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Abstract

Deep models have shown their vulnerability when pro-
cessing adversarial samples. As for the black-box attack,
without access to the architecture and weights of the at-
tacked model, training a substitute model for adversarial
attacks has attracted wide attention. Previous substitute
training approaches focus on stealing the knowledge of the
target model based on real training data or synthetic data,
without exploring what kind of data can further improve
the transferability between the substitute and target mod-
els. In this paper, we propose a novel perspective substitute
training that focuses on designing the distribution of data
used in the knowledge stealing process. More specifically,
a diverse data generation module is proposed to synthe-
size large-scale data with wide distribution. And adversar-
ial substitute training strategy is introduced to focus on the
data distributed near the decision boundary. The combina-
tion of these two modules can further boost the consistency
of the substitute model and target model, which greatly im-
proves the effectiveness of adversarial attack. Extensive ex-
periments demonstrate the efficacy of our method against
state-of-the-art competitors under non-target and target at-
tack settings. Detailed visualization and analysis are also
provided to help understand the advantage of our method.

1. Introduction

Despite achieved impressive performance in most com-
puter vision tasks, deep neural networks (DNN5s) have been
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(a) Real Data Substitute Training (b) Synthetic Data Substitute Training

Figure 1. Differences between applying real data and synthetic
data for substitute training. The “T’/‘S’ means the target/substitute
model, the blue (+)/(-) in (b) indicates the adversarial examples,
and the dashed green/red lines represent the decision boundary.
Comparing (a) and (b), synthetic data generated in our way can
train a substitute model with a more similar decision boundary to
the target model. Best viewed in color and zoomed in.

shown to be vulnerable to even imperceptible adversarial
noise/perturbations [28, 18]. The existence of adversar-
ial examples reveals important security risks in deploying
DNNss to real-world applications. The community studies
the adversarial attacks in the settings of white-box or black-
box attack, by whether or not fully access to the target at-
tack model. Practically, as the information of the full target
model for white-box attack is unavailable to real-world de-
ployment, this paper particularly focuses on the black-box
attack, which normally produces the adversarial examples
only replying on hard-labels or output scores of the target
model. Typically, the black-box attack includes the score-
based [3, 12, 11, 7] or decision-based methods [5, 1]. Nev-
ertheless, it is required to make an avalanche of queries to
the target model in such attacks, still potentially limiting
their usability to attack DNNSs in real situations.

Recently, the idea of substitute training has been exten-
sively explored in the black-box attack [8, 26, 16, 23, 29].
Normally, rather than directly learning to synthesize adver-
sarial examples, a substitute model is trained to make sim-
ilar predictions as the target model, queried by the same
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input data. Within a certain amount of queries, this type
of method is usually capable of learning a substitute model
from the target model. Attack can thus be conducted on
substitute model, and then transferable to the target model.

Fundamentally, substitute model tries to gain knowledge
from the target model, by giving the input data and cor-
responding queried labels. Critically, shall the input data
come from the training data for the target model? By as-
suming the ‘yes’ answer, it indeed simplifies the substitute
training. However, it is even non-trivial to collect real in-
put data in many real-world vision tasks. For example, the
data of person images and videos are under very strict con-
trol, and the privacy of personal data has been well pro-
tected by the laws in many countries. Moreover, are the real
images the most effective data for substitute training? The
training data of the target model indeed help to get a well-
performing substitute model on original task, but it cannot
guarantee the transferability of the attack from the substitute
model to target model, which has been proved in Tab. 1 and
Tab. 2. For improving the attack performance in substitute
training, it is necessary to minimize the decision boundary
distance between the substitute and target models, which
needs not only large-scale and diverse training data, but es-
pecially the data distributed near the decision boundary.

To address the limitation of real data and explore a better
distribution of substitute training data, we propose a novel
task-driven unified framework, which only uses specially-
designed generated data for substitute training and achieves
high attack performance. As shown in Fig. 1, compared
with using the training data of the target model to conduct
substitute training, diverse synthetic data combined with ad-
versarial examples will promote the substitute model to fur-
ther approach the target. More specifically, in our frame-
work, we first propose a novel Diverse Data Generation
module (DDG), which samples noise combined with label-
embedded information to generate diverse training data.
Such distributed generated data can basically guarantee the
substitute model to learn knowledge from the target. More-
over, to further encourage the substitute model with simi-
lar decision boundary as the target, Adversarial Substitute
Training strategy (AST) is proposed to introduce adversar-
ial examples as boundary data into the training process.
Overall, the jointly learning of DDG and AST ensures the
consistency between the substitute and target model, which
greatly improves attack success rate in substitute training
for black-box attack without any real data beforehand.

