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Abstract

Scene flow depicts the dynamics of a 3D scene, which is

critical for various applications such as autonomous driving,

robot navigation, AR/VR, etc. Conventionally, scene flow

is estimated from dense/regular RGB video frames. With

the development of depth-sensing technologies, precise 3D

measurements are available via point clouds which have

sparked new research in 3D scene flow. Nevertheless, it

remains challenging to extract scene flow from point clouds

due to the sparsity and irregularity in typical point cloud

sampling patterns. One major issue related to irregular

sampling is identified as the randomness during point set ab-

straction/feature extraction—an elementary process in many

flow estimation scenarios. A novel Spatial Abstraction with

Attention (SA2) layer is accordingly proposed to alleviate

the unstable abstraction problem. Moreover, a Temporal

Abstraction with Attention (TA2) layer is proposed to rec-

tify attention in temporal domain, leading to benefits with

motions scaled in a larger range. Extensive analysis and

experiments verified the motivation and significant perfor-

mance gains of our method, dubbed as Flow Estimation

via Spatial-Temporal Attention (FESTA), when compared to

several state-of-the-art benchmarks of scene flow estimation.

1. Introduction

Our world is dynamic. To promptly predict and respond

to the ever changing surroundings, humans are able to per-

ceive a moving scene and decipher the 3D motion of indi-

vidual objects. This capability to capture and infer from

scene dynamics is also desirable for computer vision appli-

cations. For instance, a self-driving car can maneuver its

actions upon perceiving the motions in its surroundings [19];

whereas a robot can exploit the scene dynamics to facilitate

its localization and mapping process [2]. Moreover, with ad-

vances in depth-sensing technologies, especially the LiDAR

technologies [7], point cloud data have become a common

configuration in such applications.
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Figure 1: Given two consecutive point clouds, down-sampled

points produced by (a) Farthest Point Sampling (FPS, in dark red)

are different which make them intractable in scene flow estima-

tion. However, by appending our (c) Aggregate Pooling (AP),

stable corresponding points (in blue) are synthesized for scene flow

estimation.

To describe the motion of individual points in the 3D

world, scene flow extends 2D optical flow to the 3D vector

field representing the 3D scene dynamics [28]. Hence, just

like 2D optical flow needs to be estimated from video frames

comprising images [31, 10], 3D scene flow needs to be in-

ferred from point cloud data [9]. However, it is non-trivial

to accurately estimate scene flow from point clouds.

Unstable abstraction: Pioneered by PointNet [25]

and its extension, PointNet++ [26], deep neural networks

(DNNs) have recently been enabled to directly consume 3D

point clouds for various vision tasks. As shown in Figure 1a

and Figure 1b, the grouping based on the Farthest Point

Sampling (FPS) is widely utilized during the feature extrac-

tion process. It is treated as a basic point set abstraction

unit for segmentation as well as scene flow estimation, e.g.,

FlowNet3D [16] and MeteorNet [17]. The naive FPS is sim-

ple and computationally affordable, but problematic. Given

two object point clouds, both representing the same mani-

fold, FPS would likely down-sample them differently [21]

(see Figure 1a). This inconsistency due to randomness in

naive FPS is undesired for vision and machine tasks. With
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two differently down-sampled point clouds, the subsequent

grouping and abstraction would lead to two dissimilar sets

of local features. Thus, it becomes intractable to estimate the

scene flow when comparing the features extracted via FPS.

To resolve this problem, we propose a Spatial Abstraction

with Attention (SA2) layer which adaptively down-samples

and abstracts the input point clouds. Compared to FPS, our

SA2 layer utilizes a trainable Aggregate Pooling (AP) mod-

ule to generate much more stable down-sampled points, e.g.,

blue points in Figure 1c. They define attended regions [6]

(e.g., green circles in Figure 1d) for subsequent processing.

