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Abstract

Mainstream object detectors based on the fully convolu-

tional network has achieved impressive performance. While

most of them still need a hand-designed non-maximum sup-

pression (NMS) post-processing, which impedes fully end-

to-end training. In this paper, we give the analysis of dis-

carding NMS, where the results reveal that a proper label

assignment plays a crucial role. To this end, for fully con-

volutional detectors, we introduce a Prediction-aware One-

To-One (POTO) label assignment for classification to en-

able end-to-end detection, which obtains comparable per-

formance with NMS. Besides, a simple 3D Max Filtering

(3DMF) is proposed to utilize the multi-scale features and

improve the discriminability of convolutions in the local

region. With these techniques, our end-to-end framework

achieves competitive performance against many state-of-

the-art detectors with NMS on COCO and CrowdHuman

datasets. The code is available at https://github.

com/Megvii-BaseDetection/DeFCN .

1. Introduction

Object detection is a fundamental topic in computer vi-

sion, which predicts a set of bounding boxes with pre-

defined category labels for each image. Most of main-

stream detectors [9, 22, 30, 54] utilize some hand-crafted

designs such as anchor-based label assignment and non-

maximum suppression (NMS). Recently, a quite number of

methods [46, 58, 5] have been proposed to eliminate the

pre-defined set of anchor boxes by using distance-aware

and distribution-based label assignments. Although they

achieve remarkable progress and superior performance,

there is still a challenge of discarding the NMS post-

processing, which hinders the fully end-to-end training.

To tackle this issue, Learnable NMS [13], Soft NMS [1]

and other NMS variants [12, 24, 15], and CenterNet [5] are

*Equal contribution.
†This work was done at Megvii Technology.

Figure 1. As shown in the dashed box, most detectors based on the

fully convolutional network adopt multiple predictions and NMS

post-processing for each instance. With the proposed prediction-

aware one-to-one label assignment and 3D Max Filtering, our end-

to-end detector can directly perform a single prediction for each

instance without post-processing.

proposed to improve the duplicate removal, but they still do

not provide an effective end-to-end training strategy. Mean-

while, many approaches [43, 35, 26, 32, 36] based on re-

current neural networks have been introduced to predict the

bounding box for each instance by using an autoregressive

decoder. These approaches give naturally sequential model-

ing for the prediction of bounding boxes. But they are only

evaluated on some small datasets without modern detectors,

and the iterative manner makes the inference process ineffi-

cient.

Recently, DETR [3] introduces a bipartite matching

based training strategy and transformers with the parallel

decoder to enable end-to-end detection. It achieves compet-

itive performance against many state-of-the-art detectors.

However, DETR currently suffers from much longer train-

ing duration to coverage and relatively lower performance

on the small objects. To this end, this paper explores a new

perspective: could a fully convolutional network achieve

competitive end-to-end object detection?

In this paper, we attempt to answer this question in two

dimensions, i.e., label assignment and network architec-

ture. As shown in Fig. 1, most of fully convolutional detec-
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tors [22, 46, 50, 21] adopt a one-to-many label assignment

rule, i.e., assigning many predictions as foreground samples

for one ground-truth instance. This rule provides adequate

foreground samples to obtain a strong and robust feature

representation. Nevertheless, the massive foreground sam-

ples lead to duplicate predicted boxes for a single instance,

which prevents end-to-end detection. To demonstrate it,

we first give an empirical comparison of different existing

hand-designed label assignments. We find that the one-to-

one label assignment plays a crucial role in eliminating the

post-processing of duplicate removal. However, there is still

a drawback in the hand-designed one-to-one assignment.

The fixed assignment could cause ambiguity issues and re-

duce the discriminability of features, since the predefined

regions of an instance may not be the best choice [17] for

training. To solve this issue, we propose a prediction-aware

one-to-one (POTO) label assignment, which dynamically

assigns the foreground samples according to the quality of

classification and regression simultaneously.

Furthermore, for the modern FPN based detector [46],

the extensive experiment demonstrates that the duplicate

bounding boxes majorly come from the nearby regions of

the most confident prediction across adjacent scales. There-

fore, we design a 3D Max Filtering (3DMF), which can be

embedded into the FPN head as a differentiable module.

