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Abstract

Deep models have shown their vulnerability when pro-

cessing adversarial samples. As for the black-box attack,

without access to the architecture and weights of the at-

tacked model, training a substitute model for adversarial

attacks has attracted wide attention. Previous substitute

training approaches focus on stealing the knowledge of the

target model based on real training data or synthetic data,

without exploring what kind of data can further improve

the transferability between the substitute and target mod-

els. In this paper, we propose a novel perspective substitute

training that focuses on designing the distribution of data

used in the knowledge stealing process. More specifically,

a diverse data generation module is proposed to synthe-

size large-scale data with wide distribution. And adversar-

ial substitute training strategy is introduced to focus on the

data distributed near the decision boundary. The combina-

tion of these two modules can further boost the consistency

of the substitute model and target model, which greatly im-

proves the effectiveness of adversarial attack. Extensive ex-

periments demonstrate the efficacy of our method against

state-of-the-art competitors under non-target and target at-

tack settings. Detailed visualization and analysis are also

provided to help understand the advantage of our method.

1. Introduction

Despite achieved impressive performance in most com-

puter vision tasks, deep neural networks (DNNs) have been
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Figure 1. Differences between applying real data and synthetic

data for substitute training. The ‘T’/‘S’ means the target/substitute

model, the blue (+)/(-) in (b) indicates the adversarial examples,

and the dashed green/red lines represent the decision boundary.

Comparing (a) and (b), synthetic data generated in our way can

train a substitute model with a more similar decision boundary to

the target model. Best viewed in color and zoomed in.

shown to be vulnerable to even imperceptible adversarial

noise/perturbations [28, 18]. The existence of adversar-

ial examples reveals important security risks in deploying

DNNs to real-world applications. The community studies

the adversarial attacks in the settings of white-box or black-

box attack, by whether or not fully access to the target at-

tack model. Practically, as the information of the full target

model for white-box attack is unavailable to real-world de-

ployment, this paper particularly focuses on the black-box

attack, which normally produces the adversarial examples

only replying on hard-labels or output scores of the target

model. Typically, the black-box attack includes the score-

based [3, 12, 11, 7] or decision-based methods [5, 1]. Nev-

ertheless, it is required to make an avalanche of queries to

the target model in such attacks, still potentially limiting

their usability to attack DNNs in real situations.

Recently, the idea of substitute training has been exten-

sively explored in the black-box attack [8, 26, 16, 23, 29].

Normally, rather than directly learning to synthesize adver-

sarial examples, a substitute model is trained to make sim-

ilar predictions as the target model, queried by the same
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input data. Within a certain amount of queries, this type

of method is usually capable of learning a substitute model

from the target model. Attack can thus be conducted on

substitute model, and then transferable to the target model.

Fundamentally, substitute model tries to gain knowledge

from the target model, by giving the input data and cor-

responding queried labels. Critically, shall the input data

come from the training data for the target model? By as-

suming the ‘yes’ answer, it indeed simplifies the substitute

training. However, it is even non-trivial to collect real in-

put data in many real-world vision tasks. For example, the

data of person images and videos are under very strict con-

trol, and the privacy of personal data has been well pro-

tected by the laws in many countries. Moreover, are the real

images the most effective data for substitute training? The

training data of the target model indeed help to get a well-

performing substitute model on original task, but it cannot

guarantee the transferability of the attack from the substitute

model to target model, which has been proved in Tab. 1 and

Tab. 2. For improving the attack performance in substitute

training, it is necessary to minimize the decision boundary

distance between the substitute and target models, which

needs not only large-scale and diverse training data, but es-

pecially the data distributed near the decision boundary.

To address the limitation of real data and explore a better

distribution of substitute training data, we propose a novel

task-driven unified framework, which only uses specially-

designed generated data for substitute training and achieves

high attack performance. As shown in Fig. 1, compared

with using the training data of the target model to conduct

substitute training, diverse synthetic data combined with ad-

versarial examples will promote the substitute model to fur-

ther approach the target. More specifically, in our frame-

work, we first propose a novel Diverse Data Generation

module (DDG), which samples noise combined with label-

embedded information to generate diverse training data.

Such distributed generated data can basically guarantee the

substitute model to learn knowledge from the target. More-

over, to further encourage the substitute model with simi-

lar decision boundary as the target, Adversarial Substitute

Training strategy (AST) is proposed to introduce adversar-

ial examples as boundary data into the training process.

