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Abstract

Domain adaptation methods face performance degrada-

tion in object detection, as the complexity of tasks require

more about the transferability of the model. We propose

a new perspective on how CNN models gain the transfer-

ability, viewing the weights of a model as a series of mo-

tion patterns. The directions of weights, and the gradients,

can be divided into domain-specific and domain-invariant

parts, and the goal of domain adaptation is to concentrate

on the domain-invariant direction while eliminating the dis-

turbance from domain-specific one. Current UDA object de-

tection methods view the two directions as a whole while op-

timizing, which will cause domain-invariant direction mis-

match even if the output features are perfectly aligned. In

this paper, we propose the domain-specific suppression, an

exemplary and generalizable constraint to the original con-

volution gradients in backpropagation to detach the two

parts of directions and suppress the domain-specific one.

We further validate our theoretical analysis and methods

on several domain adaptive object detection tasks, includ-

ing weather, camera configuration, and synthetic to real-

world adaptation. Our experiment results show significant

advance over the state-of-the-art methods in the UDA object

detection field, performing a promotion of 10.2 ∼ 12.2%
mAP on all these domain adaptation scenarios.

1. Introduction

Deep neural networks(DNN) has achieved a tremendous

breakthrough at various computer vision tasks on public

dataset, including classification[21], object detection[12]

and segmentation[7]. Nevertheless, most of these re-

searches are based on the hypothesis that the training dataset

and application scenarios have identical distribution, which

is apparently impossible to satisfy in practice. Unsuper-

vised domain adaptation(UDA) provides an alternative to

(a) (b) (c)

Figure 1. Feature Distribution Sketches. (a) represents the orig-

inal feature distributions of two different domains. Features in-

side each domain’s inner circle represent those extracted by the

domain-invariant part of the model; others are from the domain-

specific part of the model. (b) shows an extreme common feature

alignment method, with the overall distribution aligned while the

domain-invariant part mismatched. (c) represents an ideal adapted

distribution, with the domain-invariant part well-aligned without

the intervention of domain-specific part

solve the performance degradation caused by domain distri-

bution mismatch problem[10] without the need for annota-

tions on the target domain. We delved into the transferabil-

ity of the model from the perspective on model-level expla-

nation in the training process. We divided the weights and

gradients of a model into two separate directions: domain-

invariant and domain-specific. The former emphasizes the

consistency between different domains for high-level tasks,

and plays a crucial role in the transferability of a model. In

contrast, the latter is the main obstacle to the transferabil-

ity of a model, as it represents the unique features within

a certain domain which have no concern with the tasks. In

this way, an ideal domain adaptation method is expected

to promote transferability by learning the domain-invariant

weights while eliminating the domain-specific one.

Current research in UDA strives to align the distribu-

tion of features extracted by the model with auxiliary ob-

jective function measuring the discrepancy between them.

With the common goal, early research tries to measure

and minimize the distance of features from different do-

mains in a well-designed feature space, such as maxi-
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mum mean discrepancy(MMD)[2], and Kullback-Leibler

divergence(KL)[48]. With the introduction of GAN[14],

methods that measure the discrepancy between domains by

one or more discriminator distinguishing the origin of fea-

tures spring up. Constraint to the feature-level explanation,

such trail of study considers the domain-specific and the

domain-invariant parts as a whole and optimizes them to-

gether. However, all the similar distribution can guarantee

is that the combinations of the domain-specific and domain-

invariant part of the model for different domains are equiv-

alent. Considering the disturbance of domain-specific part,

the domain-invariant part of different domains may still be

inconsistent even if the similarity condition is satisfied, as

shown in Figure 1. The optima of domain adaptation is the

alignment of domain-invariant part and the eradication of

domain-specific part, as is illustrated in Figure 1. This is

exactly the reason why current methods seem to be ineffi-

cient or even ineffective when the high-level task becomes

more complicated, such as object detection in this paper.

With the purpose of domain-invariant alignment, we pro-

pose a novel domain-specific suppression (DSS) method.

We roughly estimate the domain-specific part of the gradi-

ents with its projection on the direction of weights, and im-

pose restrict to the gradients in the corresponding direction.