The main contributions of this work are summarized as,
(1) We propose a novel effective generation-based substi-
tute training paradigm to boost data-free black-box attack-
ing performance, for the first time, by delving into the
essence of input generated substitute training data. (2) To
achieve this goal, we firstly propose a diverse data gener-
ation module with multiple diverse constraints to broaden

the distribution of synthetic data. And then further improve
the consistency of decision boundaries between substitute
model and target model by adversarial substitute training
strategy. (3) The comprehensive experiments and visualiza-
tions over the four datasets and one online machine learn-
ing platform demonstrate the effectiveness of our method
against the state-of-the-art attacks.

2. Related work

Adversarial attack. Many previous works focus on the
white-box attack [28, 24, 2, 16, 20] by generating adver-
sarial examples through accessing gradient-information of
target model. Furthermore, there are also some white-box
attack methods studying the transferable attacking perfor-
mance on the unknown black-box models [0, 34, 4]. Un-
fortunately, such a white-box setting greatly and unrealis-
tically simplifies the attack task in the real-world scenario,
as it demands a strong pre-condition of accessing the target
models. In contrast, recent efforts are made on black-box at-
tack methods, which has a more practical setting. Normally,
the attacker can only obtain the output scores or hard labels
of a target victim model. In general, the black-box attack
[9, 1] is conducted by finding adversarial examples from
trials, which will cross the decision boundary of classes.
For example, when processing the class probability output,
Chen et al. [3] propose utilizing a derivative of zeroth or-
der to estimate the real gradients, and the work has been
expanded by [30]. Ilyas et al. [I1, 12] also propose per-
forming score-based black-box attack by prior knowledge.
Nevertheless, previous black-box attacks are limited to pro-
hibitive cost for extensively querying the target model, and
significant number of real data for the corresponding target
model. Rather than directly discovering the adversarial ex-
amples, our model learns to effectively synthesize the data
distribution of target model for training a substitute model.
Such a substitute model potentially saves plenty amount of
queries to the target model during the attack generation.

Substitute training. Substitute training is becoming a
flourishing research direction. Papernot et al. [23] train
the substitute model by utilizing a group of real images,
and model theft attacks [29, 35] steal the target model
also based on real data. However, considering the pri-
vacy or unattainable problems of training data, some works
[31, 32, 33] generate synthetic data to train a substitute
model. Methods in [31, 32] generate synthetic images
from noise or recover training images from teacher model
for substitute training based on knowledge distilling (KD).
Zhou et al. [33] firstly propose an attack method to learn a
substitute model under data-free condition. However, they
only learn to output same results with target model, in-
stead of further recovering the data distribution and deci-
sion boundary of the target, which are more crucial for the
transferability of adversarial examples. Different from their
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Figure 2. Illustration of the unified proposed architecture, which consists of Diverse Data Generation module (DDG) and Adversarial
Substitute Training module (AST). (a) DDG aims to generate diverse data with given label, which used to train a substitute model. (b) AST
utilizes the adversarial examples generated from current substitute model to push the substitute model mimic the boundary of the target.

strategy, our proposed method starts from focusing on the
distribution of generated data training for substitute model,
comprehensively improving the attacking performance on
black-box model by two perspectives of the diverse data
generation and adversarial substitute training.

3. Methodology
3.1. Framework Overview

The objective of our work is to train a substitute model
effectively for black-box adversarial attack, the whole pro-
posed framework is illustrated in Fig. 2. It consists of
two modules: Diverse Data Generation module (DDG)
generating diverse data and Adversarial Substitute Train-
ing strategy (AST) further mimicking the ‘behaviour’ of
the target model. In Fig. 2(a), the DDG generates data
D = Gz, e”) based on the random noise z(*) and
label-embedded vector e(*) for the label index i. To guaran-
tee the diversity of synthetic data, the generator G will be
trained by three constraints, i.e., the adaptive label normal-
ized generator, noise/label reconstruction, and inter-class
diversity, which will be elaborated later. Furthermore, to
ensure the substitute model S approximate the decision
boundary of the target model 7, we feed the synthesized
data along with the adversarial examples employed by AST
into S for substitute training in Fig. 2(b). Essentially, we
take the target model 7" as a black-box of classifying M
classes, where only the label/probability outputs are avail-
able. The teacher-student strategy is re-purposed here to
learn S from 7. Finally, attacks can thus be conducted on
substitute model, and then transferable to the target model.