Overall, the jointly learning of DDG and AST ensures the

consistency between the substitute and target model, which

greatly improves attack success rate in substitute training

for black-box attack without any real data beforehand.

The main contributions of this work are summarized as,

(1) We propose a novel effective generation-based substi-

tute training paradigm to boost data-free black-box attack-

ing performance, for the first time, by delving into the

essence of input generated substitute training data. (2) To

achieve this goal, we firstly propose a diverse data gener-

ation module with multiple diverse constraints to broaden

the distribution of synthetic data. And then further improve

the consistency of decision boundaries between substitute

model and target model by adversarial substitute training

strategy. (3) The comprehensive experiments and visualiza-

tions over the four datasets and one online machine learn-

ing platform demonstrate the effectiveness of our method

against the state-of-the-art attacks.

2. Related work

Adversarial attack. Many previous works focus on the

white-box attack [28, 24, 2, 16, 20] by generating adver-

sarial examples through accessing gradient-information of

target model. Furthermore, there are also some white-box

attack methods studying the transferable attacking perfor-

mance on the unknown black-box models [6, 34, 4]. Un-

fortunately, such a white-box setting greatly and unrealis-

tically simplifies the attack task in the real-world scenario,

as it demands a strong pre-condition of accessing the target

models. In contrast, recent efforts are made on black-box at-

tack methods, which has a more practical setting. Normally,

the attacker can only obtain the output scores or hard labels

of a target victim model. In general, the black-box attack

[9, 1] is conducted by finding adversarial examples from

trials, which will cross the decision boundary of classes.

For example, when processing the class probability output,

Chen et al. [3] propose utilizing a derivative of zeroth or-

der to estimate the real gradients, and the work has been

expanded by [30]. Ilyas et al. [11, 12] also propose per-

forming score-based black-box attack by prior knowledge.

Nevertheless, previous black-box attacks are limited to pro-

hibitive cost for extensively querying the target model, and

significant number of real data for the corresponding target

model. Rather than directly discovering the adversarial ex-

amples, our model learns to effectively synthesize the data

distribution of target model for training a substitute model.

Such a substitute model potentially saves plenty amount of

queries to the target model during the attack generation.

Substitute training. Substitute training is becoming a

flourishing research direction. Papernot et al. [23] train

the substitute model by utilizing a group of real images,

and model theft attacks [29, 35] steal the target model

also based on real data. However, considering the pri-

vacy or unattainable problems of training data, some works

[31, 32, 33] generate synthetic data to train a substitute

model. Methods in [31, 32] generate synthetic images

from noise or recover training images from teacher model

for substitute training based on knowledge distilling (KD).

Zhou et al. [33] firstly propose an attack method to learn a

substitute model under data-free condition. However, they

only learn to output same results with target model, in-

stead of further recovering the data distribution and deci-

sion boundary of the target, which are more crucial for the

transferability of adversarial examples. Different from their
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Figure 2. Illustration of the unified proposed architecture, which consists of Diverse Data Generation module (DDG) and Adversarial

Substitute Training module (AST). (a) DDG aims to generate diverse data with given label, which used to train a substitute model. (b) AST

utilizes the adversarial examples generated from current substitute model to push the substitute model mimic the boundary of the target.

strategy, our proposed method starts from focusing on the

distribution of generated data training for substitute model,

comprehensively improving the attacking performance on

black-box model by two perspectives of the diverse data

generation and adversarial substitute training.

3. Methodology

3.1. Framework Overview

The objective of our work is to train a substitute model

effectively for black-box adversarial attack, the whole pro-

posed framework is illustrated in Fig. 2. It consists of

two modules: Diverse Data Generation module (DDG)

generating diverse data and Adversarial Substitute Train-

ing strategy (AST) further mimicking the ‘behaviour’ of

the target model. In Fig. 2(a), the DDG generates data

x̂(i) = G(z(i), e(i)) based on the random noise z(i) and

label-embedded vector e(i) for the label index i. To guaran-

tee the diversity of synthetic data, the generator G will be

trained by three constraints, i.e., the adaptive label normal-

ized generator, noise/label reconstruction, and inter-class

diversity, which will be elaborated later. Furthermore, to

ensure the substitute model S approximate the decision

boundary of the target model T , we feed the synthesized

data along with the adversarial examples employed by AST

into S for substitute training in Fig. 2(b). Essentially, we

take the target model T as a black-box of classifying M

classes, where only the label/probability outputs are avail-

able. The teacher-student strategy is re-purposed here to

learn S from T . Finally, attacks can thus be conducted on

substitute model, and then transferable to the target model.

