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Figure 1 – Overall pipeline of VisTR. The model takes a sequence of images as input and outputs a sequence of instance predictions.

Here same shapes represent predictions in one image, and same colors represent predictions of the same object instance. Note that the

overall predictions follow the input frame order, and the order of object predictions for different images keeps the same (Best viewed on

screen).

Abstract

Video instance segmentation (VIS) is the task that re-

quires simultaneously classifying, segmenting and tracking

object instances of interest in video. Recent methods typ-

ically develop sophisticated pipelines to tackle this task.

Here, we propose a new video instance segmentation frame-

work built upon Transformers, termed VisTR, which views

the VIS task as a direct end-to-end parallel sequence de-

coding/prediction problem. Given a video clip consisting of

multiple image frames as input, VisTR outputs the sequence

of masks for each instance in the video in order directly.

At the core is a new, effective instance sequence matching

and segmentation strategy, which supervises and segments

instances at the sequence level as a whole. VisTR frames

the instance segmentation and tracking in the same perspec-

tive of similarity learning, thus considerably simplifying the

overall pipeline and is significantly different from existing

approaches.

Without bells and whistles, VisTR achieves the highest

*Corresponding author.

speed among all existing VIS models, and achieves the best

result among methods using single model on the YouTube-

VIS dataset. For the first time, we demonstrate a much

simpler and faster video instance segmentation framework

built upon Transformers, achieving competitive accuracy.

We hope that VisTR can motivate future research for more

video understanding tasks.

Code is available at: https://git.io/VisTR

1. Introduction

Instance segmentation is one of the fundamental tasks in

computer vision. While significant progress has been wit-

nessed in instance segmentation of images [5,9,22,25–27],

much less effort was spent on segmenting instances in

videos. Here we propose a new video instance segmentation

framework built upon Transformers. Video instance seg-

mentation (VIS), recently proposed in [30], requires one to

simultaneously classify, segment and track object instances

of interest in a video sequence. It is more challenging in that

one needs to perform instance segmentation for each indi-
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vidual frame and at the same time to establish data associa-

tion of instances across consecutive frames, a.k.a., tracking.

State-of-the-art methods typically develop sophisticated

pipelines to tackle this task. Top-down approaches [2, 30]

follow the tracking-by-detection paradigm, relying heav-

ily on image-level instance segmentation models [6, 9] and

complex human-designed rules to associate the instances.

Bottom-up approaches [1] separate object instances by clus-

tering learned pixel embeddings. Due to heavy reliance on

the dense prediction quality, these methods often need mul-

tiple steps to generate the masks iteratively, which makes

them slow. Thus, a simple, end-to-end trainable VIS frame-

work is highly desirable.

Here, we take a deeper look at the video instance seg-

mentation task. Video frames contain richer information

than single images such as motion patterns and temporal

consistency of instances, offering useful cues for instance

segmentation, and classification. At the same time, the bet-

ter learned instance features can help tracking of instances.

In essence, the instance segmentation and instance tracking

are both concerned with similarity learning: instance seg-

mentation is to learn the pixel-level similarity and instance

tracking is to learn the similarity between instances. Thus,

it is natural to solve these two sub-tasks in a single frame-

work and benefit each other. Here we aim to develop such

an end-to-end VIS framework. The framework needs to be

simple and achieves strong performance without whistles

and bells. To this end, we propose to employ the Trans-

formers [23]. Importantly, for the first time we demon-

strate that, as the Transformers provide building blocks, it

enables one to design a simple and clean framework for

VIS, and possibly for a much wider range of video process-

ing tasks in computer vision. Thus potentially, it is possible

to unify most vision tasks of different input modalities—

such as image, video and point clouds processing—into the

Transformer framework. Transformers are widely used for

sequence to sequence learning in NLP [23], and start to

show promises in vision [4, 8]. Transformers are capable

of modeling long-range dependencies, and thus can be nat-

urally applied to video for learning temporal information

across multiple frames. In particular, the core mechanism

of Transformers, self-attention, is designed to learn and up-

date the features based on all pairwise similarities between

them. The above characteristics of Transformers make them

great candidates for the VIS task.

