

lum to embody the idea that better features can ease

classifier learning.

• We explore effective supervised contrastive learning

strategies to learn better features to boost long-tailed

classification performance. A prototypical supervised

contrastive (PSC) learning is proposed to resolve the

memory bottleneck resulted from standard supervised

contrastive (SC) learning.

• We unveil supervised contrastive learning can be a bet-

ter substitute for typical cross-entropy loss for feature

learning in long-tailed classification. Benefited from the

better features learned, our hybrid network substantially

outperforms the cross-entropy based counterparts.

Our code is publicly available at https://k-han.

github.io/HybridLT.

2. Related Work

Our work is closely related to both long-tailed classifica-

tion and contrastive learning.

2.1. Long­tailed image classification

Long-tailed classification is a long-standing research

problem in machine learning, where the key is to overcome

the data imbalance issue [21, 16]. Given the great success

deep neural networks have achieved in balanced classifica-

tion tasks, increasing attention is being shifted to proposing

neural networks based solutions for long-tailed classification.

In this work, we mainly focus on the neural networks based
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approaches, which can be roughly divided into the following

categories.

Data re-sampling Data re-sampling is a commonly used

strategy to artificially balance the imbalanced data. Two

types of re-sampling techniques are under-sampling [1, 28,

8] and over-sampling [1, 32, 31]. Under-sampling discards

part of the data in head classes and over-sampling repetitively

samples data from the tail classes. It is revealed that over-

sampling can lead to overfitting to the tail classes [4, 28].

Under-sampling can potentially lose information about the

head classes but it may yield good results if each sample of

a head class is close to other samples of the same class [28].

Data augmentation As analyzed above, although over-

sampling enhances the chance to see more data from the tail

classes, it does not generate new information and thus leads

to overfitting. One remedy is to use strong data augmentation

to enrich the tail classes. Existing work approaches this goal

from different angles. The work in [29] uses generative

model to generate new samples for tail classes as convex

combination of existing instances. Another line of studies

attempt to transfer the information from head classes to tail

classes. In [19], the authors generate data for tail classes by

adding learnable noise to head samples. In another work [6],

the authors decompose the feature maps of images as class-

generic features and class-specific features and compose

new tailed data by combining class-generic features from

the head image and class-specific features from a tail image.

In [23], the intra-class angular variance is transferred from

head classes to enlarge the diversity of tail classes.

Loss re-weighting Apart from the aforementioned data-

based re-balance strategies, another line of studies propose

to mitigate the negative effects of data imbalance by mod-

ifying the loss functions. Loss re-weighting is one of the

simple but effective ways to tailor the loss function for im-

balanced classification, where the basic idea is to upweight

the tailed samples and downweight the head samples in the

loss function [17]. The existing solutions differ mainly in

how to define the weights for different classes. In class-

sensitive cross-entropy loss [14], the weight assigned to each

class is inversely proportional to the number of samples. In

class-balanced loss [7], the authors decide the re-weighting

coefficients based on the real volumes of different classes,

named effective numbers. In the work [30], the weights to

the training examples are optimized to minimize the loss of

a held-out evaluation set.

Margin modification It is revealed that the effect of

loss re-weighting can diminish when the datasets are separa-

ble [2]. An intuitive alternative is to shift the separator closer

to a dominant class [27]. In the work [3], the authors propose

to integrate per-class margin into the cross-entropy loss. The

margin is inversely proportional to the prior probability of a

class and thus can enforce larger margins between a tail class

and other classes. The work [33] realizes the margin under

an alternative motivation, which is to suppress the negative

gradients resulted from head samples for each tailed sample.

Decoupled learning Decoupled learning is a recent line

of methods towards imbalanced classification. To identify

the specific contributions of different factors to the long-

tailed recognition capability, the work [15] decouples long-

tailed classification into two separate stages: representation

learning and classifier learning. They use cross-entropy

as loss function for both of these two stages and conclude

that feature learning favors random data sampling and class-

balanced sampling is a better option for classifier learning.