3.2. Diverse Data Generation

To synthesize better data for substitute training, we first

propose a novel Diverse Data Generation module (DDG)

with three constraints to manipulate the diversities of gen-

erated synthetic images. These constraints, in principle,

encourage the generator G to learn relatively independent

data-distribution for each different class, and keep the inter-

class variances, which promote the alternative model to

learn the knowledge of the target model.

Adaptive label normalized generator. To better learn

from the target model, we need equally distributed data of

all categories for substitute training, thus it is necessary to

generate label-controlled data. To realize that, we take full

advantage of the given label and random noise. Firstly, with

the input of the random noise vector z(i) ∈ R
N sampled

from standard Gaussian distribution and label i, we calcu-

late the label-embedded vector e(i) ∈ R
N based on em-

bedding layers [21]. Such label embedding process can en-

code a single discrete label to a continuous learnable vector,

which has a wider distribution in the feature space and con-

tains more representation information. Unlike GANs, we

have no real images for supervision, such a label embedding

process is crucial for data generation. Next, we extract the

mean µ(i) and variance σ(i) from the N -dimensional label-

embedding vector e(i) by two full-connected layers. Then,

the µ(i) and σ(i) are involved in all deconvolution blocks to

iteratively synthesize the image data with the condition of

the specific category, which can be expressed as,

x̂
(i)
t = DeConv(x̂

(i)
t−1) ∗ σ

(i) + µ(i) (1)

where there are total five de-convolution blocks, and t rep-

resents the number of de-convolution block. After obtaining
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the final x̂
(i)

, the output generated data has been decorated

with label-normalized information. Such an adaptive label

normalized generator can better leverage the relations be-

tween input noise and label-embedding vectors to synthe-

size label-controlled data.

Noise/Label reconstruction. To further ensure the diver-

sity of generated data x̂
(i)

, we introduce a reconstruction

net R to reconstruct the input noise and label embedding

z
(i)
r , e

(i)
r = R(x̂(i)). And the corresponding reconstruction

loss can be calculated as,

Lrec =

M−1∑

i=0

‖ (z(i)r − z(i)) ‖1 +CE(f(e(i)r , e), i) (2)

where we use L1 to denote the difference between the in-

put z(i) and reconstructed z
(i)
r . As for label reconstruction,

we apply function f(∗) to calculate the cosine distance be-

tween e
(i)
r and e, which are further processed by Softmax to

compute the cross entropy loss with the ground-truth label

i. Under this constraint, our G can generate more diverse

images for different input noise vectors of each class.

Inter-class diversity. To further enhance the data diver-

sity of different classes, we use a cosine-similarity matrix

to maximize the inter-class distance, for all the synthetic

images. Particularly, the generator produces one input syn-

thetic data batch of MB ≪ M different classes, and the

model S gives the output similarity matrix OB ∈ R
MB×MB

of this batch. Note that we have the ground-truth similarity

matrix O
gt
B ∈ {0, 1}

MB×MB with all the elements to be 0
except the diagonal elements are set to be 1. Thus the diver-

sity loss function Ldiv can be formulated as:

Ldiv =‖ TRI(OB −O
gt
B ) ‖2 (3)

where TRI(∗) is defined as an operation to extract the up-

per triangle elements of similarity matrix except the diag-

onal elements. In this way, Ldiv will ensure the synthetic

data owns the independent distribution for each class.

3.3. Adversarial Substitute Training

After DDG generates diverse training data, for better at-

tack performance, we still have to further encourage the

substitute model with a more similar decision boundary as

the target. As is known to all, adversarial examples are

wrongly classified with the visually-indistinguishable per-

turbations applied on. Due to the perturbations is relatively

small, the adversarial examples can be seen as the sam-

ples around the decision boundary. Therefore, we propose a

novel adversarial substitute training strategy (AST), which

utilizes the adversarial examples to further push the decision

boundary of S more fitting to the T ’s. More specifically, for

each iteration during training, our generator firstly synthe-

sizes images through DDG. Then we choose the white-box

Algorithm 1 The proposed black-box attack.