This module could improve the discriminability of convo-

lution in the local regions by using a simple 3D max fil-

tering operator across adjacent scales. Besides, to provide

adequate supervision for feature representation learning, we

modify a one-to-many assignment as an auxiliary loss.

With the proposed techniques, our end-to-end detec-

tion framework achieves competitive performance against

many state-of-the-art detectors. On COCO [23] dataset, our

end-to-end detector based on FCOS framework [46] and

ResNeXt-101 [49] backbone remarkably outperforms the

baseline with NMS by 1.1% mAP. Furthermore, our end-to-

end detector is more robust and flexible for crowded detec-

tion. To demonstrate the superiority in the crowded scenes,

we construct more experiments on CrowdHuman [37]

dataset. Under the ResNet-50 backbone, our end-to-end de-

tector achieves 3.0% AP50 and 6.0% mMR absolute gains

over FCOS baseline with NMS.

2. Related Work

2.1. Fully Convolutional Object Detector

Owing to the success of convolution networks [11,

40, 41, 39, 20, 51, 52], object detection has achieved

tremendous progress during the last decade. Modern one-

stage [22, 25, 31, 38, 29, 7] or two-stage detectors [33, 21,

2] heavily rely on the anchors or anchor-based proposals.

In these detectors, the anchor boxes are made up of pre-

defined sliding windows, which are assigned as foreground

or background samples with bounding box offsets. Due

to the hand-designed and data-independent anchor boxes,

the training targets of anchor-based detectors are typically

sub-optimal and require careful tuning of hyper-parameters.

Recently, FCOS [46] and CornerNet [18] give a different

perspective for fully convolutional detectors by introducing

an anchor-free framework. Nevertheless, these frameworks

still need a hand-designed post-processing step for dupli-

cate removal, i.e., non-maximum suppression (NMS). Since

NMS is a heuristic approach and adopts a constant thresh-

old for all the instances, it needs carefully tuning and might

not be robust, especially in crowded scenes. In contrast,

based on the anchor-free framework, this paper proposes a

prediction-aware one-to-one assignment rule for classifica-

tion to discard the non-trainable NMS.

2.2. End­to­End Object Detection

To achieve end-to-end detection, many approaches are

explored in the previous literature. Concretely, in the earlier

researches, numerous detection frameworks based on recur-

rent neural networks [43, 35, 26, 32, 36] attempt to produce

a set of bounding boxes directly. Albeit they allow end-to-

end learning in principle, they are only demonstrated effec-

tiveness on some small datasets and not against the modern

baselines [46, 8]. Meanwhile, Learnable NMS [13] is pro-

posed to learn duplicate removal by using a very deep and

complex network, which achieves comparable performance

against NMS. But it is constructed by discrete components

and does not give an effective solution to realize end-to-end

training. Recently, the relation network [14] and DETR [3]

apply the attention mechanism to object detection, which

models pairwise relations between different predictions. By

using one-to-one assignment rules and direct set losses, they

do not need any additional post-processing steps. Neverthe-

less, when performing massive predictions, these methods

require highly expensive cost, making them not appropri-

ate for the dense prediction frameworks. Due to the lack of

image prior and multi-scale fusion mechanism, DETR also

suffers from much longer training duration than mainstream

detectors and lower performance on the small objects. Dif-

ferent from the approaches mentioned above, our method

is the first to enable end-to-end object detection based on a

fully convolutional network.

3. Methodology

3.1. Analysis on Label Assignment

To reveal the effect of label assignment on end-to-end

object detection, we construct several ablation studies of

conventional label assignments on COCO [23] dataset. As

shown in Tab. 1, all the experiments are based on FCOS [46]

framework, whose centerness branch is removed to achieve

a head-to-head comparison. The results demonstrate the su-
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Table 1. The comparison of different label assignment rules for end-to-end object detection on COCO val set. ∆ indicates the gap between

with and without NMS. ‘Aux’ is the proposed auxiliary loss. All models are based on ResNet-50 backbone with 180k training iterations.