3.2. Diverse Data Generation

To synthesize better data for substitute training, we first
propose a novel Diverse Data Generation module (DDG)
with three constraints to manipulate the diversities of gen-
erated synthetic images. These constraints, in principle,
encourage the generator G to learn relatively independent
data-distribution for each different class, and keep the inter-
class variances, which promote the alternative model to
learn the knowledge of the target model.

Adaptive label normalized generator. To better learn
from the target model, we need equally distributed data of
all categories for substitute training, thus it is necessary to
generate label-controlled data. To realize that, we take full
advantage of the given label and random noise. Firstly, with
the input of the random noise vector z*) € R sampled
from standard Gaussian distribution and label i, we calcu-
late the label-embedded vector e € RY based on em-
bedding layers [21]. Such label embedding process can en-
code a single discrete label to a continuous learnable vector,
which has a wider distribution in the feature space and con-
tains more representation information. Unlike GANs, we
have no real images for supervision, such a label embedding
process is crucial for data generation. Next, we extract the
mean £() and variance ¢(*) from the N-dimensional label-
embedding vector e(*) by two full-connected layers. Then,
the 1+(9) and o) are involved in all deconvolution blocks to
iteratively synthesize the image data with the condition of
the specific category, which can be expressed as,

f(y) = DeC’onv(f(Eijl) s o) 4 @ (1)

where there are total five de-convolution blocks, and ¢ rep-
resents the number of de-convolution block. After obtaining
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the final f((i), the output generated data has been decorated
with label-normalized information. Such an adaptive label
normalized generator can better leverage the relations be-
tween input noise and label-embedding vectors to synthe-
size label-controlled data.

Noise/Label reconstruction. To further ensure the diver-
sity of generated data %, we introduce a reconstruction
net R to reconstruct the input noise and label embedding
zii), efj) = R(i”(i)). And the corresponding reconstruction
loss can be calculated as,

Lrec = Z | (z z) ) 1l +CE(f(e,(f),e),i) ()

1=0

where we use L to denote the difference between the in-
put 2z and reconstructed z&i). As for label reconstruction,
we apply function f(x) to calculate the cosine distance be-
tween eg) and e, which are further processed by Softmax to
compute the cross entropy loss with the ground-truth label
1. Under this constraint, our GG can generate more diverse

images for different input noise vectors of each class.

Inter-class diversity. To further enhance the data diver-
sity of different classes, we use a cosine-similarity matrix
to maximize the inter-class distance, for all the synthetic
images. Particularly, the generator produces one input syn-
thetic data batch of Mp < M different classes, and the
model S gives the output similarity matrix Og € RMzxMz
of this batch. Note that we have the ground-truth similarity
matrix 0% € {0,1}"*M? with all the elements to be 0
except the diagonal elements are set to be 1. Thus the diver-
sity loss function L g;, can be formulated as:

Laiv =|| TRI(Op — O%) |2 3)

where T'RI (%) is defined as an operation to extract the up-
per triangle elements of similarity matrix except the diag-
onal elements. In this way, L4, will ensure the synthetic
data owns the independent distribution for each class.

3.3. Adversarial Substitute Training

After DDG generates diverse training data, for better at-
tack performance, we still have to further encourage the
substitute model with a more similar decision boundary as
the target. As is known to all, adversarial examples are
wrongly classified with the visually-indistinguishable per-
turbations applied on. Due to the perturbations is relatively
small, the adversarial examples can be seen as the sam-
ples around the decision boundary. Therefore, we propose a
novel adversarial substitute training strategy (AST), which
utilizes the adversarial examples to further push the decision
boundary of S more fitting to the T"’s. More specifically, for
each iteration during training, our generator firstly synthe-
sizes images through DDG. Then we choose the white-box

Algorithm 1 The proposed black-box attack.
Require:

Input: Random noise 20 e RY: Label i €
{0,1,...M — 1}; Generator G; Target victim model T’
Substitute model S; Iterations R.

Initialization: Model parameters 6g, 60g; hyper-
parameters 31, 32, 83,71, 72;-

Ensure: Model parameters 0, 0%.
1: for eachr € R do
2:  Synthetic data generation:
3: Given the label 7 and random noise z(9), extract the
mean 1" and variance o(*) from the label-embedded
vector e(?)