Motion coverage: Similar to many deep matching algo-

rithms for stereo matching and optical flow estimation, it is

difficult to have a single DNN that can accurately estimate

both large-scale motion and small-scale motion [11, 23]. To

tackle this problem, we iterate the network for flow refine-

ment with a proposed Temporal Abstraction with Attention

(TA2) layer. It shifts the temporal attended regions to the

more correspondent areas according to the initial scene flow

obtained at the first iteration.

In summary, we adaptively shift the attended regions

when seeking abstraction from one point cloud spatially, and

when fusing information across two point clouds temporally.

We name our proposal Flow Estimation via Spatial-Temporal

Attention, or FESTA for short. The main contributions of

our work are listed as follows:

(i) We propose the SA2 layer for stable point cloud ab-

straction. It shifts the FPS down-sampled points to

invariant positions for defining the attended regions,

regardless of how the point clouds were sampled from

the scene manifold. Effectiveness of the SA2 layer is

verified both theoretically and empirically.

(ii) We propose the TA2 layer to estimate both small- and

large- scale motions. It emphasizes the regions that are

more likely to find good matches between the point

clouds, regardless of the scale of the motion.

(iii) Our proposed FESTA architecture achieves the state-of-

the-art performance for 3D point cloud scene flow esti-

mation on both synthetic and real world benchmarks.

Our method significantly outperforms the state-of-the-

art methods of scene flow estimation.

2. Related Work

Recent studies on scene flow estimation mainly extend

methodologies for 2D optical flow estimation to 3D point

clouds. We first review the related research on optical flow

estimation [27], then turn to deep learning methods for point

cloud processing and scene flow estimation.

Optical flow estimation: Optical flow estimation and its

variant, stereo matching, both look for pixel-wise correspon-

dence given a pair of 2D images. Though conventionally

solved with hand-crafted pipelines, recent proposals based

on end-to-end DNNs achieve unprecedented performance.

Among these methods, FlowNet [4, 18] is the very first

trial, which adopts the popular hour-glass structure with skip

connections. This basic DNN architecture is remarkably

successful for finding correspondence on images [34, 3]. It

is even extended to 3D point clouds for scene flow estima-

tion, e.g., FlowNet3D [16] and HPLFlowNet[8]. However,

it is difficult to estimate both small- and large-scale mo-

tions using one hour-glass architecture. Thus a succeeding

work, FlowNet2 [11], stacks independent FlowNet modules

to boost the performance, at the price of a larger model. Dif-

ferently, we resolve the problem with the TA2 layer, which

efficiently reuses part of the network for refinement.

Deep learning on point clouds: Point cloud data is usu-

ally preprocessed, e.g., voxelized, so as to comply with

deep learning frameworks justified for regular images/videos.

Emerging techniques for native learning on point clouds re-

lieve this need for format conversion. The seminal work,

PointNet [25] directly operates on input points and produces

a feature depicting the object geometry. The learned features

achieve point permutation-invariance through a pooling op-

eration. PointNet++ [30] applies FPS, followed by nearest-

neighbor (NN) grouping and PointNet to abstract an input

point cloud. This abstraction step has become a popular

elementary unit to digest point clouds. Recent works, such

as [35, 22, 15], propose complicated DNN architectures for

the abstraction step; while our SA2 layer is a lightweight

module to serve the same purpose. Moreover, these works

limit themselves by selecting existing points from the point

cloud while we synthesize new points to better represent the

underlying geometry.

Scene flow estimation: The task of 3D scene flow es-

timation was first introduced by Vedula et al. [28]. It is

conventionally estimated from RGB-D videos [31] or stereo

videos [10]. Only with the advent of deep learning, has the

3D scene flow estimation problem directly over point cloud

data been enabled [9].

FlowNet3D [16] is the first work directly learning scene

flow from 3D point cloud data. It “converts” the FlowNet [4]

architecture from the 2D image domain (with the convolu-

tional neural network) to point cloud data (with PointNet).

