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Abstract

Event cameras sense per-pixel intensity changes and

produce asynchronous event streams with high dynamic

range and less motion blur, showing advantages over the

conventional cameras. A hurdle of training event-based

models is the lack of large qualitative labeled data. Prior

works learning end-tasks mostly rely on labeled or pseudo-

labeled datasets obtained from the active pixel sensor (APS)

frames; however, such datasets’ quality is far from rival-

ing those based on the canonical images. In this paper,

we propose a novel approach, called EvDistill, to learn

a student network on the unlabeled and unpaired event

data (target modality) via knowledge distillation (KD) from

a teacher network trained with large-scale, labeled im-

age data (source modality). To enable KD across the un-

paired modalities, we first propose a bidirectional modal-

ity reconstruction (BMR) module to bridge both modalities

and simultaneously exploit them to distill knowledge via the

crafted pairs, causing no extra computation in the inference.

The BMR is improved by the end-tasks and KD losses in

an end-to-end manner. Second, we leverage the structural

similarities of both modalities and adapt the knowledge by

matching their distributions. Moreover, as most prior fea-

ture KD methods are uni-modality and less applicable to

our problem, we propose an affinity graph KD loss to boost

the distillation. Our extensive experiments on semantic seg-

mentation and object recognition demonstrate that EvDis-

till achieves significantly better results than the prior works

and KD with only events and APS frames.

1. Introduction

Event cameras have recently received much attention in

the computer vision and robotics community for their dis-

tinctive advantages, such as high dynamic range (HDR)

and much less motion blur. Event cameras sense the in-

tensity changes at each pixel asynchronously and produce

event streams encoding time, pixel location, and polarity

∗These two authors contributed equally.

Figure 1: EvDistill distills knowledge from a teacher network

trained with large labeled images to a student network learn-

ing unpaired and unlabeled events for the end-tasks. To distill

knowledge, a bidirectional modality reconstruction and distribu-

tion adaptation schemes, with the novel KD losses, are proposed.

(sign) of intensity changes. Recently, deep neural network

(DNN)-based methods with large-scale, labeled image data

have shown significant performance gains on many tasks.

However, learning effective event-based DNNs has been

impeded by the lack of large pixel-level labeled event data.

Prior works learning event-based high-level tasks have re-

sorted to the manually annotated task-specific datasets in a

supervised manner [1, 4, 7, 18, 19, 37, 40, 54, 62, 69]. Al-

though some labeled event datasets [30, 45, 83] have been

collected, the quantity and quality are far less favorable

compared to those based on the canonical images. Some

works [1, 18] have made pseudo labels using the active pixel

sensor (APS) images; however, these labels are less accu-

rate due to the low quality of APS images and considerable

domain gap with the source data. While [83, 85] have ex-

plored unsupervised learning, they only focus on the pixel-

level prediction tasks, e.g., depth estimation. Another line

of research has reconstructed intensity images from events

[41, 54, 59, 63, 65, 66], and these images have been used

to learn DNNs on end-tasks, e.g., object recognition [54];

however, annotated labels are still needed, and extra latency

is introduced in the inference time.

We explore to leverage large labeled image data (a.k.a.

source modality) and the learned models, and aim to learn

a model on the unpaired and unlabeled events (a.k.a. target
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modality) via cross-modal learning [22, 81] and knowledge

distillation (KD) [22, 61, 68]. Most existing cross-modal

learning methods have relied on paired data (e.g., image and

depth) with the same labels [22, 23, 35, 46, 67, 71, 76, 81]

or extra information (e.g., data or labels) [2, 17, 50, 77] or

grafting networks between modalities (e.g., image to ther-

mal) [29] for learning the end-tasks. Some works have ex-

plored the unpaired multi-modality data [13, 35]; however,

it is assumed that labels for both modalities are available,

which is difficult to achieve for the event data.