Require:

Input: Random noise z(i) ∈ R
N ; Label i ∈

{0, 1, ...M − 1}; Generator G; Target victim model T ;

Substitute model S; Iterations R.

Initialization: Model parameters θG, θS ; hyper-

parameters β1, β2, β3, γ1, γ2;.

Ensure: Model parameters θ∗G, θ∗S .

1: for each r ∈ R do

2: Synthetic data generation:

3: Given the label i and random noise z(i), extract the

mean µ(i) and variance σ(i) from the label-embedded

vector e(i)

4: Generate data through adaptive label normalized

generator x̂
(i)
t = DeConv(x̂

(i)
t−1) ∗ σ

(i) + µ(i)

5: Generate adversarial examples based on the x̂
(i)

6: Update S:

7: Compute LS := (Ld, Ladv
d ) then update θ

′

S ← θS −
γ1 ▽θS LS(θS)

8: Update G:

9: Calculate LG := (Lc, Ladv
c , Lrec, Ldiv) and then

update θ
′

G ← θG − γ2 ▽θG LG(θG)
10: endfor

11: θ∗G = θ
′

G, θ∗S = θ
′

S

12: return θ∗G, θ∗S ;

attacking algorithm to obtain the adversarial perturbations ǫ

for the synthetic images based on the current S. The objec-

tive function to generate adversarial images is defined as,

min
ǫ∈[0,1]d

‖ ǫ ‖ +λ · L(x̂(i) + ǫ, iadv) (4)

where L(·) denotes an attack objective reflecting the prob-

ability or cross-entropy of predicting x̂(i) + ǫ to be iadv ,

if considering the un-targeted attack, iadv 6= i, otherwise,

iadv = t, t is a target label. λ is a regularization coefficient,

and the constraint ǫ ∈ [0, 1]d confines the perturbation ǫ to

the valid image space. Then the generated images and cor-

responding adversarial data are used to updating S together.

3.4. Loss Functions

Finally, we apply the basic loss functions as in [33] to

train the substitute model,

Ld =

M−1∑

i=0

‖ T (x̂(i)), S(x̂(i)) ‖F (5)

Lc = e−Ld +

M−1∑

i=0

CE(S(G(z(i), e(i))), i)) (6)

where Ld measures the distance between the output of T

and S, and Lc denotes the generation loss. e−Ld implies a
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Table 1. Comparing ASRs results using probability as the target model output among our method and competitors over several datasets.

Dataset MNIST CIFAR-10 CIFAR-100 Tiny ImageNet

Target Model AlexNet VGG-16 ResNet-18 AlexNet VGG-16 ResNet-18 VGG-19 ResNet-50 ResNet-50

N
o

n
-T

ar
g

et

Training Data 41.36 29.25 34.81 30.95 23.15 32.66 14.47 18.33 12.86

ImageNet 44.78 34.86 31.39 36.84 22.94 34.01 17.26 20.93 21.75

PBBA [23] 52.53 50.31 59.77 45.82 30.19 33.91 22.34 28.11 26.54

Knockoff [22] 59.21 58.38 65.82 50.93 31.58 39.40 27.73 29.55 29.99

DaST [33] 58.86 54.82 59.62 50.28 32.45 42.77 27.39 26.18 28.81

Ours 66.31 62.84 70.27 55.76 42.31 46.82 35.48 39.29 34.28

T
ar

g
et

Training Data 38.45 40.27 43.94 11.45 10.35 11.22 5.02 8.66 6.17

ImageNet 40.42 43.88 41.72 14.66 10.28 13.43 5.82 10.39 11.25

PBBA [23] 42.67 55.66 49.24 25.83 15.38 20.44 6.73 17.22 13.88

Knockoff [22] 48.28 52.89 54.27 30.87 16.92 19.56 12.83 22.37 15.26

DaST [33] 50.17 52.84 51.29 29.93 16.28 21.44 10.84 15.81 13.92

Ours 59.29 57.28 64.46 33.81 29.89 25.77 17.23 21.44 19.37

‘min-max’ game with Ld, CE(·) indicates the cross entropy

loss between the prediction of S and input ground-truth la-

bel i. Thus by virtue of such an alternately minimization of

these two loss functions, the substitute model S can learn

to mimic the outputs from the target model T . Further pro-

moted by DDG and AST, with the generated data and ad-

versarial examples, the unified substitute training loss LS

and generator loss LG to train S and G are defined as,

LS = Ld + L
adv
d (7)

