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Abstract

Two-view structure-from-motion (SfM) is the corner-

stone of 3D reconstruction and visual SLAM. Existing deep

learning-based approaches formulate the problem by ei-

ther recovering absolute pose scales from two consecutive

frames or predicting a depth map from a single image, both

of which are ill-posed problems. In contrast, we propose

to revisit the problem of deep two-view SfM by leveraging

the well-posedness of the classic pipeline. Our method con-

sists of 1) an optical flow estimation network that predicts

dense correspondences between two frames; 2) a normal-

ized pose estimation module that computes relative cam-

era poses from the 2D optical flow correspondences, and 3)

a scale-invariant depth estimation network that leverages

epipolar geometry to reduce the search space, refine the

dense correspondences, and estimate relative depth maps.

Extensive experiments show that our method outperforms

all state-of-the-art two-view SfM methods by a clear mar-

gin on KITTI depth, KITTI VO, MVS, Scenes11, and SUN3D

datasets in both relative pose and depth estimation.

1. Introduction

Two-view structure-from-motion (SfM) is the problem

of estimating the camera motion and scene geometry from

two image frames of a monocular sequence. As the foun-

dation of both 3D reconstruction and visual simultaneous

localization and mapping (vSLAM), this important problem

finds its way into a wide range of applications, including au-

tonomous driving, augmented/virtual reality, and robotics.

Classic approaches to two-view SfM follow a standard

pipeline of first matching features/edges between the two

images, then inferring motion and geometry from those

matches [8, 22, 30, 14, 12, 11, 47, 52]. When imaging

conditions are well-behaved (constant lighting, diffuse and

rigid surfaces, and non-repeating visual texture), the match-

* indicates equal contribution, listed in alphabetical order. Yiran is the

corresponding author. Work was partially done when Yiran was an intern

at NVIDIA, Redmond, WA.

ing process is well-posed. And, once the matches have been

found, the motion and geometry can be recovered.

For decades, researchers who work in this area have gen-

erally required at least two views, and their methods have

recovered only relative camera motion and relative scene

geometry (that is, shape up to an unknown scale factor).

Without a priori knowledge of scale or recognizable objects

in the scene, it is impossible to recover scene geometry from

a single view [18, 48, 44, 25]. Similarly, it is impossible to

infer absolute scale from two views of a scene [17].

With the rise of deep learning, a number of researchers

have recently explored neural network-based solutions to

two-view SfM. Most of these methods fall into one of two

categories. In the first category, which we shall call Type I,

the problem is treated as a joint optimization task of monoc-

ular depth and pose regression [53, 46, 32]. Two networks

are used: one to estimate the up-to-scale depth from a single

image, and the other one to predict the up-to-scale camera

pose from two input images. Both networks act indepen-

dently during inference. In the second category, denoted

Type II, the scaled camera pose and the scaled depth are

inferred from the image pair, and are iteratively refined via

multi-view geometry [39, 35, 36]. While the power of deep

learning allows both Type I and Type II solutions to achieve

compelling results, we note that their formulations attempt

to solve one of the ill-posed [3] problems mentioned above.

In this paper, we revisit the use of deep learning for two-

view SfM. Our framework follows the classic SfM pipeline

that features are matched between image frames to yield rel-

ative camera poses, from which relative depths are then es-

timated. By combining the strengths of deep learning within

a classic pipeline, we are able to avoid ill-posedness, which

allows our approach to achieve state-of-the-art results on

several benchmarks.

A comparison between our approach and existing

pipelines is shown in Fig. 1. Our method operates by first

estimating dense matching points between two frames us-

ing a deep optical flow network [50, 40], from which a set

of highly reliable matches are sampled in order to com-

pute the relative camera pose via a GPU-accelerated classic

five-point algorithm [24] with RANSAC [13]. Since these
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Figure 1. Comparison between our method and previous deep monocular structure-from-motion methods. We formulate camera

pose estimation as a 2D matching problem (optical flow) and depth prediction as a 1D matching problem along an epipolar line. In

contrast, previous methods suffer from ill-posedness (either single-frame depth prediction, in the case of Type I, or scaled estimates, in the

case of Type II).

relative camera poses have scale ambiguity, the estimated

depth suffers from scale ambiguity as well. Therefore,

in order to supervise the estimated scale-ambiguous depth

with the (scaled) ground truth depth, we propose a scale-

invariant depth estimation network combined with scale-

specific losses to estimate the final relative depth maps.

Since the search space of the depth estimation network is re-

duced to epipolar lines thanks to the camera poses, it yields

higher accuracy than directly triangulating the optical flows

with the estimated camera poses. We demonstrate the ef-

fectiveness of our framework by achieving state-of-the-art

accuracy in both pose and depth estimation on KITTI depth,

KITTI VO, MVS, Scenes11, and SUN3D datasets.

Our main contributions are summarized as:

1) We revisit the use of deep learning in SfM, and propose

a new deep two-view SfM framework that avoids ill-

posedness. Our framework combines the best of deep

learning and classical geometry.

2) We propose a scale-invariant depth estimation module

to handle the mismatched scales between ground truth

depth and the estimated depth.

3) Our method outperforms all previous methods on var-

ious benchmarks for both relative pose estimation and

depth estimation under the two-view SfM setting.

2. Two-view Geometry: Review and Analysis

The task of two-view SfM refers to estimating the rela-

tive camera poses and dense depth maps from two consec-

utive monocular frames. In classic geometric vision, it is

well understood that the camera poses as well as the depth

maps can be computed from image matching points alone

without any other information [26].1

Given a set of image matching points in homogeneous

coordinates, xi =
[

xi yi 1
]⊤

and x
′

i
=

[

x′

i
y′
i

1
]⊤

with known camera intrinsic matrix K, the two-view SfM

task is to find a camera rotation matrix R and a transla-

tion vector t as well as the corresponding 3D homogeneous

point Xi such that:

xi = K
[

I | 0
]

Xi x
′

i
= K

[

R | t
]

Xi ∀i. (1)

A classical method to solve this problem consists of three

consecutive steps: 1) Computing the essential matrix E

from the image matching points xi and x
′

i
; 2) Extracting

the relative camera pose R and t from the essential matrix

E; 3) Triangulating the matching points xi and x
′

i
with the

camera pose to get the 3D point Xi.

All steps in this pipeline are well-posed problems. The

essential matrix E can be solved with at least 5 matching

points using the equation below:

x
′⊤

i
K

−⊤
EK

−1
xi = 0 ∀i. (2)

R and t can be computed from E using matrix decompo-

sition such that E = SR, where S is a skew symmetric

matrix and R is a rotation matrix. Since for any non-zero

scaling factor α,
[

αt
]

×
R = α

[

t
]

×
R = αE provides a

1Excluding degenerate cases.
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valid solution, there is a scale ambiguity for relative cam-

era pose estimation. The 3D point Xi can be computed by

triangulation with a global scale ambiguity.

The method above assumes the ideal case in which all

image points are perfectly matched. To handle mismatched

points in real scenarios, researchers have established a clas-

sical standard pipeline to estimate geometry information

from two consecutive frames [17].

2.1. The Classic Standard Pipeline

With decades of development and refinement, the clas-

sic standard pipeline [17] is widely used in many conven-

tional state-of-the-art SfM and vSLAM systems [30, 33, 1].

Since almost all geometry information can be recovered

from image matching points, the key is to recover a set of

(sparse or dense) accurate matching points. To this end, the

pipeline often starts with sparse (or semi-dense) distinct fea-

ture extraction and matching to get sparse matching points,

as sparse matching is more accurate than dense match-

ing. To further refine the matching results, the RANSAC

scheme [13] is used to filter the matching points that do

not fit the majority motion. These outliers often include

mismatches and dynamic objects in a scene. After retriev-

ing the camera poses from the refined matching points, the

depth of these points can be computed via triangulation. In

some cases, if it is desired to estimate dense depth maps

rather than the sparse 3D points, multi-view stereo match-

ing algorithms can be used to recover the dense depth maps

with the estimated camera poses.

The Achilles’ heel of this pipeline is therefore the match-

ing of points. Conventional matching algorithms often suf-

fer from low accuracy on non-Lambertian, blurry, and tex-

tureless surfaces. However, this shortage can be largely

alleviated by deep learning [34, 37, 40, 51, 6, 23]. With

sufficient training data, such networks can learn to handle

these scenarios. In our proposed approach, we leverage a

deep optical flow network [40] to compute these correspon-

dences.

2.2. Deep Learning based Methods

As discussed earlier, two-view SfM requires to estimate

both camera poses and dense depth maps. Existing deep

learning based methods either formulate the problem as

pose and monocular depth regression (Type I) or as pose

regression and multi-view stereo matching (Type II). We

analyze both types of methods below.

Type I methods consist of a monocular depth estima-

tion network and a pose regression network. The two-view

geometry constraints are used as self-supervisory signals to

regularize both camera poses and depth maps [53, 46, 28,

5, 2, 32]. As a result, most of these approaches are self-

supervised. Because single-view depth estimation is inher-

ently ill-posed, as discussed earlier, these methods are fun-

damentally limited by how well they can solve that chal-

lenging problem. They rely on the priors from the training

data to predict depth only given a single image.

Moreover, since the two-view geometry constraints are

only suitable for a stationary scene, SfMLearner [53] si-

multaneously estimates an explainability mask to exclude

the dynamic objects while GeoNet [46] utilizes an opti-

cal flow module to mask out these outliers by comparing

the rigid flow (computed by camera poses and depth maps)

with the non-rigid flow (computed by the optical flow mod-

ule). Other methods focus on implementing more robust

loss functions, such as ICP loss [28], motion segmentation

loss [32], or epipolar loss [5].

Type II methods require two image frames to estimate

depth maps and camera poses at test time (unlike Type I

methods, which estimate depth from a single frame). Most

supervised deep methods fall into this category. As a pi-

oneer of this type, DeMoN [39] concatenates a pair of

frames and uses multiple stacked encoder-decoder networks

to regress camera poses and depth maps, implicitly utilizing

multi-view geometry.

Similar strategies have been adapted by [35, 7, 41, 36]

through replacing generic layers between camera poses and

depth maps with optimization layers that explicitly enforce

multi-view geometry constraints. For example, BANet [35]

parameterizes dense depth maps with a set of depth

bases [49] and imposes bundle adjustment as a differen-

tiable layer into the network architecture. Wang et al. [41]

use regressed camera poses to constrain the search space of

optical flow, estimating dense depth maps via triangulation.

DeepV2D [36] separates the camera pose and depth esti-

mation, iteratively updating them by minimizing geometric

reprojection errors. Similarly, DeepSFM [42] initiates its

pose estimation from DeMoN [39], sampling nearby pose

hypotheses to bundle adjust both poses and depth estima-

tion. Nevertheless, with the ground truth depth as supervi-

sion, it requires the pose regression module to estimate cam-

era poses with absolute scale, which is generally impossible

from a pair or a sequence of monocular frames alone [17].

To mitigate this ill-posed problem, they utilize dataset pri-

ors and semantic knowledge of the scene to estimate the

absolute scale.

3. Method

In this section, we propose a new deep two-view SfM

framework that aims to address the Achilles’ heel of the

classical SfM pipeline (viz., matching) via deep learning.

Our method is able to find better matching points and there-

fore more accurate poses and depth maps, especially for tex-

tureless and occluded areas. At the same time, it follows the

wisdom of classic methods to avoid the ill-posed problems.

By combining the best of both worlds, our approach is able

to achieve state-of-the-art results, outperforming all previ-
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ous methods by a clear margin.

Following the classic standard pipeline [17], we for-

mulate the two-frame structure-from-motion problem as a

three-step process: 1) match corresponding points between

the frames, 2) estimate the essential matrix and hence the

relative camera pose, and 3) estimate dense depth maps up

to an unknown scale factor. These steps, along with the loss

function used for training, are described in more detail in

the following subsections.

3.1. Optical Flow Estimation

As a fundamental problem in computer vision, optical

flow estimation has been extensively studied for several

decades [20]. With the recent progress in deep learning,

deep optical flow methods now dominate various bench-

marks [16, 4] and can handle large displacements as well as

textureless, occluded, and non-Lambertian surfaces. In our

framework, we utilize the state-of-the-art network, DICL-

Flow [40], to generate dense matching points between two

consecutive frames. This method uses a displacement-

invariant matching cost learning strategy and a soft-argmin

projection layer to ensure that the network learns dense

matching points rather than image-flow regression. The net-

work was trained on synthetic datasets (FlyingChairs [9]

and FlyingThings [29]) to avoid data leakage, i.e., the net-

work was not trained on any of the test datasets.

3.2. Essential Matrix Estimation

The traditional approach to estimating camera pose be-

tween two image frames is to match sparse points, e.g.,

SIFT features [27]. Then, given a set of matching points

x ↔ x
′ and the camera intrinsic matrix K, the essential

matrix [26] E can be recovered from the five-point algo-

rithm [31, 24]. By decomposing the essential matrix as

E = [t]×R, the rotation matrix R and the translation vec-

tor t can be recovered up to a scale ambiguity. Convention-

ally, outliers in the matching points are filtered using robust

fitting techniques such as RANSAC [13]. RANSAC repeat-

edly estimates the essential matrix from randomly sampled

minimal matching sets and selects the solution that is sat-

isfied by the largest proportion of matching points under a

certain criterion.

Unlike all previous deep learning-based methods that

regress the camera poses from input images, we use match-

ing points to compute the camera poses. The key question

is this: How to robustly filter the noisy dense matches from

optical flow in order to retain only the high quality matches?

There are multiple ways to filter out unreliable matching

points such as flow uncertainty, consistency check, or us-

ing a network to regress a mask. Empirically, we find that

simply using SIFT keypoint locations (note that we do not

use SIFT matching) to generate a mask works well in all

datasets. The hypothesis is that optical flow is more ac-

curate in rich textured areas. The optical flow matches at

the locations within the mask are filtered by RANSAC with

GPU acceleration, to avoid distraction by dynamic objects.

After retrieving the essential matrix E, the camera pose

(R, t) is recovered using matrix decomposition.

3.3. ScaleInvariant Depth Estimation

Once we have recovered the up-to-scale relative camera

pose, with the dense matching points from optical flow es-

timation, we could compute the dense depth map by per-

forming triangulation. However, such an approach would

not take advantage of the epipolar constraint. As a result,

we perform the matching again by constraining the search

space to epipolar lines computed from the relative camera

poses. This process is similar to multi-view stereo (MVS)

matching with one important difference: we do not have

the absolute scale in inference. With the up-to-scale rela-

tive pose, if we were to directly supervise the depth esti-

mation network with ground truth depth, there would be a

mismatch between the scale of the camera motion and the

scale of the depth map.

Previous approaches. To resolve this paradox, previous

methods either use a scale-invariant loss [10] or regress the

absolute scale with a deep network [39, 36, 42].

The scale-invariant loss ℓSI is defined as:

ℓSI =
∑

x

(

log(dx)− log(d̂x) + η(d, d̂)
)2

, (3)

where dx and d̂x are the ground truth and es-

timated depth, respectively, at pixel x; and

η(d, d̂) = 1

N

∑

x

(

log(d̂x)− log(dx)
)

, where N is the

number of pixels, measures the mean log difference

between the two depth maps. While working for the direct

depth regression pipelines, the scale-invariant loss intro-

duces an ambiguity for network learning as the network

could output depth maps with different scales for each

sample. This loss may hinder the principle of plane-sweep,

where depth maps with consistent scale across frames of

the sequence are desired. Plane sweep [21] is the process

that enforces the epipolar constraint, which reduces the

search space from 2D to 1D.

Plane-sweep powered networks require consistent scale

during the training and testing process. For example, if we

train a network with absolute scales and test it with a nor-

malized scale, its performance will drop significantly (we

provide an ablation study in Section 4.4). Since it is impos-

sible to recover the absolute scale from two images, some

previous methods [39, 36, 42] use a network to regress a

scale to mimic the absolute scale in inference. This strategy

slightly alleviates the scale paradox at the cost of making

the problem ill-posed again.

Scale-Invariant Matching. To solve this paradox and

keep the problem well-posed, we propose a scale-invariant
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Figure 2. The Effect of Various Scale Factors during Plane

Sweep. For a certain pixel, we visualize its six depth hypothe-

ses with different colors in the target frame. As the scale factor α

changes, the sampling distribution varies.

matching process to recover the up-to-scale dense depth

map. Mathematically, given an image point x, we gener-

ate L matching candidates {x′

l
}L
l=1

:

x
′

l
∼ K[R | t]

[

(K−1
x)dl

1

]

, (4)

where dl = (L × dmin)/l, (l = 1, ..., L) is the depth hy-

pothesis and dmin is a fixed minimum depth.

In the standard plane-sweep setting, the sampling distri-

bution of matching candidates varies depending on the scale

factor α = ‖t‖
2
, as illustrated in Fig. 2. Instead, we normal-

ize the translation vectors to t ≡ t/α such that
∥

∥t
∥

∥

2
= 1,

since we do not know the absolute scale in our problem.

Substituting the normalized translation t for t in Eq. (4),

with fixed {dl}
L

l=1
, the distribution of matching candidates

{x′

l
}L
l=1

are now invariant to scale.