A follow-up work, FlowNet3D++ [26], improves the per-

formance by explicitly supervising the flow vectors with

both their magnitudes and orientations; while the recently

proposed PointPWC-Net [32] estimates the scene flow in a

coarse-to-fine manner by fusing the hierarchical point cloud

features. Other notable methods include HPLFlowNet [8]

applying the concepts of permutohedral lattice [1] to extract

structural information and [20] which is a self-supervised

approach. However, most of the efforts apply FPS to down-

sample the input point clouds and introduce the unstable

abstraction problem as mentioned. In contrast, we propose

the SA2 layer to retrieve invariant down-sampled points,
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Figure 2: Our proposed FESTA architecture. On top of the FlowNet/FlowNet3D backbone, we specially incorporate the spatial-temporal

mechanism with the proposed SA2 and TA2 layers.

which greatly benefit the subsequent matching process.

3. Framework Overview

3.1. Architecture Design

The architecture of our proposal, FESTA, is shown in

Figure 2, which follows the backbone of FlowNet3D [16]

and FlowNet [4] with an hour-glass structure. Each feature

produced by network layers consists of a representative point

accompanied by a local descriptor, e.g., the Spatial Abstrac-

tion with Attention (SA2) layer generates n1/8 such features

for the first point cloud. Given two input point clouds, they

are respectively consumed by shared SA2 layers to extract

two sets of features, which we call the spatial features. Then

a proposed Temporal Abstraction with Attention (TA2) layer

serves as a coupling module to fuse the spatial features with

the first point cloud serving as the reference. Its output is

another set of features that we called the temporal feature.

Different from the spatial features, the temporal features fuse

information of both point clouds, from which the 3D scene

flow can be extracted. After that, several Set Abstraction

layers and Set Up-Conv layers from FlowNet3D [16] are

appended to digest the temporal features, which complete

the hour-glass structure. The outputs of the last Set Up-Conv

layer are a set of point-wise features, associated with each

point in the first point cloud. To extract point-wise scene

flow, we simply apply shared MLP layers to convert each

point-wise feature to a scene flow vector.

Inspired by [12], we also estimate a binary mask indicat-

ing the existence of the scene flow vector for each point in

the first point cloud. In practice, the scene flow vectors may

not be available due to occlusion and motion out of the field

of view, etc. The indication of their existence may serve

as side information to help subsequent tasks. Similar to the

computation of 3D scene flow, dedicated MLP layers are

applied to convert the point-wise features to the existence

mask.

To enhance the scene flow estimation accuracy, especially

to tackle motion of all ranges, we partially re-iterate our

network with a feedback connection. Though it is possible

to run TA2 many iterations, we found that running it twice

achieves a good trade-off between computational cost and

estimation accuracy. Note that similar to [16], our FESTA ar-

chitecture can be easily adapted to take additional attributes

(e.g., RGB colors) as inputs. Please refer to the supplemen-

tary material for more details of our architecture.

3.2. Loss Function Design

To effectively train the proposed FESTA in an end-to-

end fashion, we evaluate both iteration outputs against the

ground truth flow. For each iteration, we first compute an ℓ2
loss between the ground-truth scene flow and the estimated

one [16]. This ℓ2 loss is denoted by L
(i)
F , with i being the

iteration index. Then the existence mask estimation is cast

as a point-wise binary classification problem [12], and a

cross-entropy loss can be calculated against the ground-truth

existence mask, denoted by L
(i)
M . The loss of the i-th iteration

is finally given by:

L(i) = µL
(i)
F + (1− µ)L

(i)
M . (1)

Our total loss for end-to-end training aggregates losses of

both iterations, i.e.,

Ltot = (1− λ)L(1) + λL(2). (2)

Note that in (1) and (2), the hyper-parameters µ, λ ∈ [0, 1].
Empirically, we set µ = 0.8 and λ = 0.7.

4. Spatial-Temporal Attention

4.1. Spatial Abstraction with Attention

Design of the SA2 layer: Key steps of our proposed Spa-

tial Abstraction with Attention (SA2) layer are illustrated
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in Figure 1. Farthest Point Sampling (FPS) followed by the

Nearest Neighbor (NN) grouping (Figure 1a, Figure 1b) are

inherited from PointNet++ [26] to divide the point cloud

into groups as initial steps. However, as mentioned in Sec-

tion 1, pure FPS-based abstraction produces unstable down-

sampled points that would tamper the scene flow estimation.