Assignment Rule Method
mAP mAR

w/ NMS w/o NMS ∆ w/ NMS w/o NMS ∆

One-to-many Hand-designed FCOS [46] baseline * 40.5 12.1 -28.4 58.3 52.8 -5.5

One-to-one

Hand-designed
Anchor 37.2 35.8 -1.4 57.0 59.2 +2.2

Center 37.2 33.6 -3.6 57.8 59.7 +1.9

Prediction-aware

Foreground loss 38.3 37.1 -1.2 58.6 61.4 +2.8

POTO 38.6 38.0 -0.6 57.9 60.5 +2.6

POTO+3DMF 40.0 39.8 -0.2 58.8 60.9 +2.1

Mixture ** Prediction-aware POTO+3DMF+Aux 41.2 41.1 -0.1 58.9 61.2 +2.3

* We remove its centerness branch to achieve a head-to-head comparison.
** We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

periority of one-to-many assignment on feature represen-

tation and the potential of one-to-one assignment on dis-

carding the NMS. The detailed analysis is elaborated in the

following sections.

3.1.1 One-to-many Label Assignment

Since the NMS post-processing is widely adopted in dense

prediction frameworks [21, 22, 58, 53, 46, 50, 57, 29, 7],

one-to-many label assignment becomes a conventional way

to assign training targets. The adequate foreground samples

lead to a strong and robust feature representation. However,

when discarding the NMS, due to the redundant foreground

samples of one-to-many label assignment, the duplicate

false-positive predictions could cause a dramatic drop in

performance, e.g., 28.4% mAP absolute drop on FCOS [22]

baseline. In addition, the reported mAR in Tab. 1 indicates

the recall rates for the predictions of the top 100 scores.

Without NMS, the one-to-many assignment rule leads to

numerous duplicate predictions with high scores, thus re-

ducing the recall rate. Therefore, the detector is hard to

achieve competitive end-to-end detection by relying only on

the one-to-many assignment.

3.1.2 Hand-designed One-to-one Label Assignment

MultiBox [45] and YOLO [30] demonstrate the potential

in applying the one-to-one label assignment to a dense pre-

diction framework. In this paper, we evaluate two one-to-

one label assignment rules to reveal the undergoing con-

nection with discarding NMS. These rules are modified by

two widely-used one-to-many label assignments: Anchor

rule and Center rule. Concretely, Anchor rule is based on

RetinaNet [22], each ground-truth instance is only assigned

to the anchor with the maximum Intersection-over-Union

(IoU). Center rule is based on FCOS [46], each ground-

truth instance is only assigned to the pixel closest to the cen-

ter of the instance in the pre-defined feature layer. Besides,

other anchors or pixels are set as background samples.

As shown in Tab. 1, compared with the one-to-many la-

bel assignment, the one-to-one label assignment allows the

fully convolutional detectors without NMS to greatly reduce

the gap between with and without NMS and achieve rea-

sonable performance. For instance, the detector based on

Center rule achieves 21.5% mAP absolute gains over the

FCOS baseline. Besides, as it avoids the error suppression

of the NMS in complex scenes, the recall rate is further in-

creased. Nevertheless, there still exist two unresolved is-

sues. First, when one-to-one label assignment is applied,

the performance gap between detectors with and without

NMS remains non-negligible. Second, due to the less super-

vision for each instance, the performance of the one-to-one

label assignment is still inferior to the FCOS baseline.

3.2. Our Methods

In this paper, to enable competitive end-to-end object de-

tection, we propose a mixture label assignment and a new

3D Max Filtering (3DMF). The mixture label assignment

is made up of the proposed prediction-aware one-to-one

(POTO) label assignment and a modified one-to-many label

assignment (auxiliary loss). With these techniques, our end-

to-end framework can discard the NMS post-processing and

keep the strong feature representation.