To make the estimated and ground truth depths compat-

ible, according to Eq. (4), we need to scale the estimated

depth d̂ correspondingly to match the ground truth depth d:

d ∼ αgtd̂, (5)

where αgt refers to the ground truth scale.

This scale-invariant matching strategy plays a crucial

role in our framework as it makes our network no longer

suffer from the scale misalignment problem. Please note

our competitors cannot benefit from scale-invariant match-

ing because they usually avoid the scale misalignment prob-

lem by predicting absolute scales. A detailed discussion is

provided in Section 4.4.

3.4. Loss Function

Our framework is trained in an end-to-end manner with

the supervision of ground truth depth maps and ground truth

scales. Given a predicted depth d̂ and a ground truth depth

d, we supervise the depth using the Huber loss:

Ldepth =
∑

x

ℓhuber

(

αgtd̂x − dx

)

, (6)

where ℓhuber(z) = 0.5z2 if |z| < 1, |z − 0.5| otherwise. It

should be noted that our predicted depth is up-to-scale and

does not require ground truth scale at inference time.

If both ground truth camera pose (R, t) and ground truth

depth dx are given, we can also update the optical flow net-

work by computing the rigid flow ux ≡ x
′−x for 2D point

x:

x
′ ∼ K[R | t]

[

(K−1
x)dx
1

]

. (7)

The rigid flow can work as a supervision signal, comput-

ing the ℓ2 distance with the estimated optical flow ûx:

Lflow =
∑

x

(ûx − ux)
2
. (8)

The total loss function of our framework is then given by:

Ltotal = Ldepth + λLflow. (9)

We set λ = 1 to fine-tune the optical flow estimator, or λ =
0 to use the flow model pretrained on synthetic datasets.

4. Experiments

In this section, we provide quantitative and qualitative

results of our framework on various datasets, showing com-

parison with state-of-the-art SfM methods. We also pro-

vide an extensive ablation study to justify our framework

design. Due to the scale-ambiguity nature of the two-view

SfM problem, we scale the results of ours and others using

the same scaling strategy as in [36, 35]. For all experiments,

our optical flow estimator is [40] while the architecture of

depth estimator is based on [21]. Implementation details

(such as hyperparameters of the optimizer or network) are

provided in the supplementary material.

4.1. Datasets

KITTI Depth [16] is primarily designed for monocular

depth evaluation in autonomous driving scenarios, which

does not take camera motions and dynamic objects into

account. The Eigen split [10], which contains 697 sin-

gle frames for testing, is a widely used split for evaluating

monocular depth estimation. To adapt it for two-view SfM

evaluation, we pair nearby frames. Also, since the Eigen

split contains a number of frames with nearly static camera

motion or many moving objects (which lead to ill-posed sit-

uations for two-view SfM), we filter out these frames to cre-

ate an Eigen SfM split (256 frames) to evaluate SfM algo-

rithms in well-conditioned scenarios. Specifically, we first

pair each frame with its next frame then manually remove

these pairs with small relative translations (less than 0.5 me-

ters) or contain large dynamic objects2.

KITTI VO [16] is primarily used for evaluating camera

pose estimation. It contains ten sequences (more than 20k

frames) with ground truth camera poses. According to the

2We define a dynamic object which occupies more than 20% pixels of

a scene as a large dynamic object.
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Table 1. Depth Evaluation on KITTI Depth Dataset. We compare our results to state-of-the-art single-frame depth estimation methods

and deep SfM methods on the KITTI depth Eigen split. We evaluate all SfM methods under two-view SfM setting for a fair comparison.

The “Eigen SfM” split (256 frames) excludes frames that are close to static or contain many dynamic objects in the Eigen split. The type

S means supervised single frame depth estimation. Note that Type I methods are self-supervised methods. Bold indicates the best.