Herein, the design of the abstraction is motivated to reflect

the intrinsic geometry of the manifold M, that is invariant

to the randomness in the sampling pattern. In this work,

we approach this goal with a proposed Aggregate Pooling

(AP) module. Following FPS grouping, a point set is down-

sampled using a synthesized point (Figure 1c). Then each

newly down-sampled point defines its own attended region

via another NN grouping step, leading to a new grouping

scheme more suitable for a subsequent point-wise task (Fig-

ure 1d), i.e., scene flow estimation in our case. Similar to

PointNet++ [26], finally we feed the new groups of points

to a shared PointNet to extract their local descriptors. The

descriptors and the associated down-sampled points consti-

tute the output of the SA2 layer, i.e., the spatial features. For

example, see the n1

8 × 67 matrix produced by the SA2 layer

in Figure 2.

Aggregate Pooling: The proposed AP module consumes

a group of k points and generates a synthesized point to

represent the whole group. As shown in Figure 3, it consists

of a PointNet [25] and a point aggregation step. The PointNet

computes k point-level descriptors with MLPs and a group-

level descriptor with a max-pooling operator. This PointNet

is shared among all groups of points in the point cloud. The

point aggregation step then computes the weighted average

of all the points in the group to synthesize a representative

point.

Specifically, the point aggregation step measures the rep-

resentativeness of a point (say, the i-th point) in the group

with the similarity between its point-level descriptor (de-

noted by fi) and the group-level descriptor (denoted by fg).

Among different ways to measure the vector similarity (e.g.,

Euclidean distance, correlation coefficient), we choose the

dot-product metric like [29] for its simplicity. The obtained

affinity values are then passed to a softmax function for nor-

malization, resulting in a set of weights summed up to 1.

Mathematically, the weight wi for the i-th point is

wi = exp
(

f
T
i fg

)

·

[

∑k

j=1
exp

(

f
T
j fg

)

]−1

. (3)

Suppose the points in the group are si = (xi, yi, zi), 1 ≤

i ≤ k, then the synthesized point is simply
∑k

i=1 wi · si.

Analysis: Now we attempt to understand the mechanism

of the SA2 layer to generate more stable points. With the

FPS and the grouping steps (Figure 1a and Figure 1b), we

have two lists of point sets from the input point cloud pair.

We first focus on a pair of point sets among the two lists

that are sampled over the same Riemannian manifold patch
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Figure 3: Block diagram of the Aggregate Pooling (AP) module.

M through the same sampling probability distribution p(s).

Each point set is to be processed by the AP module.

Given sufficient number of points in both point sets char-

acterizing the geometry M, their group-level descriptors

should be similar [25], denoted by fg. In particular, if in-

creasingly many 3D points are sampled from M according

to p, then by definition, the synthesized points from both

groups converge to the following integration on M [14]:

s
′ =

1

α

∫

M

w
(

f(s)T
fg

)

p(s) · s ds, (4)

where f(s) is the point-level descriptor of the point s, func-

tion w(·) converts the dot-product measure f(s)T
fg to weight

as is done by (3), and α =
∫

M
w
(

f(s)T
fg

)

p(s) ds is a nor-

malization factor. Please refer to the supplementary material

for more detailed analysis.

Since the AP module converges to a fixed location s
′ over

M, the SA2 layer is expected to converge over a point cloud

scene. Empirical evidence is to be provided in Section 5.1

through a segmentation experiment.

Lastly, as the weight w
(

f(s)T
fg

)

is computed by a learn-

able network, the SA2 layer is adaptable to down-stream

tasks by generating novel, task-aware down-sampled points.

4.2. Temporal Abstraction with Attention

Mechanisms of the TA2 layer: The Temporal Abstrac-

tion with Attention (TA2) layer aims to aggregate the spatial

features of both point clouds given an initial scene flow.