3.2.1 Prediction-aware One-to-one Label Assignment

The hand-designed one-to-one label assignment follows a

fixed rule. However, this rule may be sub-optimal for

various instances in complex scenes, e.g., Center rule for

an eccentric object [17]. Thus if the assignment proce-

dure is forced to assign the sub-optimal prediction as the

unique foreground sample, the difficulty for the network to

converge could be dramatically increased, leading to more

false-positive predictions. To this end, we propose a new
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Figure 2. The diagram of the head with 3D Max Filtering (3DMF) in a FPN stage. ‘POTO’ indicates the proposed Prediction-aware One-

to-one Label Assignment rule to achieve end-to-end detection. ‘Conv + σ’ denotes a convolution layer followed by a sigmoid function [10],

which outputs coarsely classification scores. ‘Aux Loss’ is the proposed auxiliary loss to improve feature representation. The dotted lines

are used to highlight the additional components in the training phase, which are abandoned in the inference phase.

rule named Prediction-aware One-To-One (POTO) label as-

signment by dynamically assigning samples according to

the quality of predictions.

Let Ψ denotes the index set of all the predictions. G and

N correspond to the number of ground-truth instances and

predictions, respectively, where typically G ≪ N in dense

prediction detectors. π̂ ∈ ΠN
G indicates a G-permutation of

N predictions. Our POTO aims to generate a suitable per-

mutation π̂ of predictions as the foreground samples. The

training loss is formulated as Eq. 1, which consists of the

foreground loss Lfg and the background loss Lbg .

L =

G∑

i

Lfg

(

p̂π̂(i), b̂π̂(i) | ci, bi

)

+
∑

j∈Ψ\R(π̂)

Lbg

(
p̂j
)
,

(1)

where R(π̂) denotes the corresponding index set of the as-

signed foreground samples. For the i-th ground-truth, ci
and bi are its category label and bounding box coordinates,

respectively. While for the π̂(i)-th prediction, p̂π̂(i) and

b̂π̂(i) correspond to its predicted classification scores and

predicted box coordinates, respectively.

To achieve competitive end-to-end detection, we need to

find a suitable label assignment π̂. As shown in Eq. 2, previ-

ous works [6, 3] treat it as a bipartite matching problem by

using foreground loss [22, 34] as the matching cost, which

can be rapidly solved by the Hungarian algorithm [43].

π̂ = argmin
π∈ΠN

G

G∑

i

Lfg

(

p̂π̂(i), b̂π̂(i) | ci, bi

)

. (2)

However, foreground loss typically needs additional

weights to alleviate optimization issues, e.g., unbalanced

training samples and joint training of multiple tasks. As

shown in Tab. 1, this property makes the training loss not

the optimal choice for the matching cost. Therefore, as pre-

sented in Eq. 3 and Eq. 4, we propose a more clean and

effective formulation (POTO) to find a better assignment.

π̂ = argmax
π∈ΠN

G

G∑

i

Qi,π(i), (3)

where Qi,π(i) =1 [π(i) ∈ Ωi]
︸ ︷︷ ︸

spatial prior

·
(

p̂π(i)(ci)
)1−α

︸ ︷︷ ︸

classification

·

(

IoU
(
bi, b̂π(i)

))α

︸ ︷︷ ︸

regression

.

(4)

Here Qi,π(i) ∈ [0, 1] represents the proposed matching

quality of the i-th ground-truth with the π(i)-th prediction.

It considers the spatial prior, the confidence of classifica-

tion, and the quality of regression simultaneously. Ωi indi-

cates the set of candidate predictions for i-th ground-truth,

i.e., spatial prior. The spatial prior is widely used in the

training phase [21, 22, 58, 53, 46, 50]. For instance, the

center sampling strategy is adopted in FCOS [46], which

only considers the predictions in the central portion of the

ground-truth instance as foreground samples. We also apply

it in POTO to achieve higher performance, but it is not nec-

essary for discarding NMS (more details refer to Sec. 4.2.2).

To achieve balance, we define the quality by the weighted

geometric mean of classification score p̂π(i)(ci) and regres-

sion quality IoU
(
bi, b̂π(i)

)
in Eq. 4. The hyper-parameter

α ∈ [0, 1] adjusts the ratio between classification and re-

gression, where α = 0.8 is adopted by default and more

ablation studies are elaborated in Sec. 4.2.2. As shown in

Tab. 1, POTO not only narrows the gap with NMS but also

improves the performance.