Parallel to this, the work [37] obtains similar conclusions em-

pirically. In addition, a bilateral-branch network is proposed

in [37], where one branch uses random sampling to learn

head data and the other branch uses revered sampling to em-

phasize tailed data. One common focus of these two works

lies in choosing proper data sampling strategies for different

learning tasks underpinning long-tailed classification. But

both studies are limited to cross-entropy loss.

2.2. Contrastive learning

Recently, contrastive learning has shown great promise

in unsupervised representation learning [5, 9]. The basic

idea is to learn a hidden space in which the agreement be-

tween differently augmented views of the same image is

maximized by contrasting to the agreement between differ-

ent images. Some key components enable the success of

contrastive loss in learning useful representations include

proper data augmentations, a learnable nonlinear transfor-

mation between the representation and contrastive loss, and

large batch size for negative data [5]. Supervised contrastive

(SC) learning [18] is an extension to contrastive learning by

incorporating the label information to compose positive and

negative images. Following unsupervised feature learning,

SC learning also adopts a two-stage learning fashion, where

the first stage learns features by using contrastive loss and

the second stage learns classifiers using cross-entropy loss.

3. Main Approach

In this section, we firstly present the framework for the

contrastive learning based hybrid networks proposed for

long-tailed classification. Then, we elaborate on the two

supervised contrastive learning schemes used as part of the

hybrid networks for image representation learning.

3.1. A Hybrid Framework for Long­tailed Classifi­
cation

Fig. 2 shows the overview of the proposed hybrid frame-

work for long-tailed image classification. The network con-

sists of two branches: one contrastive learning branch for

image representation learning and one cross-entropy driven

branch for classifier learning. The feature learning branch
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Figure 2. Overview of the proposed contrastive learning based hybrid network structure. The network is composed of a supervised contrastive

learning (SCL) based feature learning branch and a cross-entropy (CE) loss based classifier learning branch. A backbone is shared between

these two branches to extract image representations, after which a non-linear MLP fe(·) combined with ℓ2-normalization is adopted to

translate the image representation for contrastive loss, and a single linear layer fc(·) is applied on top of the image representation to predict

classification logits. A curriculum is designed to control the weightings of these two branches, i.e., α and 1− α, during network training.

aims to learn a feature space which has the property of intra-

class compactness and inter-class separability. The classifier

learning branch is expected to learn less biased classifier

based on the discriminative features obtained from the sib-

ling branch. To realize the idea that better features ease

classifier learning and consequently result in more gener-

alizable classifiers, we follow a curriculum [37] to adjust

the weightings of these two branches during the training

phase. Concretely, the feature learning plays a leading role

at the beginning of the training, and then classifier learning

gradually dominates the training.

A backbone network, e.g., ResNet [10], is shared be-

tween these two learning branches to learn the image rep-

resentation r ∈ RDE for each image x. A projection head

fe(·) maps the image representation r into a vector repre-

sentation z ∈ RDS which is more suitable for contrastive

loss. We implement this projection head fe(·) as a nonlin-

ear multiple-layer perceptron (MLP) with one hidden layer.

Such projection module is proven important in improving

the representation quality of the layer before it [5]. Then, the

ℓ2 normalization is applied to z in order that inner product

can be used as distance measurements. To avoid abuse of

notations, unless otherwise stated we use z as the normalized

representation of x for contrastive loss computation. After

that, a supervised contrastive loss LSCL is applied on top

of the normalized representations for feature learning. The

classifier learning branch is simpler which applies a single

linear layer fc(·) to the image representation r to predict the

class-wise logits s ∈ RDC , which are used to compute the

cross-entropy loss LCE . Due to different natures of the two

loss functions, the feature learning and classifier learning

branches have different data sampling strategies. The fea-

ture learning branch takes as input anchor point xi together

with positive samples {x+

i } = {xj |yi = yj , i 6= j} from

the same class and negative samples {x−
i } = {xj |yj 6= yi}

from other classes. The input batch of the feature learning

branch is denoted as BSC = {xi, {x
+

i }, {x
−
i }}. The clas-

sifier learning branch directly takes image and label pairs

as input BCE = {{xi, yi}}. The final loss function for the

hybrid network is:

Lhybrid = α · LSCL(BSC) + (1− α) · LCE(BCE), (1)

where α is a weighting coefficient inversely proportional to

the epoch number, as shown in Fig. 2.

3.2. Supervised contrastive loss and its memory is­
sue

Supervised contrastive (SC) loss [18] is an extension

to unsupervised contrastive (UC) loss [5]. The key dif-

ference between SC loss and UC loss lies in the compo-

sition of the positive and negative samples of an anchor

image. In UC loss, the positive image is an alternatively

augmented view of the anchor image. In SC loss, apart

from the alternatively augmented counterpart, the positives

also include some other images from the same class. In this

paper, we unify all the positive images of an anchor xi as

{x+

i } = {xj |yj = yi, i 6= j} (we assume different views

of the same image have different indexes). The definitions

for positives and negatives of xi also apply to zi as {z+i }
and {z−i }. Assuming the minibatch size is N , the SC loss

function is written as:

LSCL =
N∑

i=1

LSCL(zi), (2)
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LSCL(zi) =
−1

|{z+i }|

∑

zj∈{z+

i
}

log
exp(zi · zj/τ)∑

zk,k 6=i exp(zi · zk/τ)
,

(3)

where |{z+i }| denotes the number of positive samples of

anchor zi, and τ > 0 is a scalar temperature parameter.

Comparing to the UC loss [5], the SC loss can flexibly

incorporate arbitrary number of positives. It optimizes the

agreements between such positives by contrasting against

negative samples. However, the consequence of using within-

class positives in SC loss is that it results in memory con-

sumption linear to the product of positive size and negative

size. For example, when one different within-class image

along with an alternative view are used as positives in SC

loss, the memory consumption will be doubled comparing

to the UC loss with the same size of negatives. This limits

the application of SC loss when under limited GPU memory

budget. One solution is to shrink the size of negatives. But

this can be problematic when dealing with dataset that has

large number of classes because small negative size samples

small fraction of negative classes, which can compromise

the quality of the learned representation.

3.3. Prototypical supervised contrastive loss

To simultaneously resolve the memory bottleneck issue

and mostly retain the feature learning property of SC loss,

we propose a prototypical supervised contrastive (PSC) loss.

In PSC loss, we aim to attain similar goal of SC loss by

learning a prototype for each class and force differently aug-

mented views of each sample to be close to the prototype of

their class and far away from the prototypes of the remain-

ing classes. The benefits of using prototypes are two-fold.

Firstly, it enables more flexible data sampling by avoiding

explicitly sampling positives and negatives. Thus, we can

flexibly adopt the data sampling strategies readily available

in long-tailed classification, such as random sampling and

class-balanced sampling. Secondly, data sampling efficiency

is enhanced in PSC loss. In PSC loss, we contrast each sam-

ple against the prototypes of all other classes. If a dataset

has C classes, this is essentially equivalent to a negative size

of C − 1. This is practically important when dealing with

dataset with large number of classes, e.g., iNaturalist [11].

The PSC loss function is:

LPSC(zi) = − log
exp(zi · pyi

/τ)
∑C

j=1,j 6=yi
exp(zi · pj/τ)

, (4)

where pyi
is the prototype representation for class yi, which

is normalized to the unit hypersphere in RDS and zi is the

normalized representation of xi.

Extension to multiple prototypes per class In the above

section, we learn one prototype per class. But PSC loss can

be simply extended to multiple prototypes for each class.

The rationale behind is that the samples within a class may

follow a multimodal distribution, which can be better mod-

eled by using multiple prototypes. The multiple prototype

supervised contrastive (MPSC) loss function can be designed

as:

LMPSC(zi) =
−1

M

M∑

k=1

log
wi,k exp(zi · p

k
yi
/τ)

∑C

j=1,j 6=yi

∑M

m=1
exp(zi · pm

j /τ)
,

(5)

where M is the number of prototypes per class, p
i
j de-

notes the representation for the i-th prototype of class j,

and wi,k(wi,k ≥ 0,
∑M

k=1
wi,k = 1) denotes the affinity

value between zi and the k-th prototype of its class, which

is used to control the affinity of each sample in finer level.

We leave detailed evaluation of MPSC loss as future work.

4. Experiments

In this section, we firstly introduce the three long-tailed

image classification datasets used for our experiments. Then

we present some key implementation details of our meth-

ods. After that, we compare our proposed hybrid networks

with state-of-the-art long-tailed image classification methods.

Finally, some ablation studies are given to highlight some

important properties of our hybrid networks.

4.1. Datasets

We conduct experiments on three long-tailed image clas-

sification datasets. Two of them, long-tailed CIFAR-10 and

long-tailed CIFAR-100, are derived artificially from bal-

anced CIFAR [20] datasets by re-sampling. The third dataset,

iNaturalist 2018 [11], is a large-scale image dataset, in which

the image categories exhibit long-tailed distribution.

Long-tailed CIFAR-10 and CIFAR-100 The original

CIFAR-10 and CIFAR-100 datasets are balanced datasets.

They consist of 50,000 training images and 10,000 valida-

tions images of size 32 × 32 in 10 and 100 classes respec-

tively. Following [7, 3], the long-tailed versions are created

by reducing the number of training examples per class but

with the validation set unchanged. An imbalance ratio β is

used to denote the ratio between sample sizes of the most fre-

quent and least frequent class, i.e., β = Nmax/Nmin. The

sample size follows an exponential decay across different

classes. Similar to most existing work [7, 3, 37], we use

imbalance ratios of 10, 50 and 100 in our experiments.

iNaturalist 2018 The iNaturalist 2018 [11] is a large-

scale real-world species classification dataset. It consists of

8,142 species, with 437,513 training and 24,424 validation

images. The dataset observes severe imbalance in the sample

sizes across different specie categories. We use the official

training and validation splits for our experiments.
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4.2. Implementation details

In this section, we present some key implementation de-

tails for experiments on long-tailed CIFAR and iNaturalist

respectively.

Implementation details for long-tailed CIFAR For

both long-tailed CIFAR-10 and CIFAR-100, we use ResNet-

32 [10] as backbone network to extract image representation.

Our hybrid network has two branches, which have indepen-

dent input data as shown in Fig. 2. The basic set of data

augmentation shared by both branches include random crop-

ping with size 32× 32, horizontal flip and random grayscale

with probability of 0.2. Following SC loss, we also derive

different views of an image by using different data augmen-

tations in PSC loss. In our experiments, we simply use with

and without color jitter as two different augmentation views.

We use batch size of 512 for both SC and PSC based hybrid

networks. The classifier learning branch uses class-wise bal-

anced data sampling. We use SGD with a momentum of 0.9
and weight decay of 1×10−4 as optimizer to train the hybrid

networks. The networks are trained for 200 epochs with the

learning rate being decayed by a factor of 10 at the 120th

epoch and 160th epoch. The initial learning rate is 0.5. For

the curriculum coefficient α, we use a parabolic decay w.r.t

the epoch number [37], i.e., α = 1− (T/Tmax)
2, where T

denotes the current epoch number and Tmax indicates the

maximum epoch number. For SC based hybrid network, the

temperature τ in Eq. (3) is fixed to be 0.1. For PSC base

hybrid network, τ is set to be 1 for CIFAR-10 and 0.1 for

CIFAR-100.

Implementation details for iNaturalist 2018 For iNat-

uralist 2018, following most of the existing work, we use

ResNet-50 [10] as backbone network. The data augmenta-

tion is similar to that used in long-tailed CIFAR datasets

except that random cropping with size 224× 224 is used. To

fit two NVIDIA 2080Ti GPUs, we use a batch size of 100

for both SC and PSC based hybrid networks. The networks

are trained for 100 epochs using SGD with momentum 0.9

and weight decay 1 × 10−4. The initial learning rate is

0.05, which is decayed by a factor of 10 at epoch 60 and

epoch 80. Motivated by the fact that iNaturalist has a large

number of classes which can make classifier learning more

difficult, we assign higher weighting to the classifier learning

branch by using a linearly decayed weighting factor α, i.e.,

α = 1 − T/Tmax. The temperature τ is set to be 0.1 for

both SC and PSC loss functions. For SC loss function, the

number of positive samples for each anchor is fixed to 2.

4.3. Comparison to state­of­the­art methods

In this section, we compare the proposed hybrid networks,

including both SC and PSC loss based networks, to existing

long-tailed classification methods on long-tailed CIFAR and

iNaturalist datasets, respectively.

Experimental results on long-tailed CIFAR The com-

parison between the proposed hybrid networks and exist-

ing methods on long-tailed CIFAR datasets is presented

in Table 1. The compared methods cover various cate-

gories of ideas for imbalanced classification, including loss

re-weighting [7], margin modification [3], data augmenta-

tion [19], decoupling [37] and some other newly proposed

ideas [34, 13]. As can be seen from the table, our hybrid

networks outperform the compared methods on almost all

the settings.

Among these methods, CE denotes the simplest baseline

which directly uses cross-entropy to train the network on

the long-tailed datasets. As expected, this baseline method

achieves the worst performance, which reveals the limitation

of cross-entropy in dealing with imbalanced data. Although

the performance can be improved by using advanced loss

functions tailored for long-tailed data [3, 7, 22], these meth-

ods ignore the different properties of feature learning and

classifier learning. BBN [37] takes a step further by decou-

pling the head data and tailed data modeling. But several

factors of BBN compromise the full potential of decoupling

learning: 1) It unifies the representation for two data streams

with different properties in the penultimate layer; 2) Cross-

entropy loss is not an ideal loss for imbalanced data in both

streams; 3) The final predication in testing phase is cal-

culated as the sum of two prediction functions from two

branches with equal weights, which is inconsistent with the

training phase. Our methods address such limitations in that:

1) The projection module in our feature learning branch

adapts the image representation to a space more suitable

for contrastive loss; 2) We use different loss functions to

learn the features and classifiers and conclude supervised

contrastive loss can be a better substitute for cross-entropy

in learning features from imbalanced data; 3) We use a sin-

gle classifier learning function to predict the class labels for

each sample, which avoids the gap between training and

testing. Within our methods, SC based hybrid network, a.k.a

Hybrid-SC, performs better than the PSC counterpart, a.k.a

Hybrid-PSC, but the latter still performs on par with or better

than the compared methods.

Experimental results on iNaturalist 2018 The exper-

imental comparison to some existing work on iNatural-

ist 2018 is provided in Table 2. Again, we compare our

hybrid networks to various lines of methods. Among these

compared methods, Decoupling [15] and BBN [37] are most

closely related to our proposal, which are both based on the

idea of decoupled learning. The advantage of our methods

over BBN has been analyzed above. On iNaturalist, Hybrid-

PSC outperforms BBN by 1.8%. Classifier re-training (cRT)

is a well-performed method we choose to compare in [15].

It is a two-stage method, where the first stage learns image

features and the second stage freezes the features to learn

the classifiers. They use cross-entropy as loss function for
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Table 1. Top-1 accuracy (%) on long-tailed CIFAR datasets based on ResNet-32. (Best and second best results are marked in bold.)

Dataset Long-tailed CIFAR-10 Long-tailed CIFAR-100

Imbalance ratio 100 50 10 100 50 10

CE 70.36 74.81 86.39 38.32 43.85 55.71

Focal loss [22] 70.38 76.72 86.66 38.41 44.32 55.78

CB-Focal [7] 74.57 79.27 87.10 39.60 45.17 57.99

CE-DRW [3] 76.34 79.97 87.56 41.51 45.29 58.12

CE-DRS [3] 75.61 79.81 87.38 41.61 45.48 58.11

LDAM-DRW [3] 77.03 81.03 88.16 42.04 46.62 58.71

CB-DA [13] 80.00 82.23 87.40 44.08 49.16 58.00

M2m [19] 79.10 – 87.50 43.50 – 57.60

Casual model [34] 80.6 83.60 88.50 44.10 50.30 59.60

BBN [37] 79.82 81.18 88.32 42.56 47.02 59.12

Hybrid-SC (ours) 81.40 85.36 91.12 46.72 51.87 63.05

Hybrid-PSC (ours) 78.82 83.86 90.06 44.97 48.93 62.37

both stages but using different data sampling strategies. We

argue this method suffers from two limitations: 1) The two-

stage learning strategy harms the compatibility between the

learned features and classifiers; 2) Cross-entropy loss is not

an ideal choice for learning image features from imbalanced

data. Our hybrid network addresses the first limitation by

using a curriculum based learning strategy to smoothly tran-

sit from feature learning to classifier learning. The second

limitation is also observed in BBN, which can be addressed

by our hybrid network as analyzed above. Our Hybrid-PSC

network outperforms Decoupling [15] by nearly 3%.