During the first iteration without an initial scene flow pre-

sented, it behaves the same as the Flow Embedding layer

in FlowNet3D [16]. Specifically, for each point (say, A) in

the first down-sampled point cloud, we first perform a NN

grouping step from the second point cloud, which forms a

group of points (centered at A) from the second point cloud,

as shown in the left of Figure 4. Then the grouped points, the

point A and its associated descriptor, are sent to a subsequent

PointNet to extract another local descriptor. More details of

this extraction step can be found at [16]. The down-sampled

point cloud and the new descriptors form the temporal fea-

tures, e.g., the n1

8 × 131 matrix produced by the TA2 layer

in Figure 2.
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Figure 4: Two iterations of the TA2 layer. The blue circle in the

left one demonstrates the attended region for the 1st iteration, which

is inaccurate for the points correspondence. The green circle in the

right one drags the attended region to the correspondent area by the

initial flow estimated in the 1st iteration.

During the second iteration, we reuse the spatial features

generated by the SA2 layers at the first iteration and feed

them to the TA2 layer (Figure 2). However, now with an

initial scene flow corresponding to the first down-sampled

point cloud available, we translate the search regions accord-

ing to each of the scene flow vectors. Specifically, suppose

the coordinate of A is (xA, yA, zA) and its initial scene flow

vector is (uA, vA, wA), then the NN grouping is performed

centered at (xA + uA, yA + vA, zA + wA), see the right of

Figure 4. Note that to obtain the initial scene flow for the first

down-sampled point cloud, it requires an extra interpolation

step, i.e., the Flow Interpolation module in Figure 2. We im-

plement it as a simple deterministic module without trainable

parameters. To estimate the scene flow vector at a certain

point, it computes the average scene flow vector in the neigh-

borhood of that point. Please refer to the supplementary

material for more details.

Analysis: Intuitively, the NN grouping step search for

all points in the second point cloud that “appear close” to

A; its search range defines an attended region (the blue

circle in Figure 4). By only estimating the scene flow in

one pass, it requires to choose a universal search radius for

all ranges of motion. However, when the attended region

(or equivalently, the search radius r1 in Figure 4) is too

small, it fails to capture large-scale motion; while for a large

attended region or a large r1, it includes too many candidates

from the second point cloud and harms the granularity of the

estimation (especially for small-scale motion). This problem

generally exists for not only scene flow estimation but also

related problems such as stereo matching [23] and optical

flow estimation [11].

By introducing a second iteration, our TA2 layer accord-

ingly shifts the attended regions to confident areas that are

more likely to observe good matches from the second point

cloud. Consequently, for the first iteration, it is more critical

to identify a “correct” direction than a “correct” result. It is

reflected in the selection of hyper-parameter λ = 0.7. More-

over, with a rough knowledge about how the second point

cloud moves, the attended region at the second iteration (or

radius r2 in Figure 4) can be further reduced to search for
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Figure 5: Compared to FPS, our proposal generates more stable

down-sampled point clouds.

more refined matching candidates.

5. Experimentation

This section first verifies how the SA2 layer serves as

a stable point cloud abstraction unit. Then the proposed

FESTA architecture is evaluated for 3D scene flow estima-

tion. Finally, we inspect how the key components contribute

to the FESTA framework by an ablation study.

5.1. Abstraction with the SA2 Layer

The proposed SA2 layer generally provides an alternative

abstraction than FPS-like methods. It is desired to explicitly

study its stability as pointed out in Section 4.1. In this

test, we design a dedicated object segmentation process, as

this per-point task has minimum additional procedure than

abstraction, if compared to FESTA framework. Note that the

segmentation serves as a test bed to verify the stability of

SA2, rather than to claim state-of-the-art segmentation.