Split Type Method
lower is better higher is better

Abs Rel Sq Rel RMSE RMSElog D1-all δ < 1.25 δ < 1.25
2

δ < 1.25
3

E
ig

en

S
DORN [15] 0.072 0.307 2.727 0.120 0.163 0.932 0.984 0.994

VNL [45] 0.072 - 3.258 0.117 0.176 0.938 0.990 0.998

I

SfMLearner [53] 0.208 1.768 6.856 0.283 - 0.678 0.885 0.957

GeoNet [46] 0.155 1.296 5.857 0.233 - 0.793 0.931 0.973

CCNet [32] 0.140 1.070 5.326 0.217 - 0.826 0.941 0.975

GLNet [5] 0.099 0.796 4.743 0.186 - 0.884 0.955 0.979

II
BANet [35] 0.083 - 3.640 0.134 - - - -

DeepV2D [36] 0.064 0.350 2.946 0.120 0.142 0.946 0.982 0.991

Ours 0.055 0.224 2.273 0.091 0.107 0.956 0.984 0.993

E
ig

en
S

fM S
DORN [15] 0.067 0.295 2.929 0.108 0.130 0.949 0.988 0.995

VNL [45] 0.065 0.297 3.172 0.106 0.168 0.945 0.989 0.997

II DeepV2D[36] 0.050 0.212 2.483 0.089 0.091 0.973 0.992 0.997

Ours 0.034 0.103 1.919 0.057 0.031 0.989 0.998 0.999

setting of [53], we test our pose estimation accuracy on all

2700 frames of the “09” and “10” sequences, using consec-

utive frames from the left camera.

MVS, Scenes11, and SUN3D. MVS is collected

from several outdoor datasets by [39]. Different from

KITTI which is built through video sequences with close

scenes, MVS has outdoor scenes from various sources.

Scenes11 [39] is a synthetic dataset generated by random

shapes and motions. It is therefore annotated with per-

fect depth and pose, though the images are not realistic.

SUN3D [43] provides indoor images with noisy depth and

pose annotation. We use the SUN3D dataset post-processed

by [39], which discards the samples with a high photo-

consistency error.

4.2. Depth Evaluation

We perform depth evaluation on KITTI Depth, MVS,

Scenes11, and SUN3D datasets.

KITTI Depth. We compare our framework with both

types of deep SfM methods using seven commonly used

depth metrics [10]. We also leverage one disparity met-

ric D1-all3 as it measures the precision of the depth esti-

mation. Since the Type I methods are self-supervised and

they all perform single frame depth estimation in inference,

we report the results of the state-of-the-art supervised sin-

gle image depth estimation methods [15, 45] as they can be

viewed as the upper bounds of Type I methods.

Quantitative results are shown in Table 1. Although only

using a flow estimator trained on synthetic datasets, our

method beats all previous methods with a clear margin on

various metrics, e.g., 2.273 versus 2.727 in RMSE. Espe-

cially, our method largely outperforms DeepV2D although

3Percentage of stereo disparity outliers. We convert the estimated depth

to disparities using the focal length and baseline provided by KITTI.

DeepV2D used ground truth camera pose and five-frame se-

quences for training. Note that there is a number of frames

in the Eigen split that do not strictly satisfy the rigid SfM

assumption such as stationary scene. When only keeping

the frames that satisfy SfM assumptions, i.e., on the Eigen

SfM split, our method achieves even better accuracy, with

3.1% vs 9.1% in D1-all. Fig. 3 illustrates some qualitative

results compared with the state-of-the-art supervised single

image method [15] and deep SfM method [36].

MVS, Scenes11, and SUN3D. We compare our frame-

work to state-of-the-art Type II methods under two-view

SfM setting using metrics by [39]. We use the same strat-

egy of iterative depth refinement as [42] in inference for a

fair comparison. As shown in Table 2, our method achieves

superior performance on all metrics among all three datasets

comparing with the previous state-of-the-art Type II meth-

ods. Fig. 4 provides some qualitative results.

4.3. Camera Pose Estimation

We compare the camera pose estimation accuracy with

Type I and Type II SfM methods on the KITTI VO, MVS,

Scenes11, and SUN3D datasets.

KITTI VO. We measure the pose estimation accuracy

on relative translational error terr and relative rotational er-

ror rerr as in [54]. For all results, we align the predicted

trajectories to the ground truth via least square optimiza-

tion [38]. Our method achieves the best pose estimation ac-

curacy with a clear margin compared with the Type I SfM

methods [53, 2, 32], and full-sequence visual odometry ap-

proach [54]. In Fig. 5 we visualize the full sequence odom-

etry trajectories on 9th and 10th sequences. Our results are

more aligned with the ground truth trajectories. It is worth

noting that our model are only trained on sythetic datasets

while the other methods are fine-tuned on the KITTI VO
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Table 2. Depth and Pose Estimation Results on MVS, Scenes11, and SUN3D Datasets. Base-SIFT and Base-Matlab come from [39].