To overcome these limitations, we propose a novel

method, called EvDistill, to efficiently learn a student net-

work on the unpaired and unlabeled event data by distill-

ing the knowledge from a robust teacher network trained

with large labeled image data, as shown in Fig. 1. Firstly,

we propose a novel bidirectional modality reconstruction

(BMR) module to bridge both modalities, and then simul-

taneously exploit them to distill knowledge via the crafted

pairs, adding no extra computation cost during inference

(Sec. 3.2). Importantly, the BMR is improved by the end-

task and the KD losses in an end-to-end manner. That is,

BMR produces the crafted pairs of both modalities to dis-

till knowledge to the student network in the forward pass,

and KD facilitates the learning of the BMR in the backward

pass. Secondly, as the feature representations of two modal-

ities extracted from the task networks could suffer from dis-

tribution mismatch, we leverage the structural similarities

and adapt knowledge by matching the class distributions

based on the BMR module (Sec. 3.3). Moreover, as most

existing feature KD methods are limited to uni-modality

[33, 55, 78], we propose a novel graph affinity KD loss

and other losses to learn a better model on the event data

(Sec. 3.4). We evaluate the performance of the proposed

framework on three datasets in semantic segmentation

(Sec. 4.1) and one dataset in object recognition (Sec. 4.2).

The experiments show that our approach achieves signif-

icantly better performance than the prior works for both

end-tasks and the naive setting, KD with only events and

the APS frames (when APS frames are available). The val-

idation code and trained models are available at https:

//github.com/addisonwang2013/evdistill.

2. Related Works

DNNs for event-based end-tasks. DNNs with event data

was first explored for the classification task [44] and for

robot control [40]. [37] then trained a DNN for steer-

ing angle prediction on DDD17 dataset [5]. This dataset

has been utilized by [1, 18] to perform semantic segmen-

tation using pseudo labels obtained from the APS frames.

Moreover, DNNs have been applied to some high-level

prediction tasks, such as object detection and tracking

[7, 29, 38, 51], human pose estimation [6, 69, 73], motion

estimation [32, 39, 58, 70, 74], object recognition [4, 18, 54]

on N-Caltech [45] and other datasets [4, 34, 57].

DNNs for event-based low-level vision. Meanwhile, an-

other line of research focuses on the low-level prediction

tasks, such as optical flow estimation [16, 19, 59, 85], stereo

depth estimation [62, 85] on MVSEC dataset [83]. In ad-

dition, [42, 48, 54, 56, 59, 66] attempted to reconstruct

intensity image/video from events using camera simulator

[43, 52], and [41, 63, 65] tried to reconstruct high-resolution

images. In contrast to image/video reconstruction from

events, [18] proposed to generate events from video frames.

Some other works also explored the potential of events for

image deblurring [25, 31, 65], HDR imaging [24, 79], and

event denoising [3]. For more details about event-based vi-

sion, refer to a survey [15]. Differently, we propose EvDis-

till, learning event-based end-tasks on the unpaired and un-

labeled events via cross modal KD, in which a BMR moudle

is proposed to bridge both modalities and is learned with the

end-task networks in an end-to-end manner.

Knowledge Distillation. KD aims to build a smaller (stu-

dent) model with the softmax labels of a larger (teacher)

model [27, 55, 68]. Most KD methods learning end-tasks

have been focused on uni-modality (e.g., image) data and

distill knowledge using logits [9, 72, 75, 80] or features

[26, 33, 49, 55, 78]. Cross-modal KD aims to transfer

knowledge across different modalities. Most prior cross-

modal KD methods [8, 13, 22, 23, 28, 29, 35, 46, 47, 67, 71,

76, 81] relied on the paired data with the common labels,

while some works utilized extra information (e.g., data)

[2, 17, 50, 77] or grafting networks [29] to transfer knowl-

edge. Although [13, 35] explored the unpaired multi-modal

KD, the labels for both modalities are needed. For more

details about KD, refer to [68]. Learning from event data

is more challenging as no paired labels for two modalities

exist; we thus propose EvDistill, where we exploit a BMR

module to connect them and simultaneously distill knowl-

edge by adapting distribution with novel KD losses.

3. The Proposed Method: EvDistill

Event Representation An event e is interpreted as a tu-
ple (u, t, p), where u = (x, y) is the pixel coordinate, t is

the timestamp, and p is the polarity indicating the sign of

brightness change. An event occurs whenever a change in

log-scale intensity exceeds a threshold. A natural choice is

to encode events in a spatial-temporal 3D volume to a voxel

grid [54, 84, 85] or event frame [19, 53] or multi-channel

images [36, 63, 66]. In this paper, we represent events to

multi-channel event images as the inputs to the DNNs. De-

tails are provided in the suppl. material.

3.1. Overview

We describe the proposed EvDistill framework for learn-

ing end-tasks from events, as shown in Fig. 2. For event

cameras, e.g., DAVIS346 [60] with APS frames, assume

that we are given the target modality data XT = {e, xaps}i
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Figure 2: Overview of the proposed EvDistill framework. The architecture comprises a teacher network T and two student networks Sev

and Saps (when APS frames exist). As there is no paired data with the same labels for both modality, a novel bidirectional reconstruction

module is proposed to connect image and event modalities. Meanwhile, a distribution adaptation scheme with novel KD losses is also

proposed to match the spatial structural distribution of both modalities.

without labels, where ei and xapsi
are i-th embedded event

image and corresponding APS image. However, the source

modality image data XS = {xs, ys}j are with labels, where

xsj is j-th image with its label ysj . Unlike prior cross-

modal learning methods [22, 81], we assume there are no

paired source and target modality data with common la-

bels. We address the challenge by proposing EvDistill,

where XS and XT are not paired, and only the labels of

XS are available. In EvDistill, there are two student net-

works Sev for learning events and Saps for learning APS

images (when APS images are provided). Our goal is to

train a student network Sev learning events by distilling

knowledge from a teacher network T . Our key ideas are

three folds. First, as data of both modalities XS and XT

are unpaired, we thus propose a bidirectional reconstruc-

tion module to bridge both modalities and then simultane-

ously exploit them to distill knowledge via the crafted pairs

(Sec. 3.2). Second, as there exist spatial structure similar-

ities (e.g., cars, people in urban scenes) between the two

modalities, we propose a distribution adaptation scheme to

adapt the knowledge by matching the class distribution of

the two modalities (Sec. 3.3). Lastly, as some end-tasks,

e.g., semantic segmentation, aim to predict pixel-wise class

information, we propose a novel affinity graph KD loss and

employ other loss terms to learn a better Sev (Sec. 3.4).

3.2. Bridging Source and Target Modalities

Although data from both modalities are unpaired, we ob-

serve that one modality could be the alternative represen-

tation of the other modality under the same end-task. We

thus propose a bidirectional modality reconstruction (BMR)

module to bridge both modalities for enabling distillation on

the Sev . As shown in Fig. 2, the proposed BMR consists of

two generators where generator GT→S translates events to

an intermediate representation in the image modality, and

GS→T translates the labeled image data to an intermediate

representation in the event modality. In such a way, the la-

bels of image modality can be leveraged as supervision on

the intermediate representation in the event modality when

training Sev . Meanwhile, the intermediate image represen-

tation of events also helps to learn the knowledge (e.g., pre-

dicted labels) from the teacher T . When the APS frames are

available in some event cameras, we utilize APS frames and

apply the pixel-wise loss for the supervision of GT→S(e).
The generated images are further adapted to the source data

XS . The pixel-wise loss is defined as:

Lpw
BMR = Ee,xaps∼XT

[||xaps − GT→S(e)||1]. (1)

Moreover, BMR is enhanced by the cycle consistency loss

[86] and adversarial loss, which are crucial for the mapping

of the two modalities. The adversarial loss (e.g., from target

to source modality) is formulated based on [20, 64]:

LAdv
BMR = Ee∼XT

[1− log(D(GT→S(e))], (2)

where G is the generator and D is the discriminator.

End-to-end learning. To better preserve semantic infor-

mation, we exploit a novel dynamic semantic consistency

(DSC) loss and build our framework based on adversarial

learning [20, 66, 82], as shown in Fig. 3. The proposed

DSC loss for BMR has three advantages: (1) the gener-

ated intermediate representation of events in image modal-

ity GT→S(e) becomes the optimal input of T and the gener-

ated intermediate representation of source images in event

modality GS→T (xs) becomes the optimal input of Sev; (2)

the generated intermediate representations GT→S(e) and

GS→T (xs) both provide the supervision for Sev based on

the knowledge of T and labels of image data; (3) impor-

tantly, the BMR module is improved by these constraints

on the end-tasks (e.g., cross-entropy loss) in an end-to-end

manner (see Fig. 3). That is, the KD loss promotes learning

of the BMR module in the backward pass, and the BMR

module produces crafted pairs to distill knowledge to the

student network Sev in the forward pass, which will be de-

scribed in Sec. 3.3. The BMR module can be removed after

training, leading to no additional computation cost during
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Figure 3: Illustration of the end-to-end target-to-source modality

reconstruction GT→S with task net T and Sev in the BMR module.

inference time. The proposed DSC loss for, e.g., target-to-

source modality learning is as:

LDSC
BMR = Ee∼XT

KL[T (GT→S(e))||Sev(e)], (3)

where KL(·||·) is the KL divergence between two distribu-

tions. More detailed formulation of the proposed BMR and

its total loss LBMR is provided in the suppl. material.

3.3. Distillation via Distribution Adaptation (DA)

Based on the BMR module, the source and target modal-

ities are connected, and we then further simultaneously ex-

ploit them to distill knowledge. Due to the distinct differ-

ence between event and image modality data, the features

of two modalities extracted from the teacher and student

networks suffer from the distribution mismatch. To address

this issue, we propose to leverage the intrinsic spatial struc-

ture between source and target modality data XS and XT .

Our motivations are two folds. Firstly, as shown in Fig. 4,

when APS frames are available, we propose to employ KD

losses to guide the student Saps to behave like the teacher

T in addition to the cross-entropy (CE) loss LCE based on

source labels. This is done by aligning both GT→S(e) and

xaps with xs to generalize the feature information. That is,

the intermediate representation of events GT→S(e) and APS

image xaps, the source image xs are all fed to the teacher T
and the student Saps to match the features. For simplicity,

we model prediction matching loss based on the pixel-wise

loss (e.g., l1), which is formulated as:

Laps
DA = Exaps∼XT

KL[Saps(xaps)||T (xaps)]+

Exs∼XS
KL[Saps(xs)||T (xs)]

(4)

We then propose to employ a distillation loss to guide the

student Sev to behave more like the teacher T based on the

event e, which can be formulated as:

Lev
DA = Ee,xaps∼XT

[KL[T (xaps)||Sev(e))] (5)

However, the source image-guided distillation can not

fully reduce the distribution mismatch as pixels may vary

in either the appearance or scales from XT and XS . For

instance, cars are always small, and buildings are always

large in either event or image modality. We then propose to

directly match the distribution of class categories between

the two modalities, as shown in Fig. 4. Specifically, denote

Figure 4: Illustration of distribution matching of the proposed dis-

tribution adaption scheme.

h : x → {0, 1} as a classifier, which is used to predict which

modality an input pixel-level feature comes from, where 0

denotes the source modality XS , and 1 denotes the target

modality XT . Intuitively, training a distribution classifier is

to distinguish samples from two modalities. We encourage

the activation x to be modality indistinguishable. Consider-

ing each x is generated from a task network, denoted by F
(either T or Sev/Saps), we thus need to optimize F such that

the distribution classification loss Lmatch
DA is maximized. By

jointly learning the distribution classifier h and the task net-

work F , we arrive at the following maxmin problem, which

can be optimized in an adversarial training manner [20].

Lmatch
DA (XS ,XT ) =

1

|X |

∑

x∈X

H(h(x), d) (6)

Here, X = XS ∪ XT , |X | is the number of samples,

d ∈ {0, 1} is the modality label, and H(·) is a classification

loss. For convenience, we adopt the conditional adversarial

learning [12, 21] to optimize the matching problem. Finally,

the distribution adaptation (DA) loss LDA is the linear com-

bination of the three loss terms Laps
DA, Lev

DA and Lmatch
DA .

3.4. Affinity Graph KD and Other KD Losses

Affinity Graph (AG) KD. Teacher’s features contain con-

structive knowledge; however, due to modality difference,

directly matching feature information [49, 81] is impracti-

cal. We notice that two modalities share similar labeling

contiguity among spatial locations for, e.g., urban scenes.

We thus build affinity graphs to transfer the instance-level

similarity along the spatial locations between two modali-

ties, as shown in Fig. 5. The node represents a spatial lo-

cation of an instance (e.g., car), and the edges connected

between two nodes represent the similarity of pixels. For

events, if we denote the connection range (neighborhood

size) as σ, then nearby events within σ (9 nodes in Fig. 5)

are considered for computing affinity contiguity. It is pos-

sible to adjust each node’s granularity to control the size

of the affinity graph; however, as events are sparse, we do

not consider this factor. In such a way, we can aggregate

top-σ nodes according to the spatial distances and repre-

sent the affinity feature of a certain node. For a feature map

F ∼ R
C×H×W (H ×W is the spatial resolution and C is

the number of channels), the affinity graph contains nodes

with H×W ×σ connections. In the two modalities, we de-

note AT
uv and AS

uv are the affinities between the u-th node
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Figure 5: Illustration of the proposed affinity graph distillation loss

between the event and image modalities.

and the v-th node obtained from the teacher and student,

respectively, which is formulated as:

LAG =
1

H ×W × σ

∑

u∼R

∑

v∼σ

||AT
uv −AS

uv||
2

2
(7)

where R = {1, 2, · · · , H×W} indicates all the nodes in the

graph. The similarity between two nodes is calculated from

the aggregated features Fu and Fv as Auv =
F⊺

uFv

||Fu⊺||2||Fv||2
,

where F ⊺

u is the transposed feature vector of Fu.

Mutual Distillation (MD). When APS frames exist, Saps

indeed can facilitate the learning of Sev . Since Saps and Sev

start from different initial conditions, they learn different

representations, and consequently, their prediction of prob-

abilities can be an effective regularization to each other. We

thus let Saps and Sev learn from each other’s predictions

via the KL divergence losses with a temperature parameter

τ [80]. This helps Sev converge to better minima for better

generalization to test data. The MD loss is formulated as:

LMD = Ee,xaps∼XT
KL [Sev(e)|Saps(xaps), τ ] +

Ee,xaps∼XT
KL [Saps(xaps)|Sev(e), τ ] .

(8)

In summary, the objective L of EvDistill is as follows :

L = LCE + LBMR + λ1LDA + λ2LAG + λ3LMD (9)

where λ1, λ2 and λ3 are the hyper-parameters.

4. Experiment and Evaluation

4.1. Event­based semantic segmentation

Semantic segmentation is a task that aims to assign a se-

mantic label, e.g., road, car, in a given scene to each pixel.

Unlike image data, annotating events requires special pro-

cessing for the raw event streams. Besides, it is challenging

to correctly label the pixels due to the sparsity of events and

lacking information (e.g., material and textures).

Datasets. We use the publicly available driving scene

dataset DDD17 [5], which includes both events and APS

frames recorded by a DAVIS346 event camera. In [1],

19,840 APS frames are utilized to generate pseudo anno-

tations(6 classes) based on a pretrained network for events

(15,950 for training and 3,890 for test). However, such a

way leads to less precise segmentation labels because there

is a considerable domain gap between the source data and

APS images of low resolution and quality. Note that our

method does not rely on any annotations of events in train-

ing, and the pseudo annotations by [1] for test are only used

for evaluation and comparison. As the events in the DDD17

dataset are very sparse and noisy, we show more results on

the driving sequences in the MVSEC dataset [85], collected

for the stereo purpose. Moreover, we show qualitative re-

sults on the E2Vid driving scene dataset [54] captured by

using a Samsung event camera (with higher resolution).

Implementation details. For each label of DDD17 dataset

provided by [1], we use the events occurred in a 50ms time

window before a label for prediction, as done in [1, 18].

We also consider the event representation method in [1] for

semantic segmentation on the DDD17 dataset, in addition

to that described in Sec. 3. For the event representation on

MVSEC and E2VID datasets, we use the method in Sec. 3.

For the teacher T and students Sev and Saps, we adopt a

segmentation network [11]. We use the following metric to

evaluate the performance. The intersection of union (IoU)

score is calculated as the ratio of intersection and union be-

tween the GT mask and the predicted segmentation mask

for each class. We use the mean IoU (MIoU) to measure the

effectiveness, as done in [10, 11]. The segmentation maps

are with 6 classes, as done in [1]. For more implementation

details (e.g., training), refer to the suppl. material.

4.1.1 Evaluation on DDD17 dataset

Comparison. We first present the experimental results on

the DDD17 dataset [1]. We evaluate our method on the

test set and vary the window size of events between 10, 50,

and 250ms, as done in [1]. The quantitative and qualita-

tive results are shown in Table 1 and Fig. 6. We compare

our method with two existing methods, EvSegNet [1] and

Vid2E [18] that uses synthetic version of DDD17 data. It

turns out that, without using labels, EvDistill significantly

improves the segmentation results on events and surpasses

the existing methods with around 7% increase in MIoU us-

ing a multi-channel event representation. Segmentation us-

ing the voxel grid representation is slightly less effective

than that of using the multi-channel representation. Mean-

while, on the time interval of 10ms and 250ms, EvDistill

also shows a significant increase of MIoU by around 7.5%
and 9.5% than those of EvSegNet, respectively.

We also demonstrate that our method significantly en-

hances the semantic segmentation performance on the APS

frames in Table 1. Quantitatively, without resorting to the

pseudo labels, our method surpasses EvSegNet by a large

margin with around 12% increase of MIoU. This reflects

that our method dramatically minimizes the domain gap

between APS frames and labeled source data and distills

the knowledge from the teacher network to learn a student

network Saps showing better segmentation capability. The

results on both events and APS frames indicate that our

method successfully distills the knowledge from the teacher
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Table 1: Segmentation performance with different event representations and APS images on the test data [1], measured by MIoU.

Method Event Rep. Use pseudo labels MIoU [50ms] MIoU [10ms] MIoU [250ms]

EvSegNet [1] 6-channel [1] Yes 54.81 45.85 47.56

Vid2E [18] EST [19] Yes 45.48 30.70 40.66

Ours Voxel bins (2ch) No 57.16 48.68 51.23

Ours Multi-channel No 58.02 49.21 52.01

EvSegNet (APS) - Yes 64.98 64.98 64.98

Ours (APS) - No 72.63 72.63 72.63

Figure 6: Semantic segmentation results of urban driving scenes

on DDD17 test dataset (gray: background; green: vegetation;

blue: vehicle; violet: street; yellow: object).

network learned on the labeled image modality data for

tackling the challenges of unpaired and unlabeled events.

High dynamic range (HDR). HDR is one distinct advan-

tage of event cameras. Even when APS frames are ill-

exposed, events capture the intensity changes. We show the

student network Sev shows promising performance in the

extreme condition. Fig. 4 of the suppl. material shows the

qualitative results. The APS frames are over-exposed, thus

the student network Saps fails to segment the urban scenes;

however, the events capture the scene details, and the stu-

dent network Sev shows convincing segmentation results.

4.1.2 Evaluation on MVSEC dataset

We further present the experimental results on the MVSEC

dataset [85], which contains various driving scenes for

stereo estimation. We use the ‘outdoor day2’ sequence and

divide the data into training and test sets. We remove the re-

dundant sequences, such as vehicles stopping in the traffic

lights, etc. We also use the night driving sequences to show

the advantage for HDR. For the details of dataset prepara-

tion and more visual results, refer to the suppl. material. To

quantitatively evaluate our method, we also utilize the APS

frames to generate pseudo labels, similar to [1], as our com-

parison baseline. The qualitative and quantitative results are

shown in Fig. 7 (also see Fig. 2 of the suppl. material) and

Table 2. In Fig. 7, we mainly show the results in the low-

light condition. It is evident that, although the student net-

work Saps fails to work on APS frames, where most pixels

in the red boxes are wrongly classified in the 4th column

(e.g., building and trees misclassified as vehicles), events

capture scene information better and provide better segmen-

tation performance in low-light condition. Compared with

the baseline in Table 2, our method significantly surpasses

it by a noticeable margin with a 8.8% increase of MIoU on

Table 2: Segmentation performance of events and APS images

on the MVSEC dataset [83], measured by MIoU. The baseline is

trained by using the pseudo labels made from the APS images.

Method Use pseudo labels MIoU

Baseline (Events) Yes 50.53

Ours(Events) No 55.09

Baseline (APS) Yes 61.93

Ours (APS) No 68.85

Figure 7: Semantic segmentation results of low-light scenes on

MVSEC dataset (gray: background; green: vegetation; blue: ve-

hicle; violet: street; yellow: object).

the events and a 11.2% increase on the APS frames.

4.1.3 Evaluation on E2VID dataset

We also present the experimental results on the E2Vid driv-

ing dataset [54]. We followed the DDD17 in [1] to split

E2VID dataset. We mainly use ‘sun2’ and ‘sun4’ sequences

where we select around 4K event images as the training

set, and the remained 400 as the test set. We also test on

400 event images from the ‘street’ sequence. As there are

no GT annotations for events, we only show the qualita-

tive results, as shown in Fig. 8 and Fig. 3 of the suppl.

material. The student network Sev can segment the mov-

ing objects, e.g., vehicles, pedestrians. Meanwhile, it also

successfully segments the complex objects with no mo-

tion blur,e.g., tree branches, traffic lights. Compared with

the events (346x260) in DDD17 and MVSEC datasets, the

events in E2Vid are in a higher resolution (640x480). In

Fig. 8, it seems that the network trained on these events

better segments small objects, e.g., vehicles in the remote

location, traffic lights, etc. Although events contain less vi-

sual information than the image data, it is advantageous for

segmenting the fast moving objects and HDR scenes.

4.2. Event­based object recognition

We further demonstrate that our method can be also flex-

ibly applied to object recognition. We use the benchmark

N-Caltech101 dataset [45]. This dataset is an event-based
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Figure 8: Qualitative results on E2Vid dataset (gray: background;

green: vegetation; blue: vehicle; violet: street; yellow: object).

Table 3: A comparison of object recognition performance with

existing methods on N-Caltech dataset.

Method Training data Use GT labels Test score

HATS [57] Real events Yes 0.642

HATS-ResNet34 Real events Yes 0.691

RG-CNN Real events Yes 0.657

EST [19] Real events Yes 0.817

E2VID [54] Intensity images Yes 0.866

VID2E [18] Synthetic events Yes 0.807

Ours-20K events Real events No 0.896

Ours (fine-tune) Real events No 0.902

version of the well-known Caltech101 [14]. Note that the

event data in the N-Caltech dataset and the original images

in the Caltech dataset are not matched. As the dataset only

provides events captured by an event camera, without APS

frames, the student network Saps depicted in Fig. 2 is re-

moved in this case. To bridge both modalities, we explore

the source images (e.g., the images from Caltech dataset

and other images) and learn the bidirectional modality re-

construction (BMR) module in an unsupervised manner.

Note that we assume that the labels of event data are un-

known and the labels of source images are given. We utilize

a teacher classifier T pretrained on the source images and

distill the knowledge to the student classifier Sev . Interest-

ingly, EvDistill translates the source images (with labels) to

events also with the same labels (Fig. 10). We then utilize

the generated events and target events to train the student

classifier Sev . Meanwhile, the generated images (Fig. 9)

and source images are used to get recognition information

from the teacher T , such that the student can learn the dis-

tilled knowledge from the teacher via the KD losses. From

the experiments, we show there is a significant performance

boost (see Table 3) with our method.

Implementation Details. For the teacher and student

classifiers, we use the ResNet34, as used in other works

[18, 19, 54]. We use the loss functions defined in Eq. (3)

and Eq. (7), and also cross-entropy loss. We use Adam op-

timizer with the learning rate of 1e-4. For event representa-

tion, we use the stacking method described in Sec. 3. Due

to the lack of space, more details of the implementation are

provided in the supplementary material.

Experimental results. The qualitative results for image

Figure 9: Generated images with GT→S (2nd and 4th columns

based on 10K and 20K events) from the target events.

-10K eventsSource modality -20K events

Figure 10: Generated events with GS→T (10K and 20K events in

the 2nd and 3rd columns) from the source images.

generation are shown in Fig. 9. The first and third columns

show the stacked 10K and 20K events, accompanied by

the generated images in the 2nd and 4th columns. As can

be visually seen, even without supervision, realistic images

are generated from the target modality. When more events

are accumulated, better-reconstructed images are obtained.

Correspondingly, Fig. 10 shows the generated events from

the source modality. The 1st column shows the source

images, and the 2nd and 3rd columns are the generated

10K and 20K events, respectively. It is clearly shown that

the quality of the generated events is improved based on

the target events. Regarding the results of object recogni-

tion, we compare with the SoTA optimization-based meth-

ods, HATS [57] and its ResNet34-based result. Meanwhile,

we compare with the recent DL-based methods, EST [19],

E2Vid [54] (using generated images) and Vid2E [18] (using

synthetic events). Table 3 shows the quantitative results.

Even when labels are not used for event data, our method

surpasses the existing methods with a significant margin.

For instance, compared with HATS-Resnet34, our method

achieves more than 20% higher accuracy. When compared

with E2Vid, our method also achieves better results (0.896

vs 0.866). When tuning parameters via self-ensemble in

training, EvDistill further improves the performance and

achieves higher accuracy (0.902 vs 0.896).

5. Ablation Study and Analysis

Modality reconstruction. We show that EvDistill also en-

hances the target-to-source reconstruction by leveraging the

proposed dynamic semantic consistency (DSC) KD loss.