Set-up: We build up a scene point cloud dataset using

object point clouds from ModelNet40 [33]. This scene point

cloud dataset contains 104 scenes; each scene contains 3 to

6 objects packed within a sphere-shaped container of radius

3. Moreover, all objects in a scene are normalized within a

sphere of radius r, and are situated with a distance of at least

2 between their object centers. Evidently, by enlarging the

objects with a bigger radius r, they are more likely to collide

with one another, making it more challenging to distinguish

and segment the objects. We prepare 4 versions of the scene

point cloud dataset with different object radii r ranging from

1 to 1.8. Our object segmentation network is built upon the

PointNet++ [26] by replacing the FPS groupings with our

proposed SA2 layers.

Abstraction stability: We first evaluate the stability of

our down-sampled point clouds using the above segmenta-

tion framework with dataset radius r = 1.2. Given a scene in

our multi-object dataset, we randomly pick n ∈ [256, 2048]
points from it for 100 different times, resulting in 100 input
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Figure 6: Down-sampled points of FPS (red) and our SA2 layer

(blue) for the object segmentation task.

Table 1: Object segmentation accuracy (%).

Methods
Object radius r

1.0 1.2 1.5 1.8

PointNet++ (FPS) 92.56 88.74 65.87 43.07

Ours (SA2) 93.21 90.48 80.10 69.18

point clouds representing the same 3D scene. Then we feed

these point clouds as inputs to both FPS-based and SA2-

based segmentation network to obtain down-sampled point

sets containing only 64 points. For a stable down-sampling

procedure, the down-sampled results from the 100 point

clouds should be similar to one another. To evaluate the sim-

ilarity, we compute the Chamfer Distances (CD) [5] between

any two down-sampled point clouds, then take an average to

characterize the stability. A smaller average CD means more

stable down-sampling. Further averaging over 30 scenes

randomly selected from our dataset is performed. Finally,

as shown in Figure 5, SA2 always produces more stable

down-sampled results than FPS. Especially, for n > 1000,

our approach even reduces the average CD of FPS by about

50%, which confirms the superior stability of the proposed

SA2 layer. The plot for SA2 also verifies the analysis in

Section 4.1, which indicated that as the sampling becomes

denser the down-sampled points become more stable.

Evaluation: Having tested the SA2 layer, we turn to un-

derstand how its stable abstraction benefits the segmentation

performance. Based on FPS and the SA2 layer, two segmen-

tation networks are trained on all the 4 versions of the dataset

(object radii r ranging from 1 to 1.8) with the cross-entropy

loss. Table 1 compares the performance of SA2 based seg-

mentation with FPS-based segmentation, i.e., PointNet++,

showing that SA2 always provides higher segmentation ac-

curacies. As segmentation difficulty increases, our approach

out-performs PointNet++ by a larger margin, e.g., our accu-

racy is 26% higher than PointNet++ when r = 1.8.

We demonstrate the down-sampled points of scene point

clouds in Figure 6, where the grey points depict the input

point cloud; while the red and the blue points are those

sampled by FPS and SA2, respectively. Thanks to the stable

abstraction as verified earlier, the SA2 layer consistently

generates points belonging to distinctive objects and exhibits

clearer separation between objects, which is highly preferred

for segmentation.

5.2. Scene Flow Estimation with FESTA

Combining the SA2 and the TA2 layers, we evaluate the

proposed FESTA architecture for scene flow estimation.

Datasets: Our experiments are conducted on two popu-

lar datasets, the FlyingThings3D [18] and the KITTI Scene

Flow [7] (referred to as KITTI) datasets. Both of them are

originally designed for matching tasks in the image domain

(e.g., stereo matching). Recently, Liu et al. [16] converted

them for scene flow estimation from 3D point clouds. The

FlyingThings3D dataset is a synthetic dataset with 20,000

and 2,000 point cloud pairs for training and testing, respec-

tively. In addition to the point cloud geometry, the RGB

colors and the binary existence masks are also available.

Different from the FlyingThings3D, KITTI is a real dataset

collected by LiDAR sensors, and contains incomplete ob-

jects. The KITTI dataset has 150 point cloud pairs with

available ground-truth scene flow. Similar to [16, 8] and

others, we only use the geometry (point coordinates) when

computing the 3D scene flow.