Method

MVS Dataset Scenes11 Dataset Sun3D Dataset

Depth Pose Depth Pose Depth Pose

L1-inv Sc-inv L1-rel Rot Tran L1-inv Sc-inv L1-rel Rot Tran L1-inv Sc-inv L1-rel Rot Tran

Base-SIFT 0.056 0.309 0.361 21.180 60.516 0.051 0.900 1.027 6.179 56.650 0.029 0.290 0.286 7.702 41.825

Base-Matlab - - - 10.843 32.736 - - - 0.917 14.639 - - - 5.920 32.298

COLMAP [33] - - 0.384 7.961 23.469 - - 0.625 4.834 10.682 - - 0.623 4.235 15.956

DeMoN [39] 0.047 0.202 0.305 5.156 14.447 0.019 0.315 0.248 0.809 8.918 0.019 0.114 0.172 1.801 18.811

LS-Net [7] 0.051 0.221 0.311 4.653 11.221 0.010 0.410 0.210 4.653 8.210 0.015 0.189 0.650 1.521 14.347

BANet [35] 0.030 0.150 0.080 3.499 11.238 0.080 0.210 0.130 3.499 10.370 0.015 0.110 0.060 1.729 13.260

DeepSFM [42] 0.021 0.129 0.079 2.824 9.881 0.007 0.112 0.064 0.403 5.828 0.013 0.093 0.072 1.704 13.107

Ours 0.015 0.102 0.068 2.417 3.878 0.005 0.097 0.058 0.276 2.041 0.010 0.081 0.057 1.391 10.757

Figure 3. Qualitative Results on the KITTI Dataset. The yellow circles and boxes in the top row highlight tiny poles which are captured

more accurately by our method.
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Figure 4. Qualitative Examples on MVS, Scenes11, and SUN3D

Datasets, where our method consistently achieves better results.

dataset and take more frames to estimate the camera poses.

MVS, Scenes11 and SUN3D. The competitors use

ground truth poses to train their pose estimation module on

these three datasets, while we use the ground truth poses

to fine-tune our optical flow model using Eq. (8). We also

report the pose estimation accuracy in Table 2, using the

metrics of DeMoN [39]. Our method beats the previous

state-of-the-art on all three datasets with a clear margin,

e.g., 60.8% better in translation estimation on MVS dataset

and 31.5% better in rotation estimation on Scenes11 dataset.

Moreover, we verify the effectiveness of rigid flow supervi-

sion, Eq (8), in Table 4. With fine-tuning, the translation

errors are largely suppressed, and the rotation errors are no-

tably reduced. It is worth noting that our model that was

trained on synthetic datasets has already achieved compara-

ble performance with previous methods.

Table 3. Pose Estimation Accuracy on KITTI VO dataset. Bold

indicates the best. For pose estimation, our method uses an optical

flow model trained on synthetic data. The result of GANVO [2] is

provided by its author.

Method
Seq. 09 Seq. 10

terr(%) rerr(◦/100m) terr(%) rerr(◦/100m)
SfMLearner [53] 8.28 3.07 12.20 2.96

GANVO [2] 11.52 3.53 11.60 5.17

CCNet [32] 6.92 1.77 7.97 3.11

LTMVO [54] 3.49 1.03 5.81 1.82

Ours 1.70 0.48 1.49 0.55

Figure 5. Visual Trajectory on the KITTI VO dataset. We com-

pare our method against other deep learning based SfM methods

on Seq.09 (Left) and Seq.10 (Right) of KITTI VO dataset.

4.4. Framework Analysis and Justification

Estimating Camera Pose from Optical Flow. There

are multiple ways to extract camera pose from optical flow.

We consider two kinds of methods: deep regression and

the classic five-point algorithm [24] with RANSAC scheme.

For deep regression methods, we build a PoseNet similar to

the one used in [41] with ResNet50 [19] as the feature back-
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Table 4. The Effect of Optical Flow Fine-tuning. With the help

of rigid flow supervision, our fine-tuned model achieves a much

better camera pose result than the model trained on synthetic data.

Model
MVS Scenes11 SUN3D

Rot Tran Rot Tran Rot Tran

Our-synthetic 3.637 10.984 0.587 6.617 1.670 12.905

Our-finetune 2.417 3.878 0.276 2.041 1.391 10.757

bone, using image pairs and optical flow as the input. For

the five-point algorithm, we use flow matching pairs as the

input. We also set a baseline by using SIFT matches. To

filter out error matches and outliers, we compare different

masking strategies, such as flow uncertainty maps (output

of per-pixel softmax operation), learned confidence maps,

and SIFT feature locations.

We evaluate these methods on the MVS dataset, see Ta-

ble 5. Deep regression methods have almost constant per-

formance regardless of different inputs and masking strate-

gies. The best option is to use flow matches with masks

based on SIFT feature locations.4

Dealing With Misaligned Scales. It is impossible to

perfectly recover absolute scales from two-view images.

This scale-ambiguity problem will cause trouble if we

would like to directly use ground truth depth for supervision

or through the widely used scale-invariant loss [10, 39]. We

verify the effect of the proposed scale-invariant depth esti-

mation module on the KITTI depth Eigen split. The base-

line follows our pipeline but without scale-invariant depth

module. It simply uses ℓhuber loss on the estimated depth

and the ground depth regardless their scales, which forces

the network to implicitly learn a scale. As shown in Table 6,

our scale-invariant depth module achieves a very similar ac-

curacy to ‘Oracle Pose’, which is the upper bound of our

method. On the other hand, the performance of the scale-

invariant loss is similar to the baseline method, which indi-

cates that this loss cannot handle the scale problem.

Scale-invariant Matching on Other Frameworks. The

scale-invariant matching is specifically designed for our

pipeline to handle the scale ambiguity in depth estima-

tion. Previous deep SfM methods like DeepV2D do not

suffer from this problem as they force networks to regress

camera poses with scales and then make the depth scaled.

That means, these methods cannot benefit from the scale-

invariant matching. As a proof, we apply our scale-invariant

matching to DeepV2D and test it on the KITTI Eigen

dataset. The performance gain is minor: Abs Rel from

0.064 to 0.063 and RMSE from 2.946 to 2.938. Our supe-

rior performance benefits from the whole newly proposed

deep SfM pipeline rather than a single component. Since

all components are tightly coupled in our pipeline, replac-

ing either of them will result in a severe performance drop.

4Note that we use SIFT feature detection to obtain state-of-the-art re-

sults, whereas SIFT feature matching performs poorly and is not used.

Table 5. Estimating Camera Pose from Optical Flow. We com-

pare different methods to estimate camera pose from optical flow

on the MVS dataset. ‘CNN’ represents the pose regression net-

work based on convolutional neural networks with ground truth

pose supervision. ‘5-point’ represents the five-point algorithm

with RANSAC scheme. We also compare different flow masking

strategies here.
Method Input Sparse Mask Rot Tran

CNN Color - 6.652 17.834

CNN Color + Flow - 6.437 17.216

CNN Color + Flow Uncertainty 6.528 17.107

CNN Color + Flow Confidence 6.532 17.511

CNN Color + Flow SIFT loc 6.512 17.231

5-point SIFT matches - 10.622 29.731

5-point Flow matches - 15.673 37.292

5-point Flow matches Uncertainty 4.923 12.127

5-point Flow matches Confidence 4.614 11.022

5-point Flow matches SIFT Loc 2.417 3.878

Table 6. Dealing with Misaligned Scales. We compare different

strategies to handle the misaligned scales between the estimated

depth and ground truth depth on the KITTI Eigen split. ‘Scale Inv

Matching’ indicates the scale invariant matching for plane sweep-

ing, ‘Scale Inv Loss’ represents the scale invariant depth loss. The

‘Oracle’ means using the ground truth for both training and infer-

ence. Using ground truth pose for training achieves a worse result

than the baseline, which verifies the scaling problem.
Strategy Abs Rel Sq Rel RMSE RMSElog

Baseline 0.089 0.318 3.120 0.129

GT Pose Training 0.121 0.438 3.421 0.175

Scale Inv Loss 0.084 0.302 2.981 0.116

Scale Inv Matching 0.055 0.224 2.273 0.091

Oracle Scale 0.053 0.216 2.271 0.089

Oracle Pose 0.052 0.212 2.269 0.088

5. Conclusion

In this paper, we have revisited the problem of deep neu-

ral network based two-view SfM. First, we argued that ex-

isting deep learning-based SfM approaches formulate depth

estimation or pose estimation as ill-posed problems. Then

we proposed a new deep two-view SfM framework that fol-

lows the classic well-posed SfM pipeline. Extensive ex-

periments show that our proposed method outperforms all

state-of-the-art methods in both pose and depth estimation

with a clear margin. In the future, we plan to extend our

framework to other SfM problems such as three-view SfM

and multi-view SfM, where the loop consistency and tem-

poral consistency could further constrain these already well-

posed problems.
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