LG = β1(Lc + L
adv
c ) + β2Lrec + β3Ldiv (8)

where Ladv
d is defined as the same as Ld in Eq. 5 measuring

the distance between the output from T and S using the ad-

versarial examples as inputs. Ladv
c is defined as Lc in Eq. 6

to constrain the generation with adversarial examples as in-

put, Lrec and Ldiv are proposed to enhance the diversity of

generated data, , which will be elaborated later. β1, β2, and

β3 are the balanced hyper-parameters for DDG. Overall, the

whole training process is illustrated in Alg.1.

4. Experiments

4.1. Experiment Setup

Datasets and target model. 1) MNIST [17]: The attacked

model is pre-trained on AlexNet [14], VGG-16 [27], and

ResNet-18 [10]. The default substitute model is a network

with 3 convolutional layers. 2) CIFAR-10 [13]: The at-

tacked is pre-trained on AlexNet, VGG-16, and ResNet-18.

The default substitute model is VGG-13. 3) CIFAR-100

[13]: The attacked is pre-trained on VGG-19 and ResNet-

50. The default substitute model is ResNet-18. 4) Tiny Im-

agenet [25]: The attacked is pre-trained on ResNet-50. The

substitute model is ResNet-34.

Competitors. To verify the efficacy of the proposed

method, we compare our attacking results with data-free

black-box attack, i.e., DaST [33], and several black-box

attacks which require real data, such as PBBA [23] and

Knockoff [22]. We also conduct substitute training using

the original training data of the attacked model, and utilize

ImageNet [25] to learn the substitute model.

Implementation details. We use Pytorch for Implementa-

tion. We utilize Adam to train our substitute model, genera-

tor, and reconstruction net from scratch, and all weights are

randomly initialized using a truncated normal distribution

with std of 0.02. The initial learning rates of all networks

are set as 0.0001, they are gradually decreased to zero from

the 80th epoch, and stopped after the 150th epoch. We set

the mini-batch size as 500, the hyper-parameters β1, β2, and

β3 are equally as 1. Our model is trained by one NVIDIA

GeForce GTX 1080Ti GPU. We apply PGD [20] as the de-

fault method to generate adversarial images during the AST

and evaluation. We also utilize FGSM [8], BIM [15] and

C&W [2] to conduct attack for extensive experiments.

Evaluation metrics. Considering there exist two different

scenarios as proposed in DaST [33], i.e., only get the output

label from the target model and access the output probabil-

ity well, and we name these two scenarios as Probability-

based and Label-based. In the experiments, we report the at-

tack success rates (ASRs) of the adversarial examples gen-

erated by the substitute model to attack the target black-box

model. Following the setting in DaST [33], in the non-target

attack setting, we only generate adversarial examples on the

images classified correctly by the attacked model. For tar-

get attacks, we only generate adversarial examples on the

images which are not classified to the specific wrong labels.

For a fair comparison, during all the adversarial example

generation, we restrict the perturbation ǫ = 8. We conduct

five times over each testing, and report the average results.

4.2. Blackbox Attack Results

We evaluate our method with competitors over four

datasets and one online machine learning platform for

both target and non-target attack settings. As shown in

Tab. 1, Tab. 2, and Tab. 3, we conduct extensive compari-
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Table 2. Comparing ASRs results using the label as target model output among our proposed method and competitors over several datasets.

Dataset MNIST CIFAR-10 CIFAR-100 Tiny ImageNet

Target Model AlexNet VGG-16 ResNet-18 AlexNet VGG-16 ResNet-18 VGG-19 ResNet-50 ResNet-50

N
o

n
-T

ar
g

et

Training Data 17.45 20.11 24.50 13.76 10.43 13.05 5.01 8.58 7.32

ImageNet 18.26 23.77 22.56 15.83 12.73 14.11 8.38 11.28 13.29

PBBA [23] 22.45 28.18 29.00 21.84 13.63 17.66 11.48 16.33 15.37

Knockoff [22] 25.39 33.18 37.72 20.16 20.74 19.87 16.48 18.31 22.33

DaST [33] 26.51 29.22 35.81 25.18 19.34 23.01 17.34 17.27 16.28

Ours 31.74 32.70 40.96 29.44 26.92 23.38 23.48 27.88 28.31

T
ar

g
et

Training Data 15.53 12.55 10.88 9.92 10.24 9.09 3.97 6.44 4.92

ImageNet 14.29 14.81 15.70 11.01 12.22 9.32 4.82 8.56 7.02

PBBA [23] 15.26 19.86 18.53 12.84 11.33 10.48 6.91 7.33 8.61

Knockoff [22] 19.48 23.74 17.85 16.38 12.80 13.91 9.48 9.52 10.65

DaST [33] 20.03 21.48 19.33 15.72 15.92 14.83 7.48 10.39 10.31

Ours 25.56 27.64 21.83 21.66 18.67 17.90 12.47 16.26 13.39

Table 3. Comparing ASRs results among our proposed method and

competitors for attacking the Microsoft Azure example model.

Method Probability-based Lable-based

N
o

n
-T

ar
g

et PBBA [23] 82.34 80.29

Knockoff [22] 88.91 92.88

DaST [33] 90.63 96.97

Ours 96.73 98.91

T
ar

g
et

PBBA [23] 39.23 49.39

Knockoff [22] 46.97 63.99

DaST [33] 45.66 65.91

Ours 57.92 69.81

son with multiple target models for each dataset under both

probability-based and label-based scenarios.

Comparisons with the real data for substitute training.

Here we study the substitute training for attacking with real

images, as listed in Tab. 1 and Tab. 2, we directly use the

original training data of the target model or ImageNet to

apply substitute training instead of the synthesized. The re-

sults show that the real image can let the substitute model

learn a little from the target and may higher accuracy on

the classification, but weaker attack strength compared to

the generated data. We believe that this problem is caused

by the number and diversity limitation of the real images,

which may lead to failure of the substitute model learning

and mimicking from the target one. Thus, we propose a

DDG strategy to synthesize large-scale and diversified data.

Comparisons with the state-of-the-art. As shown in

Tab. 1 and Tab. 2, we compare our method with black-box

attacks. For both non-target and target attacking settings,

our method achieves the best ASRs over Probability-based

and Label-based scenarios under all datasets. In addition,

compared to similar generative DaST, our method signifi-

cantly outperforms it with a large margin. The results ver-

ify the efficacy of proposed method to encourage the substi-

tute model better approximate the target’s decision bound-

Table 4. ASRs results of variants of the proposed attack method.

The components are overlaid gradually with the rows. The target

model is based on AlexNet for MNIST, and VGG-16 for CIFAR-

10, the substitute models are the default ones according to the

datasets. ‘C-100’ refers to the CIFAR-100 dataset.

Components
Probability-based Label-based

MNIST C-100 MNIST C-100

N
o

n
-T

ar
g

et

Baseline 29.42 8.27 13.84 4.27

+ ALNG 49.18 21.38 20.85 12.66

+ N/LR 55.21 26.31 24.91 15.99

+ ICR 62.82 31.27 28.20 19.94

+ AST (Ours) 66.31 35.48 31.74 23.48

T
ar

g
et

Baseline 26.29 3.27 11.48 1.29

+ ALNG 44.48 10.47 16.28 7.83

+ N/LR 51.87 11.83 19.59 9.38

+ ICR 54.01 14.89 22.48 11.03

+ AST (Ours) 59.29 17.23 25.56 12.47

ary and achieve high ASRs for data-free black-box attack.

Comparisons with competitors on Microsoft Azure. To

better evaluate the attack method ability under the real-

world applications, we conduct experiments for attacking

the online model on Microsoft Azure. Target at attacking

the example MNIST model of the machine learning tuto-

rial on Azure, we compare the results between our methods

and competitors. The results shown in Tab. 3, indicate our

method can achieve the best ASRs over the online model,

which further prove the efficacy of our method under the

real scenario without prior knowledge of the attack one.

4.3. Ablation Study

4.3.1 Quantitative Results

The efficacy of different components in the proposed

method. To generate label-controlled and diversity data for

substitute training and make the substitute model better fit

the decision boundary of the target, our method applies the
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Table 5. ASRs results applying various attacks to generate ad-

versarial examples for AST under different attack evaluation in

MNIST. The target model is AlexNet and the substitute model is

the default. The 3rd and 4th columns represent applying FGSM to

conduct AST, the last two columns utilize PGD for AST, and the

raw indicates the attack to evaluate. The ‘-P’ and ‘-L’ in table mean

the Probability-based and Label-based scenarios, respectively.

Attacks
FGSM [8] PGD [20]

-P -L -P -L

N
o

n
-T

ar
g

et FGSM [8] 70.26 36.29 57.35 33.10

BIM [15] 66.38 36.97 68.45 29.58

PGD [20] 62.63 33.72 66.31 31.74

C&W [2] 49.92 20.91 46.93 22.02

T
ar

g
et

FGSM [8] 50.82 27.38 29.48 19.25

BIM [15] 67.29 32.33 44.82 18.14

PGD [20] 52.77 33.39 39.29 25.56

C&W [2] 49.38 20.39 28.57 19.66

following components: (a) ‘Adaptive label normalized gen-

erator’ (ALNG): generates data from input random noise

with label-embedded vector; (b) ‘Noise/Label reconstruc-

tion’ (N/LR): applies a reconstruction net to reconstruct the

input noise and given label; (c) ‘Inter-class diversity’ (ICR):

constrains the distance of generated data in inter-classes; (d)

‘Adversarial substitute training’ (AST): uses the adversarial

examples to further train the substitute model. In Tab. 4, we

list the variants by adding the above components gradually,

and the ‘Baseline’ refers to the framework using random

noise and given label as the contacted input to directly gen-

erate data and train substitute model.

As the results shown in the Tab. 4, we can find that

without ALNG, the substitute model ‘Baseline’ can hardly

learn knowledge from the attacked one, which may due

to the poor generation without powerful controlled label

constrains. Besides, models with the N/LR and ICR can

achieve much higher ASRs results compared to the former,

these verify that more diverse label-controlled generated

data can make the substitute models learn more knowledge

from the target. To ensure that the substitute model approx-

imates the attacked decision boundary, the AST technique

is applied to generate adversarial examples as the bound-

ary data to make the substitute model mimic the attacked

one and further boost the attack results. The ASRs results

clearly demonstrate the important roles of components for

data-free black-box attack.

The affect of different attacks. Consider that we require

adversarial examples during the substitute training, here we

evaluate the affect of attack method for our algorithm. As

shown in Tab. 5, the column means the attacks to gener-

ate adversarial examples for substitute training, and the row

refers to the method to attack the target model in evaluation.

The results indicate that different attacks may not have ob-

vious impacts on our method, which means that using dif-

Table 6. ASRs results with different substitute models attacking

VGG-16 trained on CIFAR-10. The ‘-P’ and ‘-L’ in table mean

the Probability-based and Label-based scenarios, respectively.

Non-Target Attack Target Attack

-P -L -P -L

AlexNet [14] 39.78 22.57 24.90 18.45

VGG-13 [27] 42.31 26.92 29.89 18.67

VGG-16 [27] 45.24 25.28 30.41 22.46

VGG-19 [27] 45.92 27.69 32.59 21.94

ResNet-18 [10] 49.28 26.83 33.20 20.58

ResNet-34 [10] 48.94 28.72 30.48 20.4

Figure 3. Samples of generated images on MNIST. The upper part

represents the images generated from ours, and the below from

DaST. Left to right represents 0–9 hand-written number classes,

and the samples belong to the same column have the same label.

ferent attacks for substitute training hardly affects the final

attacking results. Thus, our method is effective under vari-

ous attacks and there is no need to restrict the attack method

between the substitute training and evaluation.

The impact of different substitute model architecture.

We aim to achieve a successful attack for black-box un-

der data-free condition, thus we have no prior knowledge of

the attacked model structure. To further evaluate the impact

of different substitute model architecture, we apply several

substitute models for the same attacked one, which is VGG-

16 pre-trained on CIFAR-10. As shown in Tab. 6, we try

various architecture as the substitute model, i.e., AlexNet,

VGGNet, and ResNet, and the results show that there does

not exist the most suitable structure which can achieve

the best ASRs under all settings. Except for the simplest

AlexNet, the others reach similar high ASRs results, which

demonstrates that the different substitute model architecture

may not have a huge impact on the attack strength, but still

recommend choosing a deeper network.

4.3.2 Qualitative Results

Our model can improve the diversity of generated data

across different categories. (1) As for the generated data
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