Benchmarks and evaluation metrics: We compare our

FESTA with the following methods, listed in chronologi-

cal order: FlowNet3D [16], HPLFlowNet [8], PointPWC-

Net [32], MeteorNet [16], FlowNet3D++[30], and a self-

supervised method, Just Go with the Flow [20]. The scene

flow quality is first evaluated with End-Point-Error (EPE),

which calculates the mean Euclidean distance between the

ground-truth flow and the prediction. We also adopt two

additional metrics from [8], Acc Strict and Acc Relax.1

Both Acc Strict and Acc Relax aim to measure estimation

accuracy, but with different thresholds. Acc Strict mea-

sures the percentage of points satisfying EPE < 0.05m or

relative error < 5%; while Acc Relax measures the percent-

age of points with EPE < 0.1m or relative error < 10%.

Implementation details: The proposed FESTA is trained

with two configurations over FlyingThings3D dataset fol-

lowing the FlowNet3D [16], with geometry-only and with

additional RGB attributes. The two configurations are both

trained with the Adam optimizer [13] for 500 epochs, with

a batch size of 32 and a learning rate of 0.001. The size

of the input point clouds are all set to 2048. All experi-

ments are performed in the PyTorch [24] framework. For

the geometry-only configuration, the inference is performed

on both FlyingThings3D and KITTI. In other words, the

model is never tuned over KITTI, similarly done in [16, 8]

and others. With RGB attributes available, the inference is

conducted on FlyingThing3D. Quantitative and qualitative

evaluations are performed.

Quantitative evaluation: Quantitative results are re-

1They are called Acc3D Strict and Acc3D Relax in [8]. We remove “3D”

since we do not need to distinguish with 2D cases.
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Figure 7: Scene flow estimation on the FlyingThings3D dataset between 1st PC (in red), 2nd PC (in green). The results of our proposed

FESTA architecture is shown with warped PC (in blue) – 1st PC warped by the scene flow.

Table 2: Quantitative evaluation on the FlyingThings3D and the KITTI datasets.

Methods
FlyingThings3D, geo.+RGB FlyingThings3D, geo.-only KITTI, geo.-only

EPE (m) Acc S. (%) Acc R. (%) EPE (m) Acc S. (%) Acc R. (%) EPE (m) Acc S. (%) Acc R. (%)

FlowNet3D [16] 0.1694 25.37 57.85 0.1705 23.71 56.05 0.1220 18.53 57.03

HPLFlowNet [8] 0.1318 32.78 63.22 0.1453 29.46 61.91 0.1190 30.83 64.76

PointPWC-Net [32] 0.1205 39.45 67.81 0.1310 34.22 65.78 0.1094 35.98 73.84

MeteorNet [17] - - - 0.2090 - 52.12 0.2510 - -

FlowNet3D++ [30] 0.1369 30.33 63.43 0.1553 28.50 60.39 0.2530 - -

Just Go w/ Flow [20] - - - - - - 0.1220 25.37 57.85

FESTA (Ours) 0.1113 43.12 74.42 0.1253 39.52 71.24 0.0936 44.85 83.35

ported in Table 2, where the proposed FESTA consistently

outperforms the competing methods with significant gains.

For example, regarding to Acc Strict values for geometry

only, our FESTA improves over the state-of-the-art method,

PointPWC-Net, by 5.3% for FlyingThings3D or 8.9% for

KITTI; and improves over our backbone, FlowNet3D, by

15.8% for FlyingThings3D or 26.3% for KITTI. Encour-

agingly, when inspecting configurations with and without

RGB over FlyingThings3D, it is noticed that in most cases,

with geometry alone, our FESTA surpasses the competitors

even when they take extra RGB attributes. For instance, our

FESTA (geometry only) achieves an EPE of 0.1253, lower

than that of FlowNet++ (geometry+RGB) which is 0.1369.

We compare our model size and run time to representative

methods and report in Table 3, where the run time is evalu-

ated on a Nvidia GTX 1080 Ti GPU with 11 GB memory.