The qualitative and quantitative results are shown in Fig. 11

and Table 4. In contrast to the reconstructed images with-

out KD loss (2nd column), our method fully exploits the

semantic information and successfully restores the textural
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Table 4: Comparison of segmentation results on the target to

source reconstruction with and without knowledge distillation.

Method Mean IoU

w/o knowledge distillation 43.64

w/ knowledge distillation 45.12

Figure 11: Visual results of the end-to-end target-to-source recon-

struction with (w/) and without (w/o) KD loss.

and material details, e.g., cars in the cropped patches (3rd

column) in Fig. 11. The effectiveness can be further verified

from Table 4, where the images generated with the KD loss

show higher performance for semantic segmentation. The

proposed EvDistill helps recover the semantic information

in the generated images and improves semantic segmenta-

tion quality on these images.

The effectiveness of affinity graph KD. To further vali-

date the effectiveness of the proposed affinity graph (AG)

KD for cross-modal learning, we compare with the general

feature-level KD losses, e.g., FitNets [55], AT [78], and FT

[33]. The results are shown in Table 5. As FitNets, AT and

FT are all targeted to directly minimizing feature difference

between the teacher and student under the same modality

(e.g., image) data, they show relatively poor performance

on the cross-modal learning problem. Instead of directly

matching features, the proposed AG loss better tackles the

spatial contiguity of instances between the two modalities

and shows better performance on the end-tasks.

The effectiveness of distillation. We look into the effect

of enabling and disabling different components of the pro-

posed EvDistill. The experiments were conducted on the

semantic segmentation task with the DDD17 dataset. In Ta-

ble 6, the results of different settings for the student network

are listed. Our baseline framework consists of a teacher T
and two student networks. From Table 6, we can see that

KD can improve the performance of both student networks.

Moreover, each KD scheme leads to higher test scores. This

implies that the KD schemes make a complementary con-

tribution to learning better student network. Furthermore, it

is shown that the distribution matching KD scheme better

matches the structural similarities between the modalities,

leading to higher scores and better quality. On the other

hand, the proposed BMR approach (with (w/) BMR) also

contributes to enhancing the learning of the event-based

segmentation network. When the student network Saps is

added, it also benefits the learning of Sev optimized by the

mutual learning KD and distribution matching KD losses.

Table 5: A comparison of affinity graph KD with existing feature

KD methods on DDD17 dataset.

Metric Event Rep. FitNet [55] AT [78] FT [33] AG

MIoU Voxel-2ch 55.09 55.60 55.51 57.16

Table 6: The effect of different components of EvDistill with a

multi-channel event representation. PI: pixel-wise KD, AG: affin-

ity graph, DM: distribution adaptation, ML: mutual learning.

Method Use pseudo labels Performance (MIoU)

PI No 55.10

PI + AG No 56.59

PI + AG + DM No 57.86

PI + AG + DM + ML No 58.02

w/o BMR No 56.25

w/ BMR No 57.40

w/ BMR + Saps No 58.02

KD with only events and APS frames. Although the

paired events and APS frames are without annotated labels,

one naive way might be to utilize them in EvDistill with-

out exploring source data and the BMR module. We study

this baseline by feeding the events to the student Sev and

the APS frames to the teacher T for semantic segmentation

on the MVSEC dataset. We apply the proposed distribu-

tion adaptation scheme and the affinity graph loss to dis-

till knowledge to the student Sev . The experimental results

show that it achieves less plausible MIoU (52.10 vs. 55.09)

than the proposed framework as there is a domain gap with

the source data used to train the teacher network. The APS

frames are of low quality, which degrades the performance.

6. Conclusion, Limitations and Future Work

This paper proposed EvDistill to learn a student on the

unpaired and unlabeled events by distilling the knowledge

from a teacher trained with labeled images. As no paired

modality data with common labels exist, we proposed a

BMR module to bridge both modalities. We also proposed a

distribution adaptation scheme to match the distributions of

two modalities. Besides, a novel graph affinity KD was pro-

posed to enhance the KD performance. The experiments on

two end-tasks demonstrate the effectiveness of our method.

Our work has some limitations. First, the type of event data

(e.g., urban driving) needs to be close to the labeled source

data. Second, as deep network is used, inference latency

is inevitable. As EVDistill is a general approach, which

tackles the problem caused by limited labels in the target

modality. Thus, it can be flexibly applied to any other data,

such as thermal and depth camera data in the future work.
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