4: Generate data through adaptive label normalized
generator f(,E D= DeConv(xt 1) w0 4 @
5: Generate adversarial examples based on the x@
Update S:

. Compute Lg := (L4, L3%) then update 9:5' — 05 —
71 Vs ‘CS'(&S)
. Update G:
: Calculate LG = (Le, LY, Lycc, Laiy) and then
update 0, < 0 — 72 Vo, La(0a)
10: endfor
11: 9& = GG’ 92 = 95
12: return 07, 0%;

attacking algorithm to obtain the adversarial perturbations e
for the synthetic images based on the current .S. The objec-
tive function to generate adversarial images is defined as,

mln | el +X- L&D +€,499) 4)
€€[0,1]

where L£(-) denotes an attack objective reflecting the prob-
ability or cross-entropy of predicting (V) + ¢ to be %%,
if considering the un-targeted attack, jadv = i, otherwise,
%Y — ¢ tisa target label. )\ is a regularization coefficient,
and the constraint ¢ € [0, 1]¢ confines the perturbation € to
the valid image space. Then the generated images and cor-
responding adversarial data are used to updating .S together.

3.4. Loss Functions

Finally, we apply the basic loss functions as in [33] to
train the substitute model,

M-—1
Ly= Z I (&), S(&) ||p ©)

‘d+ZCE G(2",e)),) (6

where £, measures the distance between the output of 7’
and S, and £, denotes the generation loss. e~ *< implies a
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Table 1. Comparing ASRs results using probability as the target model output among our method and competitors over several datasets.

Dataset MNIST CIFAR-10 CIFAR-100 Tiny ImageNet

Target Model | AlexNet VGG-16 ResNet-18 | AlexNet VGG-16 ResNet-18 | VGG-19 ResNet-50 ResNet-50
Training Data 41.36 29.25 34.81 30.95 23.15 32.66 14.47 18.33 12.86
?0 ImageNet 44.78 34.86 31.39 36.84 22.94 34.01 17.26 20.93 21.75
& PBBA [23] 52.53 50.31 59.77 45.82 30.19 33.91 22.34 28.11 26.54
g Knockoff [22] 59.21 58.38 65.82 50.93 31.58 39.40 27.73 29.55 29.99
Z. DaST [33] 58.86 54.82 59.62 50.28 32.45 42.77 27.39 26.18 28.81
Ours 66.31 62.84 70.27 55.76 42.31 46.82 3548 39.29 34.28
Training Data 38.45 40.27 43.94 11.45 10.35 11.22 5.02 8.66 6.17
= ImageNet 40.42 43.88 41.72 14.66 10.28 13.43 5.82 10.39 11.25
‘é’o PBBA [23] 42.67 55.66 49.24 25.83 15.38 20.44 6.73 17.22 13.88
& | Knockoff [22] 48.28 52.89 54.27 30.87 16.92 19.56 12.83 22.37 15.26
DaST [33] 50.17 52.84 51.29 29.93 16.28 21.44 10.84 15.81 13.92
Ours 59.29 57.28 64.46 33.81 29.89 25.77 17.23 21.44 19.37

‘min-max’ game with £4, CE(+) indicates the cross entropy
loss between the prediction of S and input ground-truth la-
bel i. Thus by virtue of such an alternately minimization of
these two loss functions, the substitute model S can learn
to mimic the outputs from the target model 7. Further pro-
moted by DDG and AST, with the generated data and ad-
versarial examples, the unified substitute training loss Lg
and generator loss L to train S and G are defined as,

Ls = Lq+ L3 (7)
EG = Bl (‘Cc + ﬁﬁd“) + /BQ‘CT(EC + BSEdiv (8)

where £39 is defined as the same as L4 in Eq. 5 measuring
the distance between the output from 7" and .S using the ad-
versarial examples as inputs. L% is defined as £, in Eq. 6
to constrain the generation with adversarial examples as in-
put, L. and Lg;, are proposed to enhance the diversity of
generated data, , which will be elaborated later. 31, 32, and
(3 are the balanced hyper-parameters for DDG. Overall, the
whole training process is illustrated in Alg.1.

4. Experiments
4.1. Experiment Setup

Datasets and target model. 1) MNIST [17]: The attacked
model is pre-trained on AlexNet [14], VGG-16 [27], and
ResNet-18 [10]. The default substitute model is a network
with 3 convolutional layers. 2) CIFAR-10 [13]: The at-
tacked is pre-trained on AlexNet, VGG-16, and ResNet-18.
The default substitute model is VGG-13. 3) CIFAR-100
[13]: The attacked is pre-trained on VGG-19 and ResNet-
50. The default substitute model is ResNet-18. 4) Tiny Im-
agenet [25]: The attacked is pre-trained on ResNet-50. The
substitute model is ResNet-34.

Competitors. To verify the efficacy of the proposed
method, we compare our attacking results with data-free
black-box attack, i.e., DaST [33], and several black-box

attacks which require real data, such as PBBA [23] and
Knockoff [22]. We also conduct substitute training using
the original training data of the attacked model, and utilize
ImageNet [25] to learn the substitute model.
Implementation details. We use Pytorch for Implementa-
tion. We utilize Adam to train our substitute model, genera-
tor, and reconstruction net from scratch, and all weights are
randomly initialized using a truncated normal distribution
with std of 0.02. The initial learning rates of all networks
are set as 0.0001, they are gradually decreased to zero from
the 80th epoch, and stopped after the 150th epoch. We set
the mini-batch size as 500, the hyper-parameters 31, 82, and
B3 are equally as 1. Our model is trained by one NVIDIA
GeForce GTX 1080Ti GPU. We apply PGD [20] as the de-
fault method to generate adversarial images during the AST
and evaluation. We also utilize FGSM [8], BIM [15] and
C&W [2] to conduct attack for extensive experiments.
Evaluation metrics. Considering there exist two different
scenarios as proposed in DaST [33], i.e., only get the output
label from the target model and access the output probabil-
ity well, and we name these two scenarios as Probability-
based and Label-based. In the experiments, we report the at-
tack success rates (ASRs) of the adversarial examples gen-
erated by the substitute model to attack the target black-box
model. Following the setting in DaST [33], in the non-target
attack setting, we only generate adversarial examples on the
images classified correctly by the attacked model. For tar-
get attacks, we only generate adversarial examples on the
images which are not classified to the specific wrong labels.
For a fair comparison, during all the adversarial example
generation, we restrict the perturbation e = 8. We conduct
five times over each testing, and report the average results.

4.2. Black-box Attack Results

We evaluate our method with competitors over four
datasets and one online machine learning platform for
both target and non-target attack settings. As shown in
Tab. 1, Tab. 2, and Tab. 3, we conduct extensive compari-
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Table 2. Comparing ASRs results using the label as target model output among our proposed method and competitors over several datasets.

Dataset MNIST CIFAR-10 CIFAR-100 Tiny ImageNet

Target Model | AlexNet VGG-16 ResNet-18 | AlexNet VGG-16 ResNet-18 | VGG-19  ResNet-50 ResNet-50
Training Data 17.45 20.11 24.50 13.76 1043 13.05 5.01 8.58 7.32
g ImageNet 18.26 23.77 22.56 15.83 12.73 14.11 8.38 11.28 13.29
& PBBA [23] 22.45 28.18 29.00 21.84 13.63 17.66 11.48 16.33 15.37
g Knockoff [22] | 25.39 33.18 37.72 20.16 20.74 19.87 16.48 18.31 22.33
Z DaST [33] 26.51 29.22 35.81 25.18 19.34 23.01 17.34 17.27 16.28
Ours 31.74 32.70 40.96 29.44 26.92 23.38 23.48 27.88 28.31
Training Data 15.53 12.55 10.88 9.92 10.24 9.09 3.97 6.44 492
= ImageNet 14.29 14.81 15.70 11.01 12.22 9.32 4.82 8.56 7.02
‘é’o PBBA [23] 15.26 19.86 18.53 12.84 11.33 10.48 6.91 7.33 8.61
£ | Knockoff [22] 19.48 23.74 17.85 16.38 12.80 13.91 9.48 9.52 10.65
DaST [33] 20.03 21.48 19.33 15.72 15.92 14.83 7.48 10.39 10.31
Ours 25.56 27.64 21.83 21.66 18.67 17.90 12.47 16.26 13.39

Table 3. Comparing ASRs results among our proposed method and
competitors for attacking the Microsoft Azure example model.

Method Probability-based Lable-based

3 | PBBA[27] 82.34 80.29
& | Knockoff [22] 88.91 92.88
g DaST [33] 90.63 96.97
z Ours 96.73 98.91
PBBA [23] 39.23 49.39

& | Knockoff [22] 46.97 63.99
£ DaST [33] 45.66 65.91
Ours 57.92 69.81

son with multiple target models for each dataset under both
probability-based and label-based scenarios.

Comparisons with the real data for substitute training.
Here we study the substitute training for attacking with real
images, as listed in Tab. 1 and Tab. 2, we directly use the
original training data of the target model or ImageNet to
apply substitute training instead of the synthesized. The re-
sults show that the real image can let the substitute model
learn a little from the target and may higher accuracy on
the classification, but weaker attack strength compared to
the generated data. We believe that this problem is caused
by the number and diversity limitation of the real images,
which may lead to failure of the substitute model learning
and mimicking from the target one. Thus, we propose a
DDG strategy to synthesize large-scale and diversified data.

Comparisons with the state-of-the-art. As shown in
Tab. 1 and Tab. 2, we compare our method with black-box
attacks. For both non-target and target attacking settings,
our method achieves the best ASRs over Probability-based
and Label-based scenarios under all datasets. In addition,
compared to similar generative DaST, our method signifi-
cantly outperforms it with a large margin. The results ver-
ify the efficacy of proposed method to encourage the substi-
tute model better approximate the target’s decision bound-

Table 4. ASRs results of variants of the proposed attack method.
The components are overlaid gradually with the rows. The target
model is based on AlexNet for MNIST, and VGG-16 for CIFAR-
10, the substitute models are the default ones according to the
datasets. ‘C-100’ refers to the CIFAR-100 dataset.

Components Probability-based | Label-based
MNIST C-100 | MNIST C-100

Baseline 29.42 8.27 13.84  4.27
8| +ALNG | 49.18 21.38 | 20.85 12.66
5 + N/LR 55.21 26.31 2491 1599
g + ICR 62.82  31.27 2820 19.94
Z | +AST (Ours) | 66.31 3548 | 31.74 23.48
Baseline 26.29 327 11.48 1.29

- + ALNG 44.48 10.47 16.28  7.83
% + N/LR 51.87 11.83 19.59 9.38
i +ICR 54.01 14.89 | 2248 11.03
+ AST (Ours) | 59.29  17.23 | 25.56 1247

ary and achieve high ASRs for data-free black-box attack.
Comparisons with competitors on Microsoft Azure. To
better evaluate the attack method ability under the real-
world applications, we conduct experiments for attacking
the online model on Microsoft Azure. Target at attacking
the example MNIST model of the machine learning tuto-
rial on Azure, we compare the results between our methods
and competitors. The results shown in Tab. 3, indicate our
method can achieve the best ASRs over the online model,
which further prove the efficacy of our method under the
real scenario without prior knowledge of the attack one.

4.3. Ablation Study
4.3.1 Quantitative Results

The efficacy of different components in the proposed
method. To generate label-controlled and diversity data for
substitute training and make the substitute model better fit
the decision boundary of the target, our method applies the
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Table 5. ASRs results applying various attacks to generate ad-
versarial examples for AST under different attack evaluation in
MNIST. The target model is AlexNet and the substitute model is
the default. The 3rd and 4th columns represent applying FGSM to
conduct AST, the last two columns utilize PGD for AST, and the
raw indicates the attack to evaluate. The ‘-P’ and ‘-L’ in table mean
the Probability-based and Label-based scenarios, respectively.

FGSM [8] PGD [20]

Attacks P T P 1
§D FGSM [8] | 70.26 36.29 | 57.35 33.10
é‘ BIM [15] 66.38 36.97 | 6845 29.58
é PGD [20] | 62.63 33.72 | 66.31 31.74
Z. C&W [2] 49.92 2091 | 46.93 22.02
_ | FGSM[8] | 50.82 2738 | 29.48 19.25
gg BIM [15] 67.29 3233 | 44.82 18.14
£ PGD [20] | 52.77 33.39 | 3929 25.56

C&W [2] 49.38 2039 | 28.57 19.66

following components: (a) ‘Adaptive label normalized gen-
erator’ (ALNG): generates data from input random noise
with label-embedded vector; (b) ‘Noise/Label reconstruc-
tion’ (N/LR): applies a reconstruction net to reconstruct the
input noise and given label; (c) ‘Inter-class diversity’ (ICR):
constrains the distance of generated data in inter-classes; (d)
‘Adversarial substitute training’ (AST): uses the adversarial
examples to further train the substitute model. In Tab. 4, we
list the variants by adding the above components gradually,
and the ‘Baseline’ refers to the framework using random
noise and given label as the contacted input to directly gen-
erate data and train substitute model.

As the results shown in the Tab. 4, we can find that
without ALNG, the substitute model ‘Baseline’ can hardly
learn knowledge from the attacked one, which may due
to the poor generation without powerful controlled label
constrains. Besides, models with the N/LR and ICR can
achieve much higher ASRs results compared to the former,
these verify that more diverse label-controlled generated
data can make the substitute models learn more knowledge
from the target. To ensure that the substitute model approx-
imates the attacked decision boundary, the AST technique
is applied to generate adversarial examples as the bound-
ary data to make the substitute model mimic the attacked
one and further boost the attack results. The ASRs results
clearly demonstrate the important roles of components for
data-free black-box attack.

The affect of different attacks. Consider that we require
adversarial examples during the substitute training, here we
evaluate the affect of attack method for our algorithm. As
shown in Tab. 5, the column means the attacks to gener-
ate adversarial examples for substitute training, and the row
refers to the method to attack the target model in evaluation.
The results indicate that different attacks may not have ob-
vious impacts on our method, which means that using dif-

Table 6. ASRs results with different substitute models attacking

VGG-16 trained on CIFAR-10. The ‘-P’ and *-L’ in table mean

the Probability-based and Label-based scenarios, respectively.

Non-Target Attack | Target Attack
-pP -L -P -L

AlexNet [14] | 39.78 22.57 2490 18.45
VGG-13 [27] | 42.31 26.92 29.89 18.67
VGG-16 [27] | 45.24 25.28 3041 22.46
VGG-19 [27] | 45.92 27.69 3259 2194

ResNet-18 [10] | 49.28 26.83 33.20 20.58
ResNet-34 [10] | 48.94 28.72 3048 204
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Figure 3. Samples of generated images on MNIST. The upper part
represents the images generated from ours, and the below from
DaST. Left to right represents 0—9 hand-written number classes,
and the samples belong to the same column have the same label.

ferent attacks for substitute training hardly affects the final
attacking results. Thus, our method is effective under vari-
ous attacks and there is no need to restrict the attack method
between the substitute training and evaluation.

The impact of different substitute model architecture.
We aim to achieve a successful attack for black-box un-
der data-free condition, thus we have no prior knowledge of
the attacked model structure. To further evaluate the impact
of different substitute model architecture, we apply several
substitute models for the same attacked one, which is VGG-
16 pre-trained on CIFAR-10. As shown in Tab. 6, we try
various architecture as the substitute model, i.e., AlexNet,
VGGNet, and ResNet, and the results show that there does
not exist the most suitable structure which can achieve
the best ASRs under all settings. Except for the simplest
AlexNet, the others reach similar high ASRs results, which
demonstrates that the different substitute model architecture
may not have a huge impact on the attack strength, but still
recommend choosing a deeper network.

4.3.2 Qualitative Results

Our model can improve the diversity of generated data
across different categories. (1) As for the generated data
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Figure 4. Visualization of generated data in 8 classes (one color
indicates one category) using t-SNE [19] on CIFAR-100. (a) Data
generated by DDG module. (b) Data generated by the DaST.
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Figure 5. The distribution of data in one class on MNIST. (a) Orig-
inal real data in MNIST. (b) Data generated by our DDG module.

shown in Fig. 3, we illustrate the data synthesized in differ-
ent ways. It is clear that, compared with ours, the generated
data of DaST without ALNG, N/LR, and ICD strategies,
are much more similar in extra-classes, such as the data in
yellow dashed boxes have the approximate vertical lines.
(2) In terms of feature, we visualize the feature distribution
of synthesized data extracted by the target model in Fig. 4.
Comparing the DaST with ours, it is obvious that our gen-
erated data is widely distributed in the feature space with
clearer categorical differences. While, the data generated
by DaST have relatively small gap between the data classes
and concentrate on the part of the feature space, which is
not conducive for the substitute learning and decreases the
attack strength. These also further verify the importance of
generated data distribution for substitute training.

Our model can generate diverse data of each class. (1)
As shown in Fig. 3, compared with ours, the DaST gener-
ates more similar data in inter-classes, such as the synthetic
data are similar in the blue dotted box but various in the
red. (2) We also visualize the distribution of the same class
data collected from MNIST and generated by our method in
Fig. 5. In terms of the amount of data, ours is much larger
than MNIST. At the same time, within the class, the data
we generate is more widely distributed. These qualitative
results demonstrate that our method can generate more di-
verse data of each class, to further encourage the substitute
model to learn from the target.

Our AST strategy can improve the consistency of the de-
cision boundary between the substitute and target mod-
els. As shown in Fig. 6, the boundaries of the target and
substitute models are visualized by input data features using
t-SNE. Comparing Fig. 6(a) and Fig. 6(b), although they are

75 100 125 150 175 200 225 250 75 100 125 150 175 200 225 250

Figure 6. Visualization of decision boundaries between two classes
(one color indicates one category) in CIFAR-10. The circles rep-
resent the normal data, stars mean the adversarial examples, and
green dashed lines are the decision boundaries. (a) The real data
on target model. (b) The real data and corresponding adversarial
examples on target model. (c) The generated data on substitute
model. (d) The generated data and corresponding adversarial ex-
amples on substitute model. Best viewed in color and zoomed in.

the same model, the decision boundary is more clear with
the adversarial examples around the surface, which demon-
strate adversarial examples can help to precisely identify the
decision boundary. Meanwhile, it is clear that, compared
to Fig. 6(b), the visualized decision boundary of substitute
model with adversarial examples as in Fig. 6(c) is more ap-
proximated to the target model as shown in Fig. 6(a), and
this intuitively verifies the efficacy of AST to further en-
courage the mimicking of target ‘behaviour’.

5. Conclusion

This paper focuses on the distribution of generated data
for substitute training on black-box attack. It proposes a
unified substitute model training framework, which con-
tains a diverse data generation module (DDG) and an adver-
sarial substitute training strategy (AST). DDG can generate
label-controlled and diverse data to train substitute model.
AST utilizes adversarial examples as boundary data to make
the substitute model better fit the decision boundary of the
target. Extensive experiments are conducted and results
show the method can achieve high attack performance.

6. Acknowledgement

This work is supported by NSFC Projects (U62076067),
Science and Technology Commission of Shanghai
Municipality Projects (19511120700, 19ZR1471800),
Shanghai Research and Innovation Functional Program
(17DZ2260900), Shanghai Municipal Science and Tech-
nology Major Project (2018SHZDZXO01) and ZJLab.

4768



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks against
black-box machine learning models. arXiv preprint, 2017.
Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), 2017.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and
Cho-Jui Hsieh. Zoo: Zeroth order optimization based black-
box attacks to deep neural networks without training substi-
tute models. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, 2017.

Sizhe Chen, Zhengbao He, Chengjin Sun, and Xiaolin
Huang. Universal adversarial attack on attention and the re-
sulting dataset damagenet. /[EEE TPAMI, 2020.

Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan
Zhang, and Cho-Jui Hsieh. Query-efficient hard-label black-
box attack: An optimization-based approach. arXiv preprint,
2018.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In CVPR, 2018.

Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu,
Tong Zhang, and Jun Zhu. Efficient decision-based black-
box adversarial attacks on face recognition. In CVPR, 2019.
Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint, 2014,

Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon
Wilson, and Kilian Q. Weinberger. Simple black-box adver-
sarial attacks. arXiv preprint, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770778, 2016.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy
Lin. Black-box adversarial attacks with limited queries and
information. arXiv preprint, 2018.

Andrew lIlyas, Logan Engstrom, and Aleksander Madry.
Prior convictions: Black-box adversarial attacks with ban-
dits and priors. arXiv preprint, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84-90, 2017.
Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv preprint,
2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haftner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

4769

Bo Luo, Yannan Liu, Lingxiao Wei, and Qiang Xu. Towards
imperceptible and robust adversarial example attacks against
neural networks. arXiv preprint arXiv:1801.04693, 2018.
Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579-2605, 2008.

Aleksander Madry, Aleksandar Makelov, and Ludwig
Schmidt. Towards deep learning models resistant to adver-
sarial attacks. arXiv preprint, 2017.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, pages 3111-3119, 2013.
Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box models.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4954-4963, 2019.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami. Prac-
tical black-box attacks against machine learning. In Proceed-
ings of the 2017 ACM on Asia conference on computer and
communications security, 2017.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z. Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In 2016
IEEE European symposium on security and privacy (Eu-
roSP), 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211-252, 2015.

Yucheng Shi, Siyu Wang, and Yahong Han. Curls whey:
Boosting black-box adversarial attacks. In CVPR, 2019.
Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. arXiv preprint, 2013.
Florian Tramer, Fan Zhang, and Ari Juels. Stealing machine
learning models via prediction apis. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), 2016.

Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan
Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng.
Autozoom: Autoencoder-based zeroth order optimization
method for attacking black-box neural networks. In AAAIL,
2019.

Hongxu Yin, Pavlo Molchanovl, Jose M. Alvarez, and
Zhizhong Li. Dreaming to distill: Data-free knowledge
transfer via deepinversion. In CVPR, 2020.

Jaemin Yoo, Minyong Cho, Taebum Kim, and U Kang.
Knowledge extraction with no observable data. In NeurIPS,
2019.

Mingyi Zhou, Jing Wu, Yipeng Liu, Shuaicheng Liu, and
Ce Zhu. Dast: Data-free substitute training for adversarial
attacks. In CVPR, 2020.



[34] Wen Zhou, Xin Hou, Yongjun Chen, Mengyun Tang, Xi-
angqi Huang, Xiang Gan, and Yong Yang. Transferable ad-
versarial perturbations. In ECCV, 2018.

[35] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao
Lu. Hermes attack: Steal dnn models with lossless inference
accuracy. arXiv preprint arXiv:2006.12784, 2020.

4770