In this paper, we propose the Video Instance Segmen-

tation TRansformer (VisTR), which views the VIS task as

a parallel sequence decoding/prediction problem. Given a

video clip that consists of multiple image frames as input,

the VisTR outputs the sequence of masks for each instance

in the video in order directly. The output sequence for each

instance is referred to as instance sequence in this paper.

The overall VisTR pipeline is illustrated in Fig. 1. In the first

stage, given a sequence of video frames, a standard CNN

module extracts features of individual image frames, then

the multiple image features are concatenated in the frame

order to form the clip-level feature sequence. In the second

stage, the Transformer takes the clip-level feature sequence

as input, and outputs a sequence of object predictions in or-

der. In Fig. 1 same shapes represent predictions for the same

image, and the same colors represent the same instance of

different images. The sequence of predictions follow the

order of input images, and the predictions of each image

follows the same instance order. Thus, instance tracking is

achieved seamlessly and naturally in the same framework

of instance segmentation.

To achieve this goal, there are two main challenges: 1)

how to maintain the order of outputs and 2) how to obtain

the mask sequence for each instance out of the Transformer

network. Correspondingly, we introduce the instance se-

quence matching strategy and the instance sequence seg-

mentation module. The instance sequence matching per-

forms bipartite graph matching between the output instance

sequence and the ground-truth instance sequence, and su-

pervises the sequence as a whole. Thus, the order can be

maintained directly. The instance sequence segmentation

accumulates the mask features for each instance across mul-

tiple frames through self-attention and segments the mask

sequence for each instance through 3D convolutions.

Our main contributions are summarized as follows.

• We propose a new video instance segmentation frame-

work built upon Transformers, termed VisTR, which

views the VIS task as a direct end-to-end parallel se-

quence decoding/prediction problem. The framework

is significantly different from existing approaches,

considerably simplifying the overall pipeline.

• VisTR solves the VIS from a new perspective of sim-

ilarity learning. Instance segmentation is to learn the

pixel-level similarity and instance tracking is to learn

the similarity between instances. Thus, instance track-

ing is achieved seamlessly and naturally in the same

framework of instance segmentation.

• The key to the success of VisTR is a new strategy for

instance sequence matching and segmentation, which

is tailored for our framework. This carefully-designed

strategy enables us to supervise and segment instances

at the sequence level as a whole.

• VisTR achieves strong results on the YouTube-VIS

dataset, achieving 38.6% in mask mAP at the speed of

57.7 FPS , which is the best and fastest among methods

that use a single model.

2. Related work

Video object segmentation. VOS [18] is closely related

to VIS. Analogue to object tracking, which is detecting
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boxes of foreground objects in a class-agnostic fashion,

VOS is segmenting masks of foreground class-agnostic ob-

jects. Same as in tracking, usually one is allowed to use

only the first few frames’ annotations for training. In con-

trast, VIS requires to segment and track all instance masks

of a fixed category set of objects in a video sequence.

Video instance segmentation. The VIS task [30] requires

classifying, segmenting instances in each frame and linking

the same instance across frames. State-of-the-art methods

typically develop sophisticated pipelines to tackle it. Mask-

Track R-CNN [30] extends the Mask R-CNN [9] with a

tracking branch and external memory that saves the features

of instances across multiple frames. Maskprop [2] builds on

the Hybrid Task Cascade Network [6], and re-uses the pre-

dicted masks to crop the extracted features, then propagates

them temporally to improve the segmentation and tracking.

STEm-Seg [1] proposes to model video clips as 3D space-

time volumes and then separates object instances by clus-

tering learned embeddings. Note that the above approaches

either rely on complex heuristic rules to associate the in-

stances or require multiple steps to generate and optimize

the masks iteratively. In contrast, here we aim to build a

simple and end-to-end trainable VIS framework.

Transformers. Transformers were first proposed in [23]

for the sequence-to-sequence machine translation task, and

since then have become the de facto method in most NLP

tasks. The core mechanism of Transformers, self-attention,

makes it particularly suitable for modeling long-range de-

pendencies. Very recently, Transformers start to show

promises in solving computer vision tasks. DETR [4]

builds an object detection systems based on Transformers,

which largely simplifies the traditional detection pipeline,

and achieves on par performances compared with highly-

optimized CNN based detectors [19]. Our work here is

inspired by DETR. ViT [8] introduces the Transformer to

image recognition and models an image as a sequence of

patches, which attains excellent results compared to state-

of-the-art convolutional networks. The above works show

the effectiveness of Transformers in image understanding

tasks. To our knowledge, thus far there are no prior appli-

cations of Transformers to video instance segmentation. It

is intuitive to see that the Transformers’ advantage of mod-

eling long-range dependencies makes it an ideal candidate

for learning temporal information across multiple frames

for video understanding tasks. Here, we propose the VisTR

method and provide an affirmative answer to that. As the

original Transformers are auto-regressive models, which

generate output tokens one by one, for efficiency, VisTR

employs a non-auto-regressive variant of the Transformer

to achieve parallel sequence generation.

3. Our Method: VisTR

We tackle the video instance segmentation task by mod-

eling it as a direct sequence prediction problem. Given a

video clip that consists of multiple image frames as input,

the VisTR outputs the sequence of masks for each instance

in the video in order. To achieve this goal, we introduce

the instance sequence matching and segmentation strategy

to supervise and segment the instances at the sequence level

as a whole. In this section, we first introduce the overall

architecture of the proposed VisTR in Sec. 3.1, then the de-

tails of the instance sequence matching and segmentation

module will be described in Sec. 3.2 and Sec. 3.3 respec-

tively.

3.1. VisTR Architecture

The overall VisTR architecture is depicted in Fig. 2. It

contains four main components: a CNN backbone to ex-

tract compact feature representations of multiple frames,

an encoder-decoder Transformer to model the similarity of

pixel-level and instance-level features, an instance sequence

matching module for supervising the model, and an instance

sequence segmentation module.

Backbone. The backbone extracts the original pixel-level

feature sequence of the input video clip. Assume that the

initial video clip with T frames of resolution H0 × W0 is

denoted by xclip ∈ R
T×3×H0×W0 . First, a standard CNN

backbone generates a lower-resolution activation map for

each frame, then the features for each frame are concate-

nated to form the clip level feature map f0 ∈ R
T×C×H×W .

Transformer encoder. The Transformer encoder is em-

ployed to model the similarities among all the pixel level

features in the clip. First, a 1×1 convolution is applied to

the above feature map, reducing the dimension from C to d
(d < C), resulting in a new feature map f1 ∈ R

T×d×H×W .

To form a clip level feature sequence that can be fed into

the Transformer encoder, we flatten the spatial and tempo-

ral dimensions of f1 into one dimension, resulting in a 2D

feature map of size d× (T ·H ·W ). Note that the temporal

order is always in accordance with that of the initial input.

Each encoder layer has a standard architecture that consists

of a multi-head self-attention module and a fully connected

feed forward network (FFN).

Temporal and spatial positional encoding. The Trans-

former architecture is permutation-invariant, while the seg-

mentation task requires precise position information. To

compensate for this, we supplement the features with fixed

positional encodings information that contains the three di-

mensional (temporal, horizontal and vertical) positional in-

formation in the clip. Here we adapt the positional encoding

in the original Transformer [23] for our 3D case. Specif-

ically, for the coordinates of each dimension we indepen-

dently use d/3 sine and cosine functions with different fre-
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Figure 2 – The overall architecture of VisTR. It contains four main components: 1) a CNN backbone that extracts feature representation

of multiple images; 2) an encoder-decoder Transformer that models the relations of pixel-level features and decodes the instance-level

features; 3) an instance sequence matching module that supervises the model; and 4) an instance sequence segmentation module that

outputs the final mask sequences (Best viewed on screen).

quencies:

PE(pos, i) =

{

sin
(

pos · ωk

)

, for i = 2k,

cos
(

pos · ωk

)

, for i = 2k + 1;
(1)

where ωk = 1/100002k/
d

3 ; ‘pos’ is the position in the cor-

responding dimension. Note that the d should be divisible

by 3, as the positional encodings of the three dimensions

should be concatenated to form the final d channel posi-

tional encoding. These encodings are added to the input of

each attention layer.

Transformer decoder. The Transformer decoder aims to

decode the top pixel features that can represent the instances

of each frame, which is called instance level features. Mo-

tivated by DETR [4], we also introduce a fixed number

of input embeddings to query the instance features from

pixel features, termed as instance queries. Suppose that the

model decodes n instances each frame, then for T frames

the instance query number is N = n · T . The instance

queries are learned by the model and have the same dimen-

sion with the pixel features. Taking the output of encoder

E and N instance queries Q as input, the Transformer de-

coder outputs N instance features, denoted by O in Fig. 2.

The overall predictions follow the input frame order, and

the order of instance predictions for different images is the

same. Thus, the tracking of instances in different frames

could be realized by linking the items of the corresponding

indices directly.

3.2. Instance Sequence Matching

VisTR infers a fixed-size sequence of N predictions, in a

single pass through the decoder. One of the main challenges

for this framework is to maintain the relative position of pre-

dictions for the same instance in different images, a.k.a., in-

stance sequence. In order to find the corresponding ground

truth and supervise the instance sequence as a whole, we

introduce the instance sequence matching strategy.

As the VisTR decode n instances each frame, the num-

ber of instance sequence is also n. Let us denote by ŷ =
{ŷi}

n
i=1 the predicted instance sequences, and y the ground

truth set of instance sequences. Assuming n is larger than

the number of instances in the video clip, we consider y
also as a set of size n padded with ∅. In order to find a bi-

partite graph matching between the two sets, we search for

a permutation of n elements σ ∈ Sn with the lowest cost:

σ̂ = argmin
σ∈Sn

n
∑

i

Lmatch

(

yi, ŷσ(i)
)

(2)

where Lmatch

(

yi, ŷσ(i)
)

is a pair-wise matching cost be-

tween ground truth yi and an instance sequence prediction

with index σ(i). The optimal assignment could be com-

puted efficiently by the Hungarian algorithm [11], follow-

ing prior work (e.g., [21]).

As computing the mask sequence similarity directly is

computationally intensive, we find a surrogate, the box se-

quence to perform the matching. To obtain the box predic-

tions, we apply a 3-layer feed forward network (FFN) with

ReLU activation function and a linear projection layer to

the object predictions O of Transformer decoder. Follow-

ing the same practice of DETR [4], the FFN predicts the

normalized center coordinates, height and width of the box

w.r.t. input image, and the linear layer predicts the class la-

bel using a softmax function. We also add a “background”

class to represent that no object is detected.

Given the N = n · T bounding box predictions for the

object predictions sequence, we could associate n box se-

quences for each instance by their indices, referred to as
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ins1 box seq...ins4 box seq in Fig. 2. The matching loss

takes both the class predictions and the similarity of pre-

dicted and ground truth boxes into account. Each element i
of the ground truth set can be seen as

yi = {(ci, ci..., ci), (bi,0, bi,1..., bi,T )} (3)

where ci is the target class label (which may be ∅) for this in-

stance, and bi,t ∈ [0, 1]4 is a vector that defines ground truth

box center coordinates and its relative height and width in

the frame t. T represent the number of input frames. Thus,

for the predictions of instance with index σ(i) we denoted

the probability of class ci as

p̂(σ(i))(ci) = {p̂(σ(i),0)(ci)..., p̂(σ(i),T )(ci)} (4)

and the predicted box sequence as

b̂σ(i) =
{

b̂(σ(i),0), b̂(σ(i),1)..., b̂(σ(i),T )

}

(5)

With the above notation, we define

Lmatch

(

yi, ŷσ(i)
)

= −p̂σ(i) (ci) + Lbox

(

bi, b̂σ(i)
)

, (6)

where ci 6= ∅. Based on the above criterion, we could

find the one-to-one matching of the sequences by the Hun-

garian algorithm. Given the optimal assignment, we could

compute the loss function, the Hungarian loss for all pairs

matched in the previous step. The loss is a linear combina-

tion of a negative log-likelihood for class prediction, a box

loss and mask loss for the instance sequences:

LHung(y, ŷ) =
N
∑

i=1

[

(− log p̂σ̂(i)(ci)) + Lbox (bi, b̂σ̂(i))

+ Lmask (mi, m̂σ̂(i))
]

. (7)

Here ci 6= ∅, and σ̂ is the optimal assignment computed

in Eq. (2). The Hungarian loss is used to train the whole

framework.

The second part of the matching cost and the Hungarian

loss is Lbox that scores the bounding boxes. We use a linear

combination of the sequence level L1 loss and the general-

ized IOU loss [20]:

Lbox

(

bi, b̂σ(i)
)

=
1

T

T
∑

t=1

[

λiou · Liou

(

bi,t, b̂σ(i),t
)

+ λL1

∥

∥

∥
bi,t − b̂σ(i),t

∥

∥

∥

1

]

. (8)

Here λiou, λL1 ∈ R are hyper-parameters. These two losses

are normalized by the number of instances inside the batch.

In the sequel, we present the details.

3.3. Instance Sequence Segmentation

The instance sequence segmentation module aims to pre-

dict the mask sequence for each instance. To realize that,

the model needs to accumulate the mask features of multi-

ple frames for each instance firstly, then the mask sequence

segmentation is performed on the accumulated features.

The mask features are obtained by computing the simi-

larity map between the object predictions O and the Trans-

former encoded features E. To simplify the calculation, we

only compute with the features of its corresponding frame

for each object prediction. For each frame, the object pre-

dictions O and the corresponding encoded feature maps E
are fed into the self-attention module to obtain the initial

attention maps. Then the attention maps will be fused with

the initial backbone features B and the transformed encoded

features E of the corresponding frames, following a similar

practice with the DETR [4]. The last layer of the fusion is

a deformable convolution layer [7]. In this way, the mask

features for each instance of different frames are obtained.

Following the same spirit of taking the instance sequence

as a whole, the mask features of the same instance in

different frames should be propagated and reinforce each

other. We propose to utilize the 3D convolution to real-

ize that. Assume that the mask feature for instance i of

frame t is gi,t ∈ R
1×a×H0/4×W0/4, where a is the chan-

nel number, then we concatenate the features of T frames

to form the Gi ∈ R
1×a×T×H0/4×W0/4. The instance se-

quence segmentation module takes the instance sequence

mask feature Gi as input, and output the mask sequence

mi ∈ R
1×1×T×H0/4×W0/4 for the instance directly. This

module contains three 3D convolutional layers and Group

Normalization [29] layers with ReLU activation function.

No normalization or activation is performed after the last

convolution layer, and the output channel number of the

last layer is 1. In this way, the masks of the instance for

T frames are obtained. The mask loss for supervising the

predictions in Eq. (7) is defined as a combination of the

Dice [16] and Focal loss [13]:

Lmask

(

mi, m̂σ(i)

)

= λmask

1

T

T
∑

t=1

[

LDice(mi,t, m̂σ(i),t)

+ LFocal(mi,t, m̂σ(i),t)
]

. (9)

4. Experiments

In this section, we conduct experiments on the YouTube-

VIS [30] dataset, which contains 2238 training, 302 valida-

tion and 343 test video clips. Each video of the dataset is

annotated with per pixel segmentation mask, category and

instance labels. The object category number is 40. As the

test set evaluation is closed, we evaluate our method in the

validation set. The evaluation metrics are average precision
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(AP) and average recall (AR), with the video Intersection

over Union (IoU) of the mask sequences as the threshold.

4.1. Implementation Details

Model settings. As the largest number of the annotated

video length for YouTube-VIS [30] is 36, we take this value

as the default input video clip length T . Thus, no post-

processing is needed to associate different clips from one

video, which makes our model totally end-to-end trainable.

The model predicts 10 objects for each frame, thus the total

object query number is 360. For the Transformer we use

6 encoder, 6 decoder layers of width 384 with 8 attention

heads. Unless otherwise specified, ResNet-50 [10] is used

as our backbone networks and the same hyper-parameters

of DETR [4] are used.

Training. The model is implemented with PyTorch-1.6

[17], trained with AdamW [15] of initial Transformer’s

learning rate being 10−4 , the backbone’s learning rate be-

ing 10−4. The models are trained for 18 epochs, with the

learning rate decays by 10x at 12 epochs. We initialize our

backbone networks with the weights of DETR pretrained

on COCO [14]. The models are trained on 8 V100 GPUs of

32G RAM, with 1 video clip per GPU. The frame sizes are

downsampled to 300×540 to fit the GPU memory.

Inference. During inference, we follow the same scale set-

ting as training. No post-processing is needed for associ-

ating instances. Instances with scores larger than 0.001 are

kept. The mean score for all the frames is used as the in-

stance score. For instances that have been classified to dif-

ferent categories in different frames, we use the most fre-

quently predicted category as the final instance category.

4.2. Ablation Study

In this section we conduct extensive ablation experi-

ments to study the core factors of VisTR. Comparison re-

sults are reported in Table 1.

The main difference between video and image is that

video contains temporal information. How to effectively

learn and exploit temporal information is the key to video

understanding. Firstly, we study the importance of tempo-

ral information to VisTR in two dimensions: the amount

and the order.

Video sequence length. To evaluate the importance of the

amount of temporal information to VisTR, we experiment

with models trained with different input video sequence

lengths. As reported in Table 1a, with the length varying

from 18 to 36, the AP increases monotonically from 29.7%

to 33.3%. This result shows that more temporal information

indeed helps the model learn better. As the largest video

length of the dataset is 36, we argue that, if with a larger

dataset, VisTR can achieve even better results. Note that

for this experiment, if the clip length is less than the video

length, instance matching in overlapping frames is used for

associating them from different clips.

Video sequence order. As the movement of objects in real

scenes are continuous, we believe that the order of temporal

information is also important. To evaluate, we perform a

comparison of the model trained with input video sequence

in random order vs. time order. Results in Table 1c show

that the model learned according to the time order informa-

tion achieves 1 point higher, which verifies the importance

of the temporal order.

Positional encoding. Position information is important for

the dense prediction problem of VIS. As the original fea-

ture sequence contains no positional information, we sup-

plement with the spatial and temporal positional encodings,

which indicate the relative positions in the video sequence.

Experiments of models with and without positional encod-

ing are presented in Table 1d. The model without positional

encoding manages to achieve 28.4% AP. Our explanation

is that the ordered format of the sequence supervision and

the correspondence between the input and output order of

the Transformer provide some relative positional informa-

tion implicitly. In the second experiment, the performance

improves by about 5 points, which verifies the necessity of

explicit positional encoding.

Instance queries. The instance queries are learned embed-

dings for decoding the representative instance predictions.

In this experiment, we study the effect of instance queries

and attempt to exploit the inner connections among them

by varying the embedding number. Suppose the model de-

code n instances each frame, and the frame number is T .

The input instance query number should be n × T to de-

code the same number for predictions. In the default set-

ting, one embedding is responsible for one prediction, the

model directly learns n× T unique embeddings, termed as

‘prediction level’ in Table 1b. In the ‘video level setting’,

one embedding is learned for all the instance predictions,

i.e., the same embedding is repeated n × T times as the

input of decoder. In the ‘frame-level’ setting, the model

only learns T unique embeddings and repeats them by n
times. In the ‘instance level’ setting, the model only learns

n unique embeddings and repeats them by T times. The n

and T corresponds to the value of 10 and 36 in the table re-

spectively. The result is 8.4% AP and 13.7% AP for ‘video

level’ and ‘frame level’ settings respectively. Surprisingly,

the ‘instance level’ queries can achieve 32.0% AP, which

is only 1.3 points lower than the default setting. The result

shows that the queries for one instance can be shared for

the VisTR model, which makes the tracking natural. But

the queries for one frame can not be shared.

Transformers for feature encoding. As illustrated in the

‘instance sequence segmentation’ module of Fig. 2. The

module takes three types of features as input: the features

‘B’ from the backbone, the feature ‘E’ from the encoder

and the attention map computed by the feature ‘E’ and
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Length AP AP50 AP75 AR1 AR10

18 29.7 50.4 31.1 29.5 34.4

24 30.5 47.8 33.0 29.5 34.4

30 31.7 53.2 32.8 31.3 36.0

36 33.3 53.4 35.1 33.1 38.5

(a) Video sequence length. The performance improves as the se-

quence length increases.

# AP AP50 AP75 AR1 AR10

video level 1 8.4 13.2 9.5 20.0 20.8

frame level 36 13.7 23.3 14.5 30.4 35.1

ins. level 10 32.0 52.8 34.0 31.6 37.2

pred. level 360 33.3 53.4 35.1 33.1 38.5

(b) Instance query embedding. Instance-level query is only 1.3%

lower in AP than the prediction-level query with 36× fewer embed-

dings.

time order AP AP50 AP75 AR1 AR10

random 32.3 52.1 34.3 33.8 37.3

in order 33.3 53.4 35.1 33.1 38.5

(c) Video sequence order. Sequence in time order is 1.0% better in

AP than sequence in random order.

AP AP50 AP75 AR1 AR10

w/o 28.4 50.1 29.5 29.6 33.3

w 33.3 53.4 35.1 33.1 38.5

(d) Position encoding. Position encoding brings about 5% AP gains

to VisTR.
AP AP50 AP75 AR1 AR10

CNN 32.0 54.5 31.5 31.6 37.7

Transformer 33.3 53.4 35.1 33.1 38.5

(e) CNN-encoded feature vs. Transformer-encoded feature for

mask prediction. The transformer improves the feature quality.

AP AP50 AP75 AR1 AR10

w/o 33.3 53.4 35.1 33.1 38.5

w 34.4 55.7 36.5 33.5 38.9

(f) Instance sequence segmentation module. The module with 3D

convolutions brings 1.1% AP gains.

Table 1 – Ablation experiments for VisTR. All models are trained on YouTubeVIS train for 10 epochs and tested on YouTubeVIS val,

using the ResNet-50 backbone.

‘O’. To show the superiority of Transformers in feature en-

coding, we compare the results of using the original input

‘O’ vs. output ‘E’ of the encoder for the second feature,

a.k.a., CNN-encoded features vs. Transformer-encoded fea-

tures. As reported in Table 1e, the CNN-encoded fea-

tures achieves 32.0% AP, and the Transformer-encoded fea-

tures achieve 1.3 points higher. This demonstrates that fea-

tures are learned better after the Transformer updates them

based on all pairwise similarities between them through

self-attention. The result also shows the superiority of mod-

eling the spatial and temporal features as a whole.

Instance sequence segmentation. The segmentation pro-

cess contains both the instance mask feature accumulation

and instance sequence segmentation modules. The instance

sequence segmentation module takes the instance sequence

as a whole. We expect that it can strengthen the mask pre-

diction by learning the temporal information through 3D

convolutions. Thus, when objects are in challenging situ-

ations such as occlusions or motion blurs, the module can

learn to propagate information from other frames to help

the segmentation. Besides, the features of the same in-

stance from multiple frames could help the network recog-

nize the instance better. In this experiment, we perform a

study of models with or without the 3D instance sequence

segmentation module. For the former case, we apply a 2D

convolutional layer with the output channel being 1 to the

mask features for each instance of each frame to obtain the

masks. The comparison is shown in Table 1f. The in-

stance sequence segmentation module improves the result

by 1.1 points, which verifies the effectiveness of the pro-

posed module.

With these ablation studies, we conclude that in VisTR

design: the temporal information, positional encodings, in-

stance queries, global self-attention in the encoder and the

instance sequence segmentation module, all play important

roles w.r.t. the final performance.

4.3. Main Results

We compare VisTR against some state-of-the-art meth-

ods in video instance segmentation in Table 2. The com-

parison is performed in terms of both accuracy and speed.

The methods in the first three rows are originally proposed

for tracking or VOS. We have cited the results reported by

the re-implementations in [30] for VIS. Other methods in-

cluding the MaskTrack RCNN, MaskProp [2] and STEm-

Seg [1] are originally proposed for the VIS task in the tem-

poral order.

For the accuracy measured by AP, VisTR achieves the

best result among methods using a single model without any

bells and whistles. Using the same backbone of ResNet-

50 [10], VisTR achieves about 5 points higher in AP than

the MaskTrack R-CNN and the recently proposed STEm-

Seg method. Besides, we argue the AP gap between VisTR

and MaskProp mainly comes from its combination of mul-

tiple networks, i.e., Spatiotemporal Sampling Network [3],

Feature Pyramid Network [12], Hybrid Task Cascade Net-

work [6] and the High-Resolution Mask Refinement post-

processing. Since our aim is to design a conceptually sim-

ple and end-to-end framework, many improvements meth-

ods, such as complex video data augmentation and multi-

stage mask refinement are beyond the scope of this work.

For the speed measured by FPS (frames per second), VisTR

shows a significant advantage among all the reported re-

sults, achieving 27.7 FPS with the ResNet-101 backbone.

If excluding the data loading process of multiple images,

the speed can achieve 57.7 FPS. Note that, as we load the
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Method backbone FPS AP AP50 AP75 AR1 AR10

DeepSORT [28] ResNet-50 - 26.1 42.9 26.1 27.8 31.3

FEELVOS [24] ResNet-50 - 26.9 42.0 29.7 29.9 33.4

OSMN [31] ResNet-50 - 27.5 45.1 29.1 28.6 33.1

MaskTrack R-CNN [30] ResNet-50 20.0 30.3 51.1 32.6 31.0 35.5

STEm-Seg [1] ResNet-50 - 30.6 50.7 33.5 31.6 37.1

STEm-Seg [1] ResNet-101 2.1 34.6 55.8 37.9 34.4 41.6

MaskProp [2] ResNet-50 - 40.0 - 42.9 - -

MaskProp [2] ResNet-101 - 42.5 - 45.6 - -

VisTR ResNet-50 30.0/69.9 35.6 56.8 37.0 35.2 40.2

VisTR ResNet-101 27.7/57.7 38.6 61.3 42.3 37.6 44.2

Table 2 – Video instance segmentation AP (%) on the YouTube-VIS [30] validation dataset. Note that, for the first three methods, we

have cited the results reported by the re-implementations in [30] for VIS. Other results are adopted from their original paper. For the

speed of VisTR we report the FPS results with and without the data loading process. Here we naively load the images serially, taking

unnecessarily long time. The data loading process can be much faster by parallelizing.

(a)

(b)

(c)

(d)

Figure 3 – Visualization of VisTR on the YouTube-VIS [30] validation dataset. Each row contains images from the same video. For

each video, here the same colors depict the mask sequences of the same instances (Best viewed on screen).

images in serial, the data loading process can be easily par-

allelized. The fast speed of VisTR owes to its design of

parallel decoding and no post-processing.

The visualization of VisTR on the YouTube-VIS [30]

validation dataset is shown in Fig. 3, with each row con-

taining images sampled from the same video. VisTR can

track and segment instances well in challenging situations

such as: (a) instances overlapping, (b) changes of relative

positions between instance, (c) confusion by the same cat-

egory instances that are close together and (d) instances in

various poses.

5. Conclusion

In this paper, we have proposed a new video instance

segmentation framework built upon Transformers, which

views the VIS task as a direct end-to-end parallel sequence

decoding/prediction problem. In this way, instance track-

ing is achieved seamlessly and naturally in the same frame-

work of instance segmentation, which is significantly differ-

ent from and simpler than existing approaches, considerably

simplifying the overall pipeline. Without bells and whistles,

VisTR achieves the best result and the highest speed among

methods using a single model on the YouTube-VIS dataset.

To our knowledge, our work is the first one that applies the

Transformer to video instance segmentation. We hope that

similar approaches can be applied to many more video un-

derstanding tasks in the future.
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