Such estimation relies on the fact that the overall proportion

of domain-specific direction in weights is generally higher

than that in gradients since the gradients are dominated by

domain-specific deviation initially, and there is an updat-

ing lag between the gradients and weights. The gradient

will gradually converge to the domain-invariant optima with

the constrain on domain-specific direction since both the

domain-specific direction and the domain-invariant direc-

tion can lead to their corresponding local optima for the fi-

nal task. Furthermore, we provide a special case of domain-

specific suppression by normalizing the weight with its 2-

Norm. Such simplification can significantly reduce the im-

plementing consumption, making the domain-specific sup-

pression a plug-and-play block to any architecture. With

domain-specific suppression, we remove one key barrier to

domain adaption tasks.

We evaluate our method on the Faster RCNN frame-

work, ResNet-50 backbone on various datasets: Cityscapes,

Foggy Cityscapes, KITTI, and SIM10K, involving weather

variance, camera configuration changes and synthesize to

real-world adaptations. We further implement additional

experiments with the model pre-trained on the COCO2017

to illustrate the necessity of improving the model’s discrim-

inability by pre-training on a large dataset in UDA detec-

tion task. With DSS, we have outperformed state-of-the-

art methods on all domain adaptation object detection tasks

with various datasets. This achievement means that our

methods have almost bridged the gap between two domains

with a simple distribution mismatch.

2. Related Work

Object Detection Object Detection is one of the funda-

mental tasks in computer vision. Current object detection

methods based on CNN can be roughly divided into two

types: one-stage object detectors[24][23] and two-stage ob-

ject detectors[42][4]. With R-CNN[13] pioneers the way of

extracting region proposals with selective search, the two-

stage R-CNN series detectors become one of the most pop-

ular object detectors. R. Girshick[11] proposed Fast RCNN,

accelerate training process by sharing the convolution out-

put features with RoI pooling. Followed by Fast R-CNN,

Faster R-CNN[34] came out as the first end-to-end detec-

tor, proposing a region proposal network to generate region

proposal with almost no-cost. R. Joseph et al.[31] proposed

the first one-stage detector YOLO series[32][33][1]. Com-

pletely abandoned the pattern of verification and regression,

YOLO predicts bounding boxes directly from images by re-

gression alone.

Domain Adaptation Domain adaptation has been

a hot spot and widely researched on classifica-

tion tasks for a long time, and there are excessive

achievements[16][38][29][46]. In the early stage, re-

search prefers to design a latent space to measure the

discrepancy of features extracted from source and tar-

get domains. The most widely used measurements are

maximum mean discrepancy(MMD)[40][25][28][27] and

Wasserstein distance[36]. Since the introduction of GAN,

a lot of UDA methods based on adversarial learning

spring up[3][9][39][41][45][5][26][18]. Different from the

former one, adversarial domain adaptation measures the

discrepancy of features by one or several discriminators

dynamically in the training process. With the guide of

feature distance measurement, deep neural networks are

supposed to learn a domain invariant feature space.

UDA in Object Detection Researches on domain

adaptation in object detection are still in the early

stage[22][17][19][35], the first of which goes back to[44],

applying an adaptive SVM to the deformable part-based

model(DPB). [30] firstly attempted to introduce two-stage

detectors in domain adaptation by aligning the feature

subspace of R-CNN. Inducting the achievement of do-

main adaptation in classification, [8] proposed a pioneer-

ing framework of domain adaptive Faster RCNN, embed-

ding adversarial block into Faster RCNN detection, align-

ing both image-level and instance-level features. Followed

by this work, lots of adversarial-based domain adaptation

frameworks in object detection arise.[6][47][15][43][20]

3. Preliminaries

We briefly revisit the forward and backward process of a

fully-connected neural network and its properties. Denoting

the input of any layer as z, and the output as y, the forward
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Domain-Specific

Domain-Invariant

Figure 2. We illustrate two kinds of optimization processes with

input distribution mismatch. The black path represents an original

method that will converge to the domain-specific optima guided

with the whole gradients directly. The direction of solid red line

is the optimizing route of the optimization process with domain-

specific suppression, which is supposed to find the domain-

invariant optima.

process is a combination of function composition and ma-

trix multiplication:

y = f(Wz), (1)

where W is a m × n real matrix. f(·) refers to activation

function like ReLU or Sigmoid. A singular value decompo-

sition of matrix W is given by:

W = UΣV, (2)

where U, V are real matrices with m×m and n×n dimen-

sion respectively. Σ is an m×n rectangular diagonal matrix

with non-negative real numbers on the diagonal, known as

the singular values of W . The weight matrix W can be

interpreted as a linear transformation that rotates the input

vector zl from one orthogonal basis U to another orthogo-

nal basis V with different scaling in each direction (and a

projection if n 6= m).

In this way, the forward process of each layer can be

viewed as a motion pattern applied to the input features,

pointing to a corresponding direction of the weight matrix.

Furthermore the back-propagation in each layer can be in-

terpreted as an updating of the transforming direction, ad-

justing the motion pattern pointing to the direction of the

optimum feature space for a certain task.

As convolution layer is a special case of fully connected

layer with weight reusing and multiple channels, we can

easily extend this to convolutional neural networks.

3.1. Consistency, Specificity and Transferability

Generally speaking, the features captured by shallow

layers of a deep neural network are low-level appearance,

containing more information about edges, textures, etc. The

features from deep layers, in contrast, containing more

about high-level semantic information. Intuitively, those

peculiar properties reflect a logical or causative connection

with the transferability of neural networks.

Based on such observation, we investigate such phenom-

ena from a different perspective: we set our sight on the

motion patterns of the model. As a neural network can be

viewed as a series of motion patterns transforming the in-

put to a task-friendly feature space, the entire process can

be roughly divided into two phases: decomposing the input

into essential features and generating semantic features for

the final tasks.

Obviously, the model’s transferability, namely the abil-

ity of a model to perform well across different domains, is

primarily dictated by the first phas as the model will per-

form well on the target domain with only the annotations in

the source domain if the model can extract consistent essen-

tial features. However, once the essential features extracting

pattern of the model contains too much domain bias, noth-

ing the second phase can do to perform well on the target

domain. On the other hand, whether the destination of the

first phase is specific or consistent, the second phase can al-

ways find its optimum to the final task for the domain with

annotations. For example, a domain within which all the

cars are red may cause misunderstanding to the model that

cars should be in red, but such misunderstanding will not

result in any performance degradation within the exact do-

main compared with a model without such color bias.

We divide the gradients backpropagating in the training

process into two separate directions: domain-invariant and

domain-specific, emphasizing the consistency and speci-

ficity of domains, respectively. As the DNN has been re-

vealed a particular preference in capturing dataset bias in

the internal representation [37], the motion patterns in the

first phase are sensitive to the domain-specific direction. As

shown in Figure 2, the gradients to the domain-specific op-

tima are far more sharp than to the domain-invariant one.

That is to say while updating, the speed to the domain-

specific direction is much higher than that of the domain-

invariant direction without any extra constraint.

According to the analysis above, an ideal domain adapta-

tion method is expected to eliminate the domain-specific di-

rection in the first phase and find the direction from domain-

invariant feature space to a task-friendly feature space in the

second phase.

3.2. Limitation in Current UDA object detection
framework

Current research on domain adaptations in object de-

tection has a typical pattern of constructing feature spaces

with the output feature maps of the detectors (whether from

backbone or ROI-head) to measure the discrepancy of do-

mains and then diminishing or interpolating it. Based on

the analysis above, it is easy to find that rather than optimiz-

ing the domain-invariant direction (eliminating the domain-

specific direction in the meantime), such a method is regard-

ing the domain-specific direction and the domain-invariant
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Figure 3. Weights Updating Process. We present three steps of

weights updating with and without DSS.

one as a whole. As shown in Figure 2, the motion pat-

tern of the model will be heavily influenced by the domain-

specific direction, entrapped in the domain-specific optima

as the black path. While the model can still perform well on

the source domain, the performance in the target domain is

bound to be unsatisfying with the lack of annotations.

4. Method

Based on the theoretical analysis above, we propose

an exemplary and generalizable solution to eliminate the

domain-specific direction at its root.

4.1. DomainSpecific Suppression

The Deep neural network adjusts the series of motion

patterns it applies to the input features by backpropagation,

which can be written as the following:

W t+1 = W t − η ∗ ∂L

∂W t
, (3)

where W t means the weight matrix in the t − th itera-

tion. Such a backward process treats domain-invariant and

domain-specific directions of the gradients equivalent, op-

timizing the weights with both of them, which will lead to

the aforementioned domain-specific optima.

Motivated by the analysis above, our domain-specific

suppression is supposed to separate the domain-specific di-

rection in gradients and eliminate its influence on the train-

ing process. First, we estimate the domain-specific direc-

tion with the direction of the weights of the model, and then

eliminate it by subtracting the projection of gradients on the

direction of weights, adding constraint terms to the gradi-

ents during the whole training process as following:

W t+1
i =W t

i − η ∗ ( ∂L

∂W t

− λ <
∂L

∂W t
,

W t

√
‖W t‖22

> · W t

√
‖W t‖22

)

=W t
i − η ∗ ( ∂L

∂W t
− λ <

∂L

∂W t
,W t > · W t

‖W t‖22
).

(4)

Figure 3 illustrate the updating process with equa-

tion (4), where W t√
‖W t‖2

2

is the direction of weight W t,

< ∂L
∂W t ,

W t√
‖W t‖2

2

> is the norm of the projection of gra-

dient ∂L
∂W t on the direction of weight W t, and then

< ∂L
∂W t ,

W t√
‖W t‖2

2

> · W t√
‖W t‖2

2

represents the projection of

gradient ∂L
∂W t on the direction of weight W t.

We estimate and eliminate the domain-specific direction

by the constraint in equation (4) based on the following

analysis. As the model trained by UDA framework shows

a better performance in the source domain than the tar-

get one, the original motion patterns are dominated by the

source domain-specific direction naturally. In this way, the

weights of model at the beginning can exactly indicate the

direction of the domain-specific direction we are hoping

to alleviate. During the training process, the direction of

the whole model gradually collaborates, and the domain-

invariant direction will prevail over the specific one, conse-

quently. Considering the lagging in updating, the ratio of

domain-specific direction in weights is always higher than

that in gradients. In this way, what is left after the subtrac-

tion remains to be gradients with a lower ratio of domain-

specific direction. That is to say, the higher the relation be-

tween the direction of gradients and weights, the lower the

domain-invariant information that gradient provides. In this

case, the motion patterns will be updated in a direction with

the domain-specific direction being suppressed.
Domain-specific suppression can significantly improve

the performance of a domain adaptation method, especially

when the model is well-pretrained on the source domain.

The reason is that the constraint will curb the learning of

the final task to some degree, but a pre-training process on

the source domain will make up for the limitation.

4.2. A special DomainSpecific Suppression case:
Normalization with Frobenius Norm

We provide a more implementing-friendly domain-

specific suppression by normalizing the weight of each con-

volution layers by Frobenius Norm. This can be easily in-

serted into any architectures. We will prove its equivalence

with domain-specific suppression.

Assuming a network A with weight matrix Ω = {ωi}. In

the training process, A uses Ω̃ = Ω

‖Ω‖ in forward propaga-

tion, then we have the backpropagation as following:

∂L

∂ωi

=
∂L

∂ω̃i

∂ω̃i

∂ωi

+
∑

j 6=i

∂L

∂ω̃j

∂ω̃j

∂ωi

=
∂L

∂ω̃i

(
1√
‖Ω‖22

− ω2
i

(
√
‖Ω‖22)3

)

+
∑

j 6=i

∂L

∂ω̃j

(− ωiωj

(
√

‖Ω‖22)3
)

=
1√
‖Ω‖22

∂L

∂ω̃i

− 1√
‖Ω‖22

ω̃i

∑

j

∂L

∂ω̃j

ω̃j ,

(5)
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Figure 4. Domain Adaptation Framework with Domain-Specific Suppression Block. We illustrate the transforming trend of input

features after different kinds of layers above the framework. The histograms behind are gradient distributions of gradients from layers of

different depths

∂L

∂Ω
=

1√
‖Ω‖22

∂L

∂Ω̃
− Ω̃√

‖Ω‖22
<

∂L

∂Ω̃
, Ω̃ > . (6)

As the actual weights updated in backpropagation is Ω, we

have the backward process as following:

Ωt+1 = Ωt − η ∗ ∂L

∂Ωt
, (7)

We have the valid assumption in training process that√
‖Ωt‖22 ≈

√
‖Ωt+1‖22, then we have

Ω̃t+1 =
Ωt+1

√
‖Ωt+1‖22

≈ Ωt − η ∗ ∂L
∂Ωt√

‖Ωt‖22

=
Ωt

√
‖Ωt‖22

− η ∗ ∂L

∂Ωt
∗ 1√

‖Ωt‖22
.

(8)

Combined With the equation (6), the updating process of

Ω̃ can be written as:

Ω̃t+1 =
Ωt

√
‖Ωt‖22

− η ∗ 1

‖Ωt‖22
(
∂L

∂Ω̃t
− Ω̃t <

∂L

∂Ω̃t
, Ω̃t >)

= Ω̃t − η̂ ∗ 1

‖Ωt‖22
(
∂L

∂Ω̃t
− λΩ̃t <

∂L

∂Ω̃t
, Ω̃t >).

(9)

Then we have the backpropagation in domain-specific sup-

pression format as:

‖Ω̃t‖ = 1, (10)

λ = 1, (11)

η̂ =
η

‖Ωt‖22
. (12)

Then 2-Norm can be cast as a special case of equation (4)

with λ = 1 and an adaptive η̂.

4.3. UDA Object Detection Framework

The general pipeline of our UDA object detection frame-

work is shown in figure 4. The whole framework consists of

a backbone network followed by two parallel parts: a detec-

tor head and a domain discriminator. Our domain-specific

suppression modifies the backbone network with its con-

volution layers. The Conv layer represents the weights Ω
above, and the Conv* layer represents the Ω̃. In the training

process, the actual weights used in the forward process is

calculated from Conv layer, while in the backward process,

the weights in Conv layer will be updated with ∂L

∂Ω̃

∂Ω̃
∂Ω

.

During the forward process of domain-specific suppres-

sion, the input features with different distributions will be

transformed into Gaussian distributions with similar stan-

dard deviations but different means with the convolution

layer(Conv*). The deviations of means will be further elim-

inated by the normalization layers(Batch Normalization, for

example). The final output features for the following detec-

tor head and domain discriminator will have no appreciable

difference. While in the backward process, the gradients

in the shallow layer will be amplified as those layers need

more adjustment for a domain-invariant direction. The gra-

dients in the deep layers, however, will be suppressed, as

they are supposed to concentrate more on semantic infor-

mation, which is consistent between different domains.

Our method can be inserted into any other UDA object

detection framework without extra consumption.

5. Experiments

In this section, we validate our method on typical kinds

of domain discrepancy:1. Weather discrepancy 2. Camera

setting discrepancy 3. Synthesis to real-world discrepancy.

We provide an additional MS COCO pre-trained base-

line to validate that domain-invariant direction is consistent

between different domains, and DSS can learn it effectively.

We also provided further theoretical analysis of our

method with insight experiments, including gradient quan-

titative study and convergence comparison in speed and ac-
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Methods Person Rider Car Truck Bus Train Motorbike Bicycle mAP

Source Only 17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8

DA-Faster[8] 25.0 31.0 40.5 22.1 35.3 20.2 20.1 27.1 27.6

SCDA[47] 33.5 38 48.5 26.5 39 23.3 28 33.6 33.8

DivMatch[20] 35.1 42.1 49.1 30.0 45.2 26.9 26.8 36.0 36.4

Progressive DA[15] 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9

SWDA[35] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4

HTCN[6] 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8

DSS(Source Only) 46.2 50.5 53.2 25.9 43.4 21.2 33.1 45.0 39.8

DSS(UDA Framework) 42.9 51.2 53.6 33.6 49.2 18.9 36.2 41.8 40.9

Source Only* 42.3 49.9 45.0 23.2 35.4 16.5 32.2 41.5 35.8

DSS(Source Only)* 50.9 57.6 61.1 35.4 50.9 36.6 38.4 51.1 47.8

DSS(UDA Framework)* 50.0 58.6 66.5 36.1 57.1 50.0 44.5 53.0 52.0

Table 1. Results of object detection adapting from Cityscapes to Foggy Cityscapes(Weather Adaptation) Methods with * represents that

the model has been pre-trained on COCO before finetune on source domain.

curacy between domains.

5.1. Dataset

Cityscapes Cityscapes dataset is a large-scale city street

scene dataset collected from different cities. It contains

2975 training images and 500 validation images with 8

classes ground truth labels.

Foggy Cityscapes Foggy cityscapes dataset is a synthetic

dataset derive from the Cityscapes dataset. The synthetic

foggy transmittance is generated automatically, inheriting

the semantic annotation of original images. Each image in

Cityscapes will be added with fog in three density levels, so

this dataset contains 8925 training images and 1500 valida-

tion images.

SIM10K SIM10K are synthetic datasets generated by the

grand theft auto(GTAV) engine. It contains 10000 images

with 58071 bounding box annotations, with only car in the

category. We divided it randomly into 8000 images for

training and 2000 images for validation.

KITTI KITTI is one of the most significant datasets in the

self-driving field. Images are collected from rural, urban

and highway areas in a driving car. KITTI contains 7481

images with annotations. We set full of the dataset as the

training set.

5.2. Experiment Details

We utilize ResNet-50 as the backbone, and the pa-

rameters of the backbone are initialized from the model

pre-trained on ImageNet and fine-tuned on corresponding

source domains. For each iteration, one batch of source

domain input and one batch of target domain input will

be fed into the model simultaneously, while the target do-

main dataset will only contribute to the domain discrimi-

nator loss. We set the default batch size of each domain

as 2 per GPU. We evaluate mean average precisions with a

threshold of 0.5 to compare with other methods.

5.3. Results

5.3.1 Weather Adaptation

Settings In this section, we utilize Cityscapes as the source

domain and Foggy Cityscapes as the target domain. In the

source domain, all images in Cityscapes are used with anno-

tations, while in target domain only images will participate

in the training process. Adaptation results are evaluated on

the validation set of Foggy Cityscapes with all eight cate-

gories.

Results The results are presented in Table1. As shown

in the results that our method achieves an equivalent per-

formance with the state-of-the-art methods when training

only on the source domain. This exactly validates that our

method can eliminate the influence of domain-specific di-

rection effectively. When inserted into a UDA framework,

our method can gain an extra 1% mAP improvement, which

means that information from the target domain can further

refine the domain-invariant direction.

In additional COCO pre-trained set, the results of DSS

show an incredible improvement of 8% mAP comparing

with state-of-the-art methods with source domain alone, and

achieve 52% mAP when inserted into a basic UDA frame-

work. This considerable improvement proves our analysis

that the side-effect of DSS that will suppress the learning of

object detection tasks can be reduced significantly. The re-

sults also illustrate that pre-train alone can not distinguish

the domain-invariant direction accurately, and its help in

transferability is limited. The promotion with DSS validates

that domain-invariant direction is consistent between differ-

ent domains and DSS helps to learn it better with COCO.
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Figure 5. Gradient Histogram Comparison Fig 5(a)-5(f)present

the histograms of gradients in backbone(ResNet-50) during train-

ing process with(blue lines) and without(yellow lines) domain-

specific suppression. Gradients are extracted from the first 3 × 3

convolution layers of ResLayer 2.0, 2.1, 2.2, 2.3, 3.0, 4.1 respec-

tively.

5.3.2 Camera Configuration Adaptation

Settings In this section, we utilize KITTI as the source do-

main and Cityscapes as the target domain to evaluate the

performance of our method in camera configuration mis-

match scenarios. The whole KITTI dataset and the training

set of Cityscapes will be utilized in the training process. Re-

sults are evaluated on the only common category between

two domains: car.

Results Comparison with current state-of-the-art methods

is presented in Table2. While our method imporves 26.5%
mAP in KITTI to Cityscapes task when pre-trained with

COCO, the performance of DSS alone seems to be ordi-

nary. Analyzing this phenomenon from the perspective on

the discrepancy between this pair of domains, we can find

that the performance’s bottleneck is not the transferability

of the model but the discriminability. Statistics shows that

the average instances per image are 4.3 in KITTI but 18 in

Cityscapes. The model will face more complicated seman-

tic confusion, such as overlapping and sheltering, which re-

quires more of the discriminability of the model. The con-

siderable improvement brought by pre-trained routine also

validates that once we make up for the shortcomings of dis-

criminability of the model, our domain-specific suppression

can improve the performance of a model to a higher level.

5.3.3 Synthesis to Real World Adaptation

Settings Such adaptation is meaningful as generating syn-

thesis data can reduce the cost of sampling and labelling

remarkably. We utilize SIM10K as the source domain and

Methods Car mAP

Source Only 34.6

DA-Faster[8] 41.9

HCTN[6] 42.5

SCDA [47] 43.0

DSS(Source Only) 41.6

DSS(UDA Framework) 42.7

Source Only* 39.8

DSS(Source Only)* 42.6

DSS(UDA Framework)* 59.2

Table 2. Results of object detection adapting from KITTI to

Cityscapes(Camera configuration Adaptation). Methods with *

represents that the model has been pretrained on COCO before

fine-tuned on source domain.

Methods Car mAP

Source Only 34.7

DA-Faster[8] 38.5

SCDA[47] 42.5

Progressie DA[15] 43.9

DSS(Source Only) 42.0

DSS(UDA Framework) 44.5

Source Only* 39.3

DSS(Source Only)* 49.8

DSS(UDA Framework)* 58.6

Table 3. Results of object detection adapting from SIM10K to

Cityscapes(synthesis to real-world adaptation). Methods with *

represent that the model has been pretrained on COCO before fine-

tuned on source domain.

Cityscapes as the target domain. Results are evaluated with

the only common category: car between two domains.

Results The final results are shown in Table3. Our DSS pro-

vides performance close to state-of-the-art methods without

pre-trained routine while achieves 1.9% mAP improvement

over current methods and 10.7% promotion when inserted

into UDA framework. This proves that our method is robust

concerning the pattern and texture distribution mismatches.

5.4. Gradient Quantification Study

To fully understand the true influence of the gradient

distillation constraint on the weight updating process, we

compare the gradient distribution and the trends before-and-

after scenarios in Figure 5. Fig5(a) and Fig5(b) show con-

siderable increases in the scale of gradients in shallow lay-

ers, as the peaks of the histograms around zeros are sig-

nificantly reduced, while the standard deviation increases

remarkably. However, the effects of domain-specific sup-

pression in Fig5(d) Fig5(f) are directly opposite. Gradients

with domain-specific suppression in these layers are more

concentrated around zeros, with higher peaks.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Object Detection Display Fig 6(a)-6(c) and 6(d)-6(f) present two set of detection results on different inputs. Results from left to

rights each line are detected by source-only Faster R-CNN, UDA framework and UDA framework with DSS respectively.

Obviously, after applying domain-specific suppression,

the gradients of shallow layers have been strongly ampli-

fied, while the gradients of deep layers suppressed. Such

phenomena exactly validate our theoretical analysis. The

former methods try to constrain the combination of domain-

invariant and domain-specific direction together, while our

method explicitly decompose the two parts.

The comparison shows that motion patterns in shallow

layers of the network are crucial to the transferability of

model, and the original weights and gradients all deflect

from the domain-invariant direction, trapped in the local op-

tima for the source domain. With the suppression strategy,

the updating process is forced to change direction and find

a way to optimize domain-invariant feature space. Conse-

quently, the gradient in shallow layers updates rapidly with

the domain-specific suppression, collaborating its direction

to the domain-invariant feature space.

While the adjustment in deep layers shows that motion

patterns in deep layers concentrate more on extracting and

analyzing semantic information, which can be generalized

to different domain-specific feature spaces, having limited

influence on the transferability of the model.

5.5. Visualization

Detection Results We display two typical sets of detec-

tion results in Figure 6, including source-only, UDA frame-

work and UDA framework with DSS. The first line of im-

ages illustrates the performance degradation of the DNN

detector when the source and target domain have distribu-

tion mismatches caused by dense fog. While current UDA

framework can mitigate the problem, our DSS can handle

such a situation perfectly. In Fig 6(e) we illustrate a clas-

sical domain-invariant mismatch issue. With the lack of

ability to domain-invariant direction accurately, the trans-

ferability of the model even decreases after feature align-

ment. Our DSS can solve this problem fundamentally.

6. Conclusion

We have presented a new perspective to understand the

transferability of DNN in model-level explanation. We view

the model as a series of motion patterns and divide the di-

rection of weights and gradients into domain-invariant and

domain-specific parts. The former determines the trans-

ferability of a model while the latter is an obstacle in do-

main adaptation. We propose domain-specific suppression

to optimizing the domain-invariant parts by estimating and

eliminating the domain-specific direction in gradients. Our

method outperforms state-of-the-art methods for a large

margin. As for future work, the relationship of discrim-

inability and transferability of a model needs further inves-

tigation. The complicated scenarios semantic distribution

mismatch may requires optimaztion both of them in combi-

nation.
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Thomas Natschläger, and Susanne Saminger-Platz. Central

moment discrepancy (cmd) for domain-invariant representa-

tion learning. arXiv preprint arXiv:1702.08811, 2017. 2

[47] Xinge Zhu, Jiangmiao Pang, Ceyuan Yang, Jianping Shi, and

Dahua Lin. Adapting object detectors via selective cross-

domain alignment. In CVPR, pages 687–696, 2019. 2, 6,

7

[48] Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan,

and Qing He. Supervised representation learning: Transfer

learning with deep autoencoders. In IJCAI, 2015. 2

109612