15852



Table 2. Comparison of different configurations for NMS post-

processing on COCO val set. ‘Across scales’ indicates applying

NMS to the multiple adjacent stages of the feature pyramid net-

work. ‘Spatial range’ denotes the spatial range for duplicate re-

moval in each scale.

Model Across scales Spatial range mAP

FCOS [46]

✗

1× 1 19.0

3× 3 37.4

5× 5 39.2

✗
∞×∞

39.2

✓ 40.9

3.2.2 3D Max Filtering

In addition to the label assignment, we attempt to design

an effective architecture to realize more competitive end-to-

end detection. To this end, we first reveal the distribution

of duplicate predictions. As shown in Tab. 2, for a mod-

ern FPN based detector [46], the performance has a notice-

able degradation when applying the NMS to each scale sep-

arately. Moreover, we find that the duplicate predictions

majorly come from the nearby spatial regions of the most

confident prediction. Therefore, we propose a new mod-

ule called 3D Max Filtering (3DMF) to suppress duplicate

predictions.

Convolution is a linear operation with translational

equivariance, which produces similar outputs for similar

patterns at different positions. However, this property has

a great obstacle to duplicate removal, since different pre-

dictions of the same instance typically have similar fea-

tures [22] for the dense prediction detectors. Max filter is

a rank-based non-linear filter [42], which could be used to

compensate for the discriminant ability of convolutions in

a local region. Besides, max filter has also been utilized

in the key-point based detectors, e.g., CenterNet [56] and

CornerNet [18], as a new post-processing step to replace

the non-maximum suppression. It demonstrates some po-

tentials to perform duplicate removal, but the non-trainable

manner hinders the effectiveness and end-to-end training.

Meanwhile, the max filter only considers the single-scale

feature, which is not appropriate for the widely-used FPN

based detectors [22, 46, 50].

Therefore, we extend the max filter to a multi-scale ver-

sion, called 3D Max Filtering, which transforms the features

in each scale of FPN. The 3D Max Filtering is respectively

adopted in each channel of a feature map.

x̃s =
{

x̃s,k := Bilinear
xs

(xk) | ∀k ∈
[

s−
τ

2
, s+

τ

2

]}

.

(5)

Specifically, as shown in Eq. 5, given an input feature xs in

the scale s of FPN, we first adopt the bilinear operator [28]

to interpolate the features from τ adjacent scales as the same

Figure 3. The diagram of 3D Max Filtering. The detailed proce-

dure of 3D max filtering is illustrated in the dashed box. ‘GN’ and

‘σ’ indicate the group normalization [47] and the sigmoid activa-

tion function, respectively.

size of input feature xs.

ysi = max
k∈[s− τ

2
,s+ τ

2 ]
max

j∈Nφ×φ
i

x̃
s,k
j . (6)

As shown in Eq. 6, for a spatial location i in scale s, the

maximum value ysi is then obtained in a pre-defined 3D

neighbour tube with τ scales and φ × φ spatial distance.

This operation can be easily implemented by a highly effi-

cient 3D max-pooling operator [27].

Furthermore, to embed the 3D Max Filtering into the ex-

isting frameworks and enable end-to-end training, we pro-

pose a new module, as shown in Fig. 3. This module lever-

ages the max filtering to select the predictions with the high-

est activation value in a local region and could enhance the

distinction with other predictions, which is further verified

in Sec. 4.2.1. Owing to this property, as shown in Fig. 2, we

adopt the 3DMF to refine the coarsely dense predictions and

suppress the duplicate predictions. Besides, all the modules

are constructed by simple differentiable operators and only

have slightly computational overhead.

3.2.3 Auxiliary Loss

In addition, when using the NMS, as shown in Tab. 1, the

performance of POTO and 3DMF is still inferior to the

FCOS baseline. This phenomenon may be attributed to the

fact that one-to-one label assignment provides less supervi-

sion, making the network difficult to learn the strong and

robust feature representation [44]. It could further reduce

the discrimination of classification, thus causing a decrease

in performance. To this end, motivated by many previous

works [44, 54, 55], we introduce an auxiliary loss based on
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(b) POTO(b) POTO

(d) POTO+3DMF+Aux(d) POTO+3DMF+Aux(c) POTO+3DMF(c) POTO+3DMF

(a) FCOS baseline(a) FCOS baseline

Image

Figure 4. Visualization of the predicted classification scores from different approaches. The input image has three instances of different

scales, i.e., person, tie and pot. The heatmaps from left to right of each approach correspond to the score map in the FPN stage ‘P5’, ‘P6’ and

‘P7’, respectively. ‘Aux’ indicates the proposed auxiliary loss. Our POTO based detector significantly suppresses the duplicate predictions

against the vanilla FCOS framework. The 3DMF enhances the distinctiveness of the local region across adjacent scales. Besides, the

auxiliary loss can further improve the feature representation.

one-to-many label assignment to provide adequate supervi-

sion, which is illustrated in Fig. 2.

Similar to ATSS [50], our auxiliary loss adopts the fo-

cal loss [22] with a modified one-to-many label assignment.

Specifically, the one-to-many label assignment first takes

the top-9 predictions as candidates in each FPN stage, ac-

cording to the proposed matching quality in Eq. 4. It then

assigns the candidates as foreground samples whose match-

ing qualities beyond a statistical threshold. The statistical

threshold is calculated by the summation of the mean and

the standard deviation of all the candidate matching quali-

ties. In addition, different forms of one-to-many label as-

signment for the auxiliary loss are elaborately reported in

the supplementary material.

4. Experiments

4.1. Implement Detail

As same as FCOS [46], our detector adopts a pair of 4-

convolution heads for classification and regression, respec-

tively. The output channel numbers of the first convolu-

tion and the second convolution in 3DMF are 256 and 1,

respectively. All the backbones are pre-trained on the Ima-

geNet dataset [4] with frozen batch normalizations [16]. In

the training phase, input images are reshaped so that their

shorter side is 800 pixels. All the training hyper-parameters

are identical to the 2x schedule (180k iterations) in the De-

tectron2 [48] if not specifically mentioned.

4.2. Ablation Studies on COCO

4.2.1 Visualization

As shown in Fig. 4, we present the visualization of the clas-

sification scores from the FCOS baseline and our proposed

framework. For a single instance, the FCOS baseline with

one-to-many assignment rule outputs massive duplicate pre-

dictions, which are highly activated and have comparable

activating scores with the most confident one. These dupli-

cate predictions are evaluated as false-positive samples and

greatly affect performance. In contrast, by using the pro-

posed POTO rule, the scores of duplicate samples are sig-

nificantly suppressed. This property is crucial for the detec-

tor to achieve direct bounding box prediction without NMS.

Moreover, with the proposed 3DMF module, this property

is further enhanced, especially in the nearby regions of the

most confident prediction. Besides, since the 3DMF mod-

ule introduces the multi-scale competitive mechanism, the

detector can well perform unique predictions across differ-

ent FPN stages, e.g., an instance in the Fig. 4 has single

highly activated scores in various stages.

4.2.2 Prediction-Aware One-to-One Label Assignment

Spatial prior. As shown in Tab. 3, for the spatial range of

assignment, the center sampling strategy is relatively supe-

rior to the inside box and global strategies on the COCO

dataset. It reflects that the prior knowledge of images is

essential in the real world scenario.

Classification vs. regression. The hyper-parameter α, as
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Table 3. Results of POTO with different configurations of α and

spatial prior on COCO val set. α = 0 is equivalent to considering

classification alone, α = 1 is equivalent to considering regression

alone. ‘center sampling’ and ‘inside box’ both follow FCOS [46].

‘/’ is used to distinguish between results without and with NMS.

α center sampling inside box global

0.0 33.5 / 33.6 24.1 / 24.2 1.9 / 2.1

0.2 33.7 / 33.9 28.8 / 28.8 19.4 / 19.5

0.4 35.0 / 35.2 32.7 / 32.8 28.3 / 28.4

0.6 36.6 / 36.9 35.3 / 35.5 34.7 / 34.9

0.8 38.0 / 38.6 37.4 / 37.9 37.3 / 37.9

1.0 11.8 / 29.7 4.5 / 13.0 non-convergence

Table 4. The effect of various quality functions on COCO val set.

‘/’ is used to distinguish between results without and with NMS.

‘Add’ and ‘Mul’ indicate two fusion functions.

Method α mAP AP50 AP75

Add

0.2 36.0 / 36.2 55.7 / 57.0 38.7 / 38.3

0.5 37.3 / 37.8 54.9 / 57.4 40.5 / 40.4

0.8 29.3 / 35.6 40.3 / 53.4 32.8 / 38.4

Mul 0.8 38.0 / 38.6 55.2 / 57.6 41.4 / 41.3

shown in Eq. 4, controls the ratio of the importance between

classification and regression. As reported in Tab. 3, when

α = 1, the gap with NMS is not narrowed. It could be at-

tributed to the misalignment between the best positions for

classification and regression. When α = 0, the assignment

rule only relies on the predicted scores of classification. Un-

der this condition, the gap with NMS is considerably elim-

inated, but the absolute performance is still unsatisfactory,

which could be caused by overfitting the sub-optimal ini-

tialization. In contrast, with a proper fusion of classification

and regression quality, the absolute performance is remark-

ably improved.

Quality function. We further explore the effect of different

fusion methods on the quality function, i.e., Eq. 4. As pre-

sented in Tab. 4, the method called ‘Add’ replaces the origi-

nal quality function by (1−α)·p̂π(i)(ci)+α·IoU
(
bi, b̂π(i)

)
,

which has a similar form to [19]. However, we find that the

multiplication fusion, i.e., ‘Mul’, is more suitable for the

end-to-end detection, which achieves 0.7% mAP absolute

gains over the ‘Add’ fusion method.

4.2.3 3D Max Filtering

Components. As shown in Tab. 5, without NMS post-

processing, our end-to-end detector with POTO achieves

19.0% mAP absolute gains over the vanilla FCOS. By using

the proposed 3DMF, the performance is further improved

by 1.8% mAP, and the gap with NMS is narrowed to 0.2%

mAP. As shown in Fig. 4, the result shows the crucial role

of the multi-scale and local-range suppression for end-to-

Table 5. The effect of sub-modules in the proposed 3DMF module

on COCO val set. ‘3DMF’ and ‘Aux Loss’ indicate using the 3D

Max Filtering and the auxiliary loss, respectively. ‘/’ is used to

distinguish between results without and with NMS.

Model 3DMF Aux Loss mAP

FCOS [46]

✗ ✗ 19.0 / 40.9

✗ ✓ 18.9 / 41.3

✓ * ✗ 38.7 / 40.0

Ours

✗ ✗ 38.0 / 38.6

✓ ✗ 39.8 / 40.0

✓ ✓ 41.1 / 41.2

* We modify 3D Max Filtering as a post-processing.

Table 6. The effect of hyper-parameters in the proposed 3DMF

module on COCO val set. τ = 0 is equivalent to applying 2D

Max Filtering to transform features on a single scale. ‘/’ is used to

distinguish between results without and with NMS.

φ = 1 φ = 3 φ = 5

τ = 0 39.2 / 39.5 39.1 / 39.5 39.0 / 39.4

τ = 2 39.0 / 39.3 39.8 / 40.0 39.3 / 39.5

τ = 4 39.1 / 39.3 39.3 / 39.4 39.4 / 39.6

end object detection. The proposed auxiliary loss gives ad-

equate supervision, making our detector obtain competitive

performance against the FCOS with NMS.

End-to-end. To demonstrate the superiority of the end-

to-end training manner, we replace the 2D Max Filtering

of CenterNet [5] with the 3D Max Filtering as new post-

processing for duplicate removal. This post-processing is

further adopted to the FCOS detector. As shown in Tab. 5,

the end-to-end manner achieves significant absolute gains

by 1.1% mAP.

Kernel size. As shown in Tab. 6, we evaluate different set-

tings of spatial range φ and scale range τ in the 3DMF.

When φ = 3 and τ = 2, our method obtains the highest

performance on the COCO dataset. This phenomenon re-

flects the duplicate predictions majorly come from a local

region across adjacent scales, which is similar to the obser-

vation in Sec. 3.2.2.

Performance w.r.t. training duration. As illustrated in

Fig. 5(a), at the very beginning, the performance on COCO

val set of our end-to-end detectors is inferior to the de-

tectors with NMS. As the training progressed, the perfor-

mance gap becomes smaller and smaller. After 180k train-

ing iterations, our method finally outperforms other detec-

tors with NMS. This phenomenon also occurs on Crowd-

Human val set, which is shown in Fig. 5(c). Moreover, due

to the removal of hand-designed post-processing, Fig. 5(b)

demonstrates the superiority of our method in the recall rate

against the NMS based methods.
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Figure 5. The comparison graphs of performance w.r.t. training duration. The value of the horizontal axis corresponds to the training

iterations. All the models are based on the ResNet-50 backbone. The threshold of NMS is set to 0.6.

Table 7. The experiments of the proposed framework with larger

backbone on COCO2017 test-dev set. The hyper-parameters of all

the models follow the official settings.

Backbone Model Epochs mAP

ResNet-101

RetinaNet [22] 36 41.0

FCOS [46] 36 43.1

DETR [3] 500 43.5

Ours (w/o NMS) 36 43.6

ResNeXt-101+DCN

RetinaNet [22] 24 44.5

FCOS [46] 24 46.5

Ours (w/o NMS) 24 47.6

4.2.4 Larger Backbone

To further demonstrate the robustness and effectiveness of

our method, we provide experiments with larger backbones.

The detailed results are reported in Tab. 7. Concretely,

when using the ResNet-101 as the backbone, our method

is slightly superior to FCOS by 0.5% mAP. But when in-

troducing more stronger backbone, i.e., ResNeXt-101 [49]

with deformable convolutions [59], our end-to-end detec-

tor achieves 1.1% mAP absolute gains over the FCOS with

NMS. It might be attributed to the flexibly spatial modeling

of deformable convolutions. Moreover, the proposed 3DMF

is efficient and easy to implement. As shown in Tab. 7, our

3DMF module only has a slightly computational overhead

against the baseline detector with NMS.

4.3. Evaluation on CrowdHuman

We evaluate our model on the CrowdHuman dataset [37],

which is a large human detection dataset with various kinds

of occlusions. Compared with the COCO dataset, Crowd-

Human has more complex and crowded scenes, giving se-

vere challenges to conventional duplicate removal. Our

end-to-end detector is more robust and flexible in crowded

scenes. As shown in Tab. 8 and Fig. 5, our method signif-

Table 8. The comparison of fully convolutional detectors on

CrowdHuman val set. All models are based on the ResNet-50

backbone. ‘Aux’ indicates the auxiliary loss.

Method Epochs AP50 mMR Recall

RetinaNet [22] 32 81.7 57.6 88.6

FCOS [46] 32 86.1 54.9 94.2

ATSS [50] 32 87.2 49.7 94.0

DETR [3] 300 72.8 80.1 82.7

Ground-truth (w/ NMS) - - - 95.1

POTO 32 88.5 52.2 96.3

POTO+3DMF 32 88.8 51.0 96.6

POTO+3DMF+Aux 32 89.1 48.9 96.5

icantly outperforms several state-of-the-art detectors with

NMS, e.g., 3.0% mAP and 6.0% mMR absolute gains over

the FCOS. Moreover, the recall rate of our method is even

superior to the ground-truth boxes with NMS.

5. Conclusion

This paper has presented a prediction-aware one-to-one

label assignment and a 3D Max Filtering to bridge the gap

between fully convolutional network and end-to-end object

detection. With the auxiliary loss, our end-to-end frame-

work achieves superior performance against many state-of-

the-art detectors with NMS on COCO and CrowdHuman

datasets. Our method is also demonstrated great potential

in complex and crowded scenes, which may benefit many

other instance-level tasks.
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