We confirm that our superior performance is achieved by

a model of size 16.1 MB, similar to FlowNet3D which is

14.9 MB. It is much smaller than other competing methods,

PointPWC-Net and HPLFlowNet. Moreover, by removing

the TA2, we take similar run time as FlowNet3D, but still

greatly reduce its EPE from 0.1705 (Table 2) to 0.1381 (to

be seen in ablation study, Table 4).

Qualitative evaluation: Visualization of the scene flow

obtained by FESTA are shown in Figure 7 for FlyingTh-

ings3D and in Figure 8 for KITTI. Selected parts are zoomed

in for a better illustration. In each example, red points and

Table 3: Evaluation of model size and run time. F. - FlowNet3D

[16]; H. - HPLFlowNet [8]; P. - PointPWC-Net [32].

Metrics F. H. P. FESTA w/o TA2 FESTA (Ours)

Size (MB) 14.9 231.8 30.1 16.1 16.1

Time (ms) 34.9 93.1 38.5 35.2 67.8

green points represent the first and the second point cloud

frames, respectively. Blue points represent the warped point

cloud, generated by translating each point in the first point

cloud according to the estimated scene flow vector. With

more accurate scene flow vectors, the warped point cloud

gets more overlapped with the second point cloud. It can be

seen that for all cases in Figure 7, 8, our predicted scene flow

produces warped point clouds that are highly overlapped

with the second point cloud. It affirms the effectiveness

of our proposed FESTA on scene flow estimation. Be re-

minded that our network has never observed any data from

the KITTI dataset; however, it still successfully generalizes

to KITTI and captures the dynamics solely based on the

point coordinates.

5.3. Ablation Study

The ablation study is performed with geometry only con-

figuration. We investigate the benefits of individual compo-

nents in our FESTA architecture. Specifically, we consider

the following three variants:

(i) Replace the SA2 layers as the simple FPS grouping

followed by feature extraction in PointNet++ [26] (or
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Figure 8: Scene flow estimation on the KITTI dataset between 1st PC (in red), 2nd PC (in green). The results of our proposed FESTA

architecture is shown with warped PC (in blue) – 1st PC warped by the scene flow.

Table 4: Evaluation of different variants of FESTA.

Data. SA2 TA2 Mask EPE (m) Acc S. (%) Acc R. (%)

Fly.

× X X 0.1402 33.15 66.14

X × X 0.1381 34.70 67.36

X X × 0.1289 37.91 69.05

X X X 0.1253 39.52 71.24

KI.

× X X 0.1163 30.10 70.85

X × X 0.1027 41.07 80.04

X X × 0.0955 42.74 80.15

X X X 0.0936 44.85 83.35

FlowNet3D [16]);

(ii) Replace the TA2 layer as the Flow Embedding layer in

FlowNet3D, i.e., the second iteration is removed; and

(iii) Remove the outputting of existence mask, i.e., the net-

work is trained only over 3D scene flow.

Performance of the mentioned variants of FESTA are

reported in Table 4. The best- and the worst- performing

metrics are highlighted with bold faces and with underlines,

respectively. We see that both the SA2 and the TA2 layers

bring substantial gain to our model; while generally, the SA2

layer is slightly more effective than the TA2 layer. More-

over, by jointly estimating an additional existence mask, our

scene flow quality further improves. That is because the

ground-truth existence mask provides extra clues about the

motion [12], which supervises the network to capture the

dynamics more precisely.

Additionally, we further examine how the SA2 and the

TA2 layers benefit the estimation of motion at different scales.

Specifically, we classify 3D points in the FlyingThings3D

test set according to their ground-truth flow vector magni-

tudes. For each bin of scene flow magnitude, we compute

an average of relative error achieved by our FESTA, and

count the bin size. In this way, we plot a relative error curve

(in green) of FESTA on different scene flow magnitudes,

as shown in Figure 9. We similarly plot the curves for the

variants without SA2 and TA2 in blue and red, respectively.

By comparing the red and the green curves, we see that

the TA2 layer greatