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Abstract

Deep neural networks are vulnerable to adversarial ex-

amples that mislead the models with imperceptible pertur-

bations. Though adversarial attacks have achieved incredi-

ble success rates in the white-box setting, most existing ad-

versaries often exhibit weak transferability in the black-box

setting, especially under the scenario of attacking models

with defense mechanisms. In this work, we propose a new

method called variance tuning to enhance the class of iter-

ative gradient based attack methods and improve their at-

tack transferability. Specifically, at each iteration for the

gradient calculation, instead of directly using the current

gradient for the momentum accumulation, we further con-

sider the gradient variance of the previous iteration to tune

the current gradient so as to stabilize the update direction

and escape from poor local optima. Empirical results on

the standard ImageNet dataset demonstrate that our method

could significantly improve the transferability of gradient-

based adversarial attacks. Besides, our method could be

used to attack ensemble models or be integrated with var-

ious input transformations. Incorporating variance tun-

ing with input transformations on iterative gradient-based

attacks in the multi-model setting, the integrated method

could achieve an average success rate of 90.1% against

nine advanced defense methods, improving the current best

attack performance significantly by 85.1% . Code is avail-

able at https://github.com/JHL-HUST/VT.

1. Introduction

Deep Neural Networks (DNNs) are known to be vulnera-

ble to adversarial examples [31, 8], which are indistinguish-

able from legitimate ones by adding small perturbations, but

lead to incorrect model prediction. In recent years, it has

garnered an increasing interest to craft adversarial examples

[22, 3, 14, 1, 16], because it not only can identify the model

vulnerability [3, 1], but also can help improve the model

robustness [8, 21, 32, 37]. Moreover, adversarial examples
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Figure 1: Adversarial examples crafted by MI-FGSM [6],

NI-FGSM [18], the proposed VMI-FGSM and VNI-FGSM

on the Inc-v3 model [30] with the maximum perturbation

of ǫ = 16. VMI-FGSM and VNI-FGSM generate visually

similar adversaries as other attacks but lead to much higher

transferability.

also exhibit good transferability across the models [25, 19],

i.e. the adversaries crafted for one model can still fool other

models, which enables black-box attacks in the real-world

applications without any knowledge of the target model.

In the white-box setting that the attacker can access the

architecture and parameters of the target model, existing ad-

versarial attacks have exhibited great effectiveness [14, 3, 1]

but with low transferability, especially for models equipped

with defense mechanisms [32, 34, 17, 23]. To address this

issue, recent works focus on improving the transferability of

adversarial examples by advanced gradient calculation (e.g.

Momentum, Nesterov’s accelerated gradient, etc.) [6, 18],

attacking multiple models [19], or adopting various input

transformations (e.g. random resizing and padding, trans-

lation, scale, admix, etc.) [35, 7, 18, 33]. However, there

still exists a big gap between white-box attacks and transfer-

based black-box attacks with regard to attack performance.

In this work, we propose a novel variance tuning itera-

tive gradient-based method to enhance the transferability of

the generated adversarial examples. Different from existing
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gradient-based methods that perturb the input in the gradi-

ent direction of the loss function, or momentum iterative

gradient-based methods that accumulate a velocity vector

in the gradient direction, at each iteration our method ad-

ditionally tunes the current gradient with the gradient vari-

ance in the neighborhood of the previous data point. The

key idea is to reduce the variance of the gradient at each

iteration so as to stabilize the update direction and escape

from poor local optima during the search process. Empirical

results on the standard ImageNet dataset demonstrate that,

compared with state-of-the-art momentum-based adversar-

ial attacks [6, 18], the proposed method could achieve sig-

nificantly higher success rates for black-box models, mean-

while maintain similar success rates for white-box models.

For instance, the proposed method improves the success

rates of the momentum based attack [6] for more than 20%
using adversarial examples generated on the Inc-v3 model

[30]. The adversarial examples crafted by various attacks

are illustrated in Figure 1.

To further demonstrate the effectiveness of our method,

we combine variance tuning with several gradient-based at-

tacks for ensemble models [19] and integrate these attacks

with various input transformations [35, 7, 18]. Extensive

experiments show that our integrated method could remark-

ably improve the attack transferability. In addition, we com-

pare our attack method with the state-of-the-art attack meth-

ods [6, 35, 7, 18] against nine advanced defense methods

[17, 34, 36, 9, 20, 12, 5, 23]. Our integrated method yields

an average success rate of 67.0%, which outperforms the

baselines by a large margin of 17.5% in the single model

setting, and an average success rate of 90.1%, which out-

performs the baselines by a clear margin of 6.6% in the

multi-model setting.

2. Related Work

Let x be a benign image, y the corresponding true la-

bel and f(x; θ) the classifier with parameters θ that outputs

the prediction result. Let J(x, y; θ) denote the loss func-

tion of classifier f (e.g. the cross-entropy loss). We define

the adversarial attack as finding an example xadv that sat-

isfies ‖x − xadv‖p < ǫ but misleads the model prediction,

f(x; θ) 6= f(xadv; θ). Here ‖ · ‖p denotes the p-norm dis-

tance and we focus on p = ∞ to align with previous works.

2.1. Adversarial Attacks

Numerous adversarial attack methods have been pro-

posed in recent years, including gradient-based methods

[8, 14, 21, 6, 18], optimization-based methods [31, 3],

score-based methods [11, 16] and decision-based methods

[2, 4]. In this work, we mainly focus on the attack trans-

ferability and provide a brief overview on two branches of

transfer-based attacks in this subsection.

2.1.1 Gradient-based Attacks

The first branch focuses on improving the transferability of

gradient-based attacks by advanced gradient calculation.

Fast Gradient Sign Method (FGSM). FGSM [8] is the

first gradient-based attack that crafts an adversarial example

xadv by maximizing the loss function J(xadv, y; θ) with a

one-step update:

xadv = x+ ǫ · sign(∇xJ(x, y; θ)),

where ∇xJ(x, y; θ) is the gradient of loss function w.r.t. x
and sign(·) denotes the sign function.

Iterative Fast Gradient Sign Method (I-FGSM). I-

FGSM [14] extends FGSM to an iterative version with a

small step size α:

xadv
t+1 = xadv

t + α · sign(∇xadv
t

J(xadv
t , y; θ)), (1)

xadv
0 = x.

Momentum Iterative Fast Gradient Sign Method

(MI-FGSM). MI-FGSM [6] integrates the momentum into

I-FGSM and achieves much higher transferability:

gt+1 = µ · gt +
∇xadv

t
J(xadv

t , y; θ)

‖∇xadv
t

J(xadv
t , y; θ)‖1

, (2)

xadv
t+1 = xadv

t + α · sign(gt+1),

where g0 = 0 and µ is the decay factor.

Nesterov Iterative Fast Gradient Sign Method (NI-

FGSM). NI-FGSM [18] adopts Nesterov’s accelerated gra-

dient [24], and substitutes xadv
t in Eq. (2) with xadv

t +α·µ·gt
to further improve the transferability of MI-FGSM.

2.1.2 Input Transformations

The second branch focuses on adopting various input trans-

formations to enhance the attack transferability.

Diverse Input Method (DIM). DIM [35] applies ran-

dom resizing and padding to the inputs with a fixed prob-

ability, and feeds the transformed images into the classifier

for the gradient calculation to improve the transferability.

Translation-Invariant Method (TIM). TIM [7] adopts

a set of images to calculate the gradient, which performs

well especially for black-box models with defense mech-

anisms. To reduce the calculation on gradients, Dong et

al. [7] shift the image within small magnitude and approxi-

mately calculate the gradients by convolving the gradient of

untranslated images with a kernel matrix.

Scale-Invariant Method (SIM). SIM [18] introduces

the scale-invariant property and calculates the gradient over

a set of images scaled by factor 1/2i on the input image

to enhance the transferability of the generated adversarial

examples, where i is a hyper-parameter.
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Note that different input transformations, DIM, TIM and

SIM, can be naturally integrated with gradient-based attack

methods. Lin et al. [18] have shown that the combina-

tion of these methods, denoted as Composite Transforma-

tion Method (CTM), is the current strongest transfer-based

black-box attack method. In this work, the proposed vari-

ance tuning based method aims to improve the transfer-

ability of the gradient-based attacks (e.g. MI-FGSM, NI-

FGSM), and can be combined with various input transfor-

mations to further improve the attack transferability.

2.2. Adversarial Defenses

In contrast, to mitigate the threat of adversarial exam-

ples, various adversarial defense methods have been pro-

posed. One promising defense method is called adversarial

training [8, 15, 21] that injects the adversarial examples into

the training data to improve the model robustness. Tramèr et

al. [32] propose ensemble adversarial training by augment-

ing the training data with perturbations transferred from

several models, which can further improve the robustness

against transfer-based black-box attacks. However, such

adversarial training methods, as one of the most powerful

and extensively investigated defense methods, often result

in high computation cost and are difficult to be scaled to

large-scale datasets and complex neural networks [15].

Guo et al. [9] utilize a set of image transformations

(e.g. JPEG compression, Total Variance Minimization, etc.)

on the inputs to eliminate adversarial perturbations before

feeding the images to the models. Xie et al. [34] adopt ran-

dom resizing and padding (R&P) on the inputs to mitigate

the adversarial effect. Liao et al. [17] propose to train a

high-level representation denoiser (HGD) to purify the in-

put images. Xu et al. [36] propose two feature squeezing

methods: bit reduction (Bit-Red) and spatial smoothing to

detect adversarial examples. Feature distillation (FD) [20]

is a JPEG-based defensive compression framework against

adversarial examples. ComDefend [12] is an end-to-end

image compression model to defend adversarial examples.

Cohen et al. [5] adopt randomized smoothing (RS) to train

a certifiably robust ImageNet classifier. Naseer et al. [23]

design a neural representation purifier (NRP) model that

learns to purify the adversarially perturbed images based on

the automatically derived supervision.

3. Methodology

For the methodology section, we first introduce our mo-

tivation, then provide a detailed description of the proposed

method. In the end, we formulize the relationship between

existing transfer-based attacks and the proposed method.

3.1. Motivation

Given a target classifier f with parameters θ and a benign

image x ∈ X where x is in d dimensions and X denotes all

the legitimate images, the adversarial attack aims to find an

adversarial example xadv ∈ X that satisfies:

f(x; θ) 6= f(xadv; θ) s.t. ‖x− xadv‖ < ǫ. (3)

For white-box attacks, we can regard the attack as an opti-

mization problem that searches an example in the neighbor-

hood of x so as to maximize the loss function J of the target

classifier f :

xadv = argmax
‖x′−x‖p<ǫ

J(x′, y; θ). (4)

Lin et al. [18] analogize the adversarial example gen-

eration process to the standard neural model training pro-

cess, where the input x can be viewed as parameters to be

trained and the target model can be treated as the training

set. From this perspective, the transferability of adversarial

examples is equivalent to the generalization of the normally

trained models. Therefore, existing works mainly focus on

better optimization algorithms (e.g. MI-FGSM, NI-FGSM)

[14, 6, 18] or data augmentation (e.g. ensemble attack on

multiple models or input transformations) [19, 35, 7, 18, 33]

to improve the attack transferability.

In this work, we treat the iterative gradient-based adver-

sarial attack as a stochastic gradient decent (SGD) optimiza-

tion process, in which at each iteration, the attacker always

chooses the target model for update. As presented in previ-

ous works [26, 28, 13], SGD introduces large variance due

to the randomness, leading to slow convergence. To address

this issue, various variance reduction methods have been

proposed to accelerate the convergence of SGD, e.g. SAG

(stochastic average gradient) [26], SDCA (stochastic dual

coordinate ascent) [28], and SVRG (stochastic variance re-

duced gradient) [13], which adopt the information from the

training set to reduce the variance. Moreover, Nesterov’s

accelerated gradient [24] that boosts the convergence, is

beneficial to improve the attack transferability [18].

Based on above analysis, we attempt to enhance the ad-

versarial transferability with the gradient variance tuning

strategy. The major difference between our method and

SGD with variance reduction methods (SGDVRMs) [26,

28, 13] is three-fold. First, we aim to craft highly transfer-

able adversaries, which is equivalent to improving the gen-

eralization of the training models, while SGDVRMs aim to

accelerate the convergence. Second, we consider the gradi-

ent variance of the examples sampled in the neighborhood

of input x, which is equivalent to the one in the parame-

ter space for training the neural models but SGDVRMs uti-

lize variance in the training set. Third, our variance tuning

strategy is more generalized and can be used to improve the

performance of MI-FGSM and NI-FGSM.

3.2. Variance Tuning Gradient­based Attacks

Typical gradient-based iterative attacks (e.g. I-FGSM)

greedily search an adversarial example in the direction of
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Algorithm 1 VMI-FGSM

Input: A classifier f with parameters θ, loss function J
Input: A raw example x with ground-truth label y
Input: The magnitude of perturbation ǫ; number of itera-

tion T and decay factor µ
Input: The factor β for the upper bound of neighborhood

and number of example N for variance tuning

Output: An adversarial example xadv

1: α = ǫ/T
2: g0 = 0; v0 = 0; xadv

0 = x
3: for t = 0 → T − 1 do

4: Calculate the gradient ĝt+1 = ▽xadv
t

J(xadv
t , y; θ)

5: Update gt+1 by variance tuning based momentum

gt+1 = µ · gt +
ĝt+1 + vt

‖ĝt+1 + vt‖1
(5)

6: Update vt+1 = V (xadv
t ) by Eq. (7)

7: Update xadv
t+1 by applying the sign of gradient

xadv
t+1 = xadv

t + α · sign(gt+1) (6)

8: end for

9: xadv = xadv
T

10: return xadv

the sign of the gradient at each iteration, as shown in Eq. (1),

which may easily fall into poor local optima and “overfit”

the model [6]. MI-FGSM [6] integrates momentum into I-

FGSM for the purpose of stabilizing the update directions

and escaping from poor local optima to improve the attack

transferability. NI-FGSM [18] further adopts Netserov’s ac-

celerated gradient [24] into I-FGSM to improve the transfer-

ability by leveraging its looking ahead property.

We observe that the above methods only consider the

data points along the optimization path, denoted as xadv
0 =

x, xadv
1 , ..., xadv

t−1, x
adv
t , ..., xadv

T = xadv . In order to avoid

overfitting and further improve the transferability of the ad-

versarial attacks, we adopt the gradient information in the

neighborhood of the previous data point to tune the gradi-

ent of the current data point at each iteration. Specifically,

for any input x ∈ X , we define the gradient variance as

follows.

Definition 1 Gradient Variance. Given a classifier f with

parameters θ and loss function J(x, y; θ), an arbitrary im-

age x ∈ X and an upper bound ǫ′ for the neighborhood,

the gradient variance can be defined as:

V g
ǫ′ (x) = E‖x′−x‖p<ǫ′ [∇x′J(x′, y; θ)]−∇xJ(x, y; θ).

We simply use V (x) to denote V g
ǫ′ (x) without ambiguity

in the following and we set ǫ′ = β · ǫ where β is a hyper-

parameter and ǫ is the upper bound of the perturbation mag-

Input	
Transformations

VM(N)I-FGSM

M(N)I-FGSM

I-FGSM

FGSM

VM(N)I-D(T,S)I-FGSM

M(N)I-D(T,S)I-FGSM

I-D(T,S)I-FGSM

D(T,S)I-FGSM

H
ig
he
r	A

tta
ck
	P
er
fo
rm
an
ce

Figure 2: Relationships among various adversarial attacks.

We can adjust the value of some hyper-parameters to re-

late the attacks derived from FSGM. We can also integrate

various input transformations into these gradient-based at-

tacks to further enhance the transferability. Here M(N)I-

FGSM denotes MI-FGSM or NI-FGSM and D(T,S)I-FGSM

denotes DI-FGSM, TI-FGSM or SI-FGSM.

nitude. In practice, however, due to the continuity of the in-

put space, we cannot calculate E‖x′−x‖p<ǫ′ [∇x′J(x′, y; θ)]
directly. Therefore, we approximate its value by sampling

N examples in the neighborhood of x to calculate V (x):

V (x) =
1

N

N∑

i=1

∇xiJ(xi, y; θ)−∇xJ(x, y; θ). (7)

Here xi = x+ ri, ri ∼ U [−(β · ǫ)d, (β · ǫ)d], and U [ad, bd]
stands for the uniform distribution in d dimensions.

After obtaining the gradient variance, we can tune the

gradient of xadv
t at the t-th iteration with the gradient vari-

ance V (xadv
t−1) at the (t − 1)-th iteration to stabilize the

update direction. The algorithm of variance tuning MI-

FGSM, denoted as VMI-FGSM, is summarized in Algo-

rithm 1. Note that our method is generally applicable to any

gradient-based attack method. We can easily extend VMI-

FGSM to variance tuning NI-FGSM (VNI-FGSM), and in-

tegrate these methods with DIM, TIM and SIM as in [18].

3.3. Relationships among Various Attacks

This work focuses on the transferability of adversarial

attacks derived from FGSM. Here we summarize the rela-

tionships among these attacks, as illustrated in Figure 2. If

the factor β for the upper bound of neighborhood is set to

0, VMI-FGSM and VNI-FGSM degrade to MI-FGSM and

NI-FGSM, respectively. If the decay factor µ = 0, both

MI-FGSM and NI-FGSM degrade to I-FGSM. If the iter-

ation number T = 1, I-FGSM degrades to FGSM. More-

over, we can integrate the above attacks with various input

transformations, i.e. DIM, TIM, SIM, to obtain more pow-

erful adversarial attacks and these derived methods follow

the same discipline.
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

MI-FGSM 100.0* 43.6 42.4 35.7 13.1 12.8 6.2

VMI-FGSM 100.0* 71.7 68.1 60.2 32.8 31.2 17.5

NI-FGSM 100.0* 51.7 50.3 41.3 13.5 13.2 6.0

VNI-FGSM 100.0* 76.5 74.9 66.0 35.0 32.8 18.8

Inc-v4

MI-FGSM 56.3 99.7* 46.6 41.0 16.3 14.8 7.5

VMI-FGSM 77.9 99.8* 71.2 62.2 38.2 38.7 23.2

NI-FGSM 63.1 100.0* 51.8 45.8 15.4 13.6 6.7

VNI-FGSM 83.4 99.9* 76.1 66.9 40.0 37.7 24.5

IncRes-v2

MI-FGSM 60.7 51.1 97.9* 46.8 21.2 16.0 11.9

VMI-FGSM 77.9 72.1 97.9* 67.7 46.4 40.8 34.4

NI-FGSM 62.8 54.7 99.1* 46.0 20.0 15.1 9.6

VNI-FGSM 80.8 76.9 98.5* 69.8 47.9 40.3 34.2

Res-101

MI-FGSM 58.1 51.6 50.5 99.3* 23.9 21.5 12.7

VMI-FGSM 75.1 68.9 70.5 99.2* 45.2 41.4 30.1

NI-FGSM 65.6 58.3 57.0 99.4* 24.5 21.4 11.7

VNI-FGSM 79.8 74.6 73.2 99.7* 46.1 42.5 32.1

Table 1: The success rates (%) on seven models in the single model setting by various gradient-based iterative attacks. The

adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-101 respectively. * indicates the white-box model.

4. Experiments

To validate the effectiveness of the proposed variance

tuning based attack method, we conduct extensive exper-

iments on standard ImageNet dataset [27]. In this sec-

tion, we first specify the experimental setup, then we com-

pare our method with competitive baselines under various

experimental settings and quantify the attack effectiveness

on nine advanced defense models. Experimental results

demonstrate that our method can significantly improve the

transferability of the baselines in various settings. Finally,

we provide further investigation on hyper-parameters N and

β used for variance tuning.

4.1. Experimental Setup

Dataset. We randomly pick 1,000 clean images pertain-

ing to the 1,000 categories from the ILSVRC 2012 valida-

tion set [27], which are almost correctly classified by all the

testing models as in [6, 18].

Models. We consider four normally trained networks,

including Inception-v3 (Inc-v3) [30], Inception-v4 (Inc-

v4), Inception-Resnet-v2 (IncRes-v2) [29] and Resnet-v2-

101 (Res-101) [10] and three adversarially trained models,

namely Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens [32]. Be-

sides, we include nine advanced defense models that are ro-

bust against black-box adversarial attacks on the ImageNet

dataset, i.e. HGD [17], R&P [34], NIPS-r3 1, Bit-Red [36],

JPEG [9], FD [20], ComDefend [12], RS [5] and NRP [23].

For HGD, R&P, NIPS-r3 and RS, we adopt the official mod-

els provided in corresponding papers. For all the other de-

1https://github.com/anlthms/nips- 2017/tree/

master/mmd

fense methods, we adopt Inc-v3ens3 as the target model.

Baselines. We take two popular momentum based it-

erative adversarial attacks as our baselines, i.e. MI-FGSM

[6] and NI-FGSM [18], that exhibit better transferability

than other white-box attacks [8, 14, 3]. In addition, we

integrate the proposed method with various input transfor-

mations, i.e. DIM [35], TIM [7], SIM and CTM [18], de-

noted as VM(N)I-DI-FGSM, VM(N)I-TI-FGSM, VM(N)I-

SI-FGSM and VM(N)I-CT-FGSM respectively, to further

validate the effectiveness of our method.

Hyper-parameters. We follow the attack setting in [6]

with the maximum perturbation of ǫ = 16, number of iter-

ation T = 10 and step size α = 1.6. For MI-FGSM and

NI-FGSM, we set the decay factor µ = 1.0. For DIM, the

transformation probability is set to 0.5. For TIM, we adopt

the Gaussian kernel with kernel size 7 × 7. For SIM, the

number of scale copies is 5 (i.e. i = 0, 1, 2, 3, 4). For the

proposed method, we set N = 20 and β = 1.5.

4.2. Attack a Single Model

We first perform four adversarial attacks, namely MI-

FGSM, NI-FGSM, the proposed variance tuning based

methods VMI-FGSM and VNI-FGSM, on a single neural

network. We craft adversarial examples on normally trained

networks and test them on all the seven neural networks we

consider. The success rates, which are the misclassification

rates of the corresponding models on adversarial examples,

are shown in Table 1. The models we attack are on rows

and the seven models we test are on columns.

We can observe that VMI-FGSM and VNI-FGSM out-

perform the baseline attacks by a large margin on all the

black-box models, while maintain high success rates on
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Figure 3: The success rates (%) on seven models in the single model setting by various gradient-based iterative attacks

enhanced by DIM, TIM and SIM respectively. The adversarial examples are generated on Inc-v3 model.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

MI-CT-FGSM 98.7* 85.4 80.6 76.0 64.1 62.1 45.2

VMI-CT-FGSM 99.3* 88.6 86.7 82.9 78.6 76.2 64.7

NI-CT-FGSM 98.9* 84.1 80.0 74.5 60.0 56.2 41.0

VNI-CT-FGSM 99.5* 91.2 89.0 85.3 78.6 76.7 65.3

Inc-v4

MI-CT-FGSM 87.2 98.6* 83.3 78.3 72.2 67.2 57.3

VMI-CT-FGSM 90.0 98.8* 86.6 81.9 78.3 76.6 68.3

NI-CT-FGSM 87.8 99.4* 82.5 75.9 65.8 62.6 51.3

VNI-CT-FGSM 92.1 99.2* 89.2 85.1 80.1 78.3 70.4

IncRes-v2

MI-CT-FGSM 87.9 85.7 97.1* 83.0 77.6 74.6 72.0

VMI-CT-FGSM 88.9 87.0 97.0* 85.0 83.4 80.5 79.4

NI-CT-FGSM 90.2 87.0 99.4* 83.2 75.0 68.9 65.1

VNI-CT-FGSM 92.9 90.6 99.0* 88.2 85.2 82.5 81.8

Res-101

MI-CT-FGSM 86.5 81.8 83.2 98.9* 77.0 72.3 61.9

VMI-CT-FGSM 86.9 84.2 86.4 98.6* 81.0 78.6 71.6

NI-CT-FGSM 86.1 82.2 83.3 98.5* 70.0 68.5 54.6

VNI-CT-FGSM 90.7 85.5 87.2 99.1* 82.6 79.7 73.3

Table 2: The success rates (%) on seven models in the single model setting by various gradient-based iterative attacks

enhanced by CTM. * indicates the white-box model.

all the white-box models. For instance, if we craft adver-

sarial examples on Inc-v3 model in which all the attacks

can achieve 100% success rates in the white-box setting,

VMI-FGSM yields 71.7% success rate on Inc-v4 and 32.8%
success rate on Inc-v3ens3, while the baseline MI-FGSM

only obtains the corresponding success rates of 43.6% and

13.1%, respectively. This convincingly validates the high

effectiveness of the proposed method. We also illustrate

several adversarial images generated on Inc-v3 model by

various attack methods in Appendix A, showing that these

generated adversarial perturbations are all human impercep-

tible but our method leads to higher transferability.

4.3. Attack with Input Transformations

Several input transformations, e.g. DIM, [7], TIM [35]

and SIM [18], have been incorporated into the gradient-

based adversarial attacks, which are effective to improve the

transferability. Here we integrate our methods into these

input transformations and demonstrate the proposed vari-

ance tuning strategy could further enhance the transferabil-

ity. We report the success rates of black-box attacks in Fig-

ure 3, where the adversarial examples are generated on Inc-

v3 model. The results for adversarial examples generated

on other three models are reported in Appendix B.

The results show that the success rates against black-box

models are improved by a large margin with the variance

tuning strategy regardless of the attack algorithms or the

white-box models to be attacked. In general, the methods

equipped with our variance tuning strategy consistently out-

perform the baseline attacks by 10% ∼ 30%.

Lin et al. [18] have shown that CTM, the combination

of DIM, TIM and SIM, could help the gradient-based at-

tacks achieve great transferability. We also combine CTM

with our method to further improve the transferability. As

depicted in Table 2, the success rates could be further im-

proved remarkably on various models, especially against

adversarially trained models, which further demonstrates

the high effectiveness and generalization of our method.
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Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

MI-FGSM 99.9* 98.2* 95.3* 99.9* 39.4 35.3 24.2

VMI-FGSM 99.7* 98.5* 96.0* 99.9* 67.6 62.9 50.7

NI-FGSM 99.8* 99.8* 98.9* 99.8* 41.0 33.5 23.1

VNI-FGSM 99.9* 99.6* 98.6* 99.9* 71.3 66.0 52.9

MI-CT-FGSM 99.6* 99.1* 97.4* 99.7* 91.3 89.6 86.8

VMI-CT-FGSM 99.7* 99.2* 98.4* 99.9* 93.6 92.4 91.0

NI-CT-FGSM 100.0* 100.0* 100.0* 100.0* 92.8 89.6 83.6

VNI-CT-FGSM 100.0* 99.9* 99.6* 100.0* 95.5 94.5 92.3

Table 3: The success rates (%) on seven models in the multi-model setting by various gradient-based iterative attacks. The

adversarial examples are generated on the ensemble models, i.e. Inc-v3, Inc-v4, IncRes-v2 and Res-101.

Model Attack HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS NRP Average

Inc-v3

MI-CT-FGSM 56.6 44.9 52.5 36.2 77.3 60.0 80.1 40.3 29.3 53.0

VMI-CT-FGSM 73.1 65.1 70.3 49.5 85.4 72.4 86.0 51.9 45.2 66.5

NI-CT-FGSM 50.4 39.4 47.4 34.3 76.0 58.6 77.7 36.9 24.8 49.5

VNI-CT-FGSM 73.4 64.5 70.6 51.2 86.8 73.5 87.3 52.1 43.9 67.0

Ens

MI-CT-FGSM 91.0 87.7 89.0 75.9 94.2 88.8 95.1 68.1 76.1 85.1

VMI-CT-FGSM 92.9 91.0 92.3 80.9 95.4 91.0 96.2 77.0 83.2 88.9

NI-CT-FGSM 91.3 85.6 89.0 72.3 95.9 89.5 95.4 63.2 69.5 83.5

VNI-CT-FGSM 94.7 92.4 93.4 82.3 97.1 92.6 97.4 77.4 84.0 90.1

Table 4: The success rates (%) on nine models with advanced defense mechanism by various gradient-based iterative attacks

enhanced by CTM. The adversarial examples are generated on Inc-v3 model and the ensemble of models respectively.

4.4. Attack an Ensemble of Models

Liu et al. [19] have shown that attacking multiple models

simultaneously could improve the transferability of the gen-

erated adversarial examples. In this subsection, we adopt

the ensemble attack method in [6], which fuses the logit out-

puts of different models, to demonstrate that our variance

tuning method could further improve the transferability of

adversarial attacks in the multi-model setting. Specifically,

we attack the ensemble of four normally trained models,

i.e. Inc-v3, Inc-v4, IncRes-v2 and Res-101 by averaging

the logit outputs of the models using various attacks with

or without input transformations.

As shown in Table 3, our methods (VMI-FGSM, VNI-

FGSM) could significantly enhance the transferability of

the baselines more than 25% for MI-FGSM and 30% for

NI-FGSM on the adversarially trained models. Even though

the attacks with CTM could achieve good enough trans-

ferability, our methods (VMI-CT-FGSM, VNI-CT-FGSM)

could further improve the transferability significantly. In

particular, VNI-CT-FGSM achieves the success rates of

92.3% ∼ 95.5% against three adversarially trained models,

indicating the vulnerability of current defense mechanisms.

Besides, in the white-box setting, our methods could still

maintain similar success rates as the baselines.

4.5. Attack Advanced Defense Models

To further validate the effectiveness of the proposed

method in practice, except for the normally trained mod-

els and adversarially trained models, we also evaluate our

methods on nine extra models with advanced defenses, in-

cluding the top-3 defense methods in the NIPS competition

(HGD (rank-1) [17], R&P (rank-2) [34] and NIPS-r3 (rank-

3)), and six recently proposed defense methods, namely Bit-

Red [36], JPEG [9], FD [20], ComDefend [12], RS [5] and

NRP [23].

Since MI-CT-FGSM and NI-CT-FGSM exhibit the best

transferability among the existing attack methods [18], we

compare our methods with the two attacks with adversarial

examples crafted on Inc-v3 model and the ensemble mod-

els as in Section 4.4, respectively. The results are shown

in Table 4. In the single model setting, the proposed meth-

ods achieve an average success rate of 66.5% for VMI-CT-

FGSM and 67.0% for VNI-CT-FGSM, which outperforms

the baseline attacks for more than 13.5% and 17.5% re-

spectively. In the multi-model setting, our methods achieve

an average success rate of 88.9% for VMI-CT-FGSM and

90.1% for VNI-CT-FGSM, which outperforms the baseline

attacks for more than 3.8% and 6.6% respectively. Note that

in the multi-model setting, our methods achieve the suc-

cess rates of more than 77% against the defense model with

Randomize Smoothing (RS) [5] that provides certified de-

fense. And our methods achieve the success rates of more

than 83% against the defense model with Neural Represen-

tation Purifier (NRP) which is a recently proposed powerful

defense method and exhibits great robustness against DIM

and DI-TIM [23], raising a new security issue for the devel-

opment of more robust deep learning models.
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(b) VNI-FGSM

Figure 4: The success rates (%) on the other six models with

adversarial examples generated by VMI-FGSM and VNI-

FGSM on Inc-v3 model when varying factor β for the upper

bound of the neighborhood.
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(a) VMI-FGSM
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(b) VNI-FGSM

Figure 5: The success rates (%) on the other six models with

adversarial examples generated by VMI-FGSM and VNI-

FGSM on Inc-v3 model when varying the number of sam-

pled example N .

4.6. Ablation Study on Hyper­parameters

We conduct a series of ablation experiments to study the

impact of two hyper-parameters of the proposed variance

tuning, N and β. All the adversarial examples are gener-

ated on Inc-v3 model without input transformations, which

achieve success rates of 100% for different values of the two

parameters in the white-box setting.

On the upper bound of neighborhood. In Figure 4, we

study the influence of the neighborhood size, determined

by parameter β, on the success rates in the black-box setting

where N is fixed to 20. When β = 0, VMI-FGSM and VNI-

FGSM degrade to MI-FGSM and NI-FGSM, respectively,

and achieve the lowest transferability. When β = 1/5, al-

though the neighborhood is very small, our variance tuning

strategy could improve the transferability remarkably. As

we increase β, the transferability increases and achieves the

peak for normally trained models when β = 3/2 but it is

still increasing against the adversarially trained models. In

order to achieve the trade-off for the transferability on nor-

mally trained models and adversarially trained models, we

choose β = 3/2 in our experiments.

On the number of sampled examples in the neigh-

borhood. We then study the influence of the number of

sampled examples N on the success rates in the black-box

setting (β is fixed to 3/2). As depicted in Figure 5, when

N = 0, VMI-FGSM and VNI-FGSM also degrade to MI-

FGSM and NI-FGSM, respectively, and achieve the lowest

transferability. When N = 20, the transferability of adver-

sarial examples is improved significantly and the transfer-

ability increases slowly when we continually increase N .

Note that we need N forward and backward propogations

for gradient variance at each iteration as shown in Eq. 7,

thus a bigger value of N means a higher computation cost.

To balance the transferability and computation cost, we set

N = 20 in our experiments.

In summary, β plays a key role in improving the trans-

ferability while N exhibits little impact when N > 20. In

our experiments, we set β = 3/2 and N = 20.

5. Conclusion

In this work, we propose a variance tuning method to

enhance the transferability of the iterative gradient-based

adversarial attacks. Specifically, for any input of a neu-

ral classifier, we define its gradient variance as the differ-

ence between the mean gradient of the neighborhood and its

own gradient. Then we adopt the gradient variance of the

data point at the previous iteration along the optimization

path to tune the current gradient. Extensive experiments

demonstrate that the variance tuning method could signif-

icantly improve the transferability of the existing competi-

tive attacks, MI-FGSM and NI-FGSM, while maintain sim-

ilar success rates in the white-box setting.

The variance tuning method is generally applicable to

any iterative gradient-based attacks. We employ our method

to attack ensemble models and then integrate with advanced

input transformation methods (e.g. DIM, TIM, SIM) to fur-

ther enhance the transferability. Empirical results on nine

advanced defense models show that our integrated method

could reach an average success rate of at least 90.1%, out-

performing the state-of-the-art attacks for 6.6% on average,

indicating the insufficiency of current defense techniques.
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