Another interesting observation is that Hybrid-PSC per-

forms better than Hybrid-SC. This result is consistent with

our expectation. Note that for the two hybrid network ver-

sions, we use the same batch size of 100 for contrastive

loss. This batch size is too small comparing to the number

of classes in the iNaturalist dataset, which fails to provide

the SC loss with sufficient negative samples to learn high-

quality features [5]. PSC loss avoids this issue because, as

analyzed in Sec. 3.3, each sample will contrast with all the

negative prototypes regardless of the batch size. Due to this

reason, Hybrid-PSC obtains superior classification perfor-

mance. Generally, we can state that the PSC based hybrid

network can observe advantage over the SC loss when deal-

ing with imbalanced dataset with large number of classes

under limited GPU memory budget.

4.4. Ablation studies and discussions

In this section, we conduct some ablation studies to char-

acterize our hybrid networks. Concretely, we study whether

the proposed PSC loss is less sensitive to data sampling, the

advantage of using PSC loss in feature learning comparing

to cross-entropy loss, and the advantage of our curriculum

based joint training comparing to the two-stage learning

strategy.

Table 2. Top-1 accuracy (%) on iNaturalist 2018 dataset based on

ResNet-50. For Decoupling [15], the well-performed Classifier

Re-training (cRT) is reported as it is closely related to our method.

By default, the methods are trained for up to 100 epochs. The

number in brackets indicates the accuracy obtained by training for

200 epochs. (Best and second best results are marked in bold.)

Dataset iNaturalist2018

CE 57.16

CB-Focal [7] 61.12

CE-DRW [3] 63.73

CE-DRS [3] 63.56

LDAM-DRW [3] 68.00

CB-DA [13] 67.55

FeatAug [6] 65.91

Decoupling [15] 65.20 (67.6)

BBN [37] 66.29 (69.62)

Hybrid-SC (ours) 66.74

Hybrid-PSC (ours) 68.10 (70.35)

Sensitivity of PSC loss to data sampling In the decou-

pled learning work [15, 37], the authors find cross-entropy

loss is sensitive to data sampling when it is used to learn

features. Concretely, they find random sampling obviously

outperforms class-wise balanced sampling for feature learn-

ing. For example, in [15], the class-balanced sampling

can lead to around 5% accuracy drop comparing to ran-

dom sampling under cross-entropy loss. As PSC loss in our

work has the same data sampling manner as cross-entropy

loss, we verify the sensitivity of our PSC loss to data sam-

pling in Table 3. From the table we can see, our Hybrid-

PSC network achieves comparable performance by using

random sampling and class-balanced sampling, which in-

dicates our PSC can alleviate the overfitting issue resulted

from over-sampling (class-balanced sampling belongs to

over-sampling). We conjecture that two possible factors

949



Table 3. Evaluation of the sensitivity of PSC loss to data sampling. Hybrid-PSC with random PSC and Hybrid-PSC with CB-PSC denote in

the PSC based hybrid network, we use random data sampling and class-balanced data sampling for the feature learning branch respectively.

Classification accuracy (%) on long-tailed CIFAR-100 is reported.

Dataset Long-tailed CIFAR-10 Long-tailed CIFAR-100 iNaturalist 2018

Imbalance ratio 100 50 10 100 50 10 -

Hybrid-PSC with random PSC 78.82 83.86 90.06 44.91 48.93 62.37 68.10

Hybrid-PSC with CB-PSC 78.84 82.85 89.85 44.21 49.66 61.93 67.71

Table 4. Evaluation of the advantage of supervised contrastive

losses over cross-entropy loss for feature learning in long-tailed

classification. CE-CE denotes both feature learning and classifier

learning adopt cross-entropy loss, i.e., our supervised contrastive

loss is replaced by cross-entropy loss. Classification accuracy (%)

on long-tailed CIFAR-100 is reported.

Dataset Long-tailed CIFAR-100

Imbalance ratio 100 50 10

CE-CE 41.40 46.68 59.14

Hybrid-SPC 44.97 48.93 62.37

Hybrid-SC 46.72 51.87 63.05

contribute to the insensitivity of the PSC loss on data sam-

pling. Firstly, in PSC loss, the image features and prototypes

are both ℓ2-normalized, which breaks the strong correla-

tions between class frequency and feature norms. Secondly,

assuming the affinity score between a sample and its pro-

totype is syi

i = zi · pyi
/τ . For a sample xi with label

yi ∈ {1, 2, . . . , C}, the gradient of the PSC loss LPSC(zi)
w.r.t syi

i is constant, and the gradient w.r.t the affinity to

a prototype from a negative class c ∈ {1, 2, . . . , C}\yi, is

exp(sci )/
∑

y∈{1,2,··· ,C},y 6=yi
exp(syi ). The denominator ex-

cludes the dominating term of syi

i and thus results in a promi-

nent gradient. The constant gradient for positive class and

prominent gradients for negative classes can help to alleviate

the overfitting in over-sampling and enhance the inter-class

separability of the features.

Is PSC loss a better substitute for cross-entropy loss

for feature learning? In this work, we claim the super-

vised contrastive losses are expected to learn better features

from imbalanced features and consequently lead to better

long-tailed classification performance. To verify this, we

replace the contrastive loss in our hybrid networks with cross-

entropy loss. The results are shown in Table 4. As can be

seen, when using cross-entropy to learn the image features,

the performance drops significantly.

Two-stage learning v.s. curriculum based joint learn-

ing In this work, we use a curriculum to smoothly transit

the training from feature learning to classifier learning. To

justify the advantage of this learning strategy, we firstly

choose the original two-stage SC work [18] as our baseline,

which trains the features using SC loss in the first stage and

then fixes the features to train classifiers in the second stage.

From Table 5 we can see, this two-stage training scheme

Table 5. Evaluation of the advantage of the curriculum based joint

training over two-stage training. Two-stage SC denotes we train

the features and classifiers in separate stages. Hybrid-SC w/o

curriculum means we use equal and fixed weighting for the feature

and classifier learning during the training process. Classification

accuracy (%) on long-tailed CIFAR-100 is reported.

Dataset Long-tailed CIFAR-100

Imbalance ratio 100 50 10

Two-stage SC 42.73 46.76 60.62

Hybrid-SC w/o curriculum (α = 0.5) 42.58 47.45 60.48

Hybrid-SC 46.72 51.87 63.05

Hybrid-SPC 44.91 48.93 62.37

results in obviously inferior performance to our curriculum

based training, because it harms the compatibility between

the features and classifiers. To further highlight the impor-

tance of the curriculum, we set the weighting coefficient α
in Eq. (1) to be 0.5. Still, unsatisfactory results are obtained.

When the curriculum is used, we allow the supervised con-

trastive losses to dominate the training first in order to fully

exploit their capacity to learn discriminative features, which

can benefit the classifier learning in later phase.

5. Conclusion

In this work, we approached long-tailed image classifica-

tion by proposing a novel hybrid network, which consists of

a supervised contrastive loss to learn image features and a

cross-entropy loss to learn classifiers. To embody the idea

that better features make better classifiers, a curriculum is

followed to smoothly transit the training from feature learn-

ing to classifier learning. A new prototypical supervised

contrastive loss was proposed to learn features from imbal-

anced data, which observes advantage under limited GPU

memory budget. Experiments on three long-tailed classifica-

tion datasets showed that our proposal not only significantly

outperforms existing methods but also has some other ap-

pealing properties that can benefit imbalanced classification.

To our knowledge, this is the first work that explores how

to maximize the value of supervised contrastive learning

in long-tailed image classification. We will continue this

direction as our future work, with the deeper exploration of

MPSC as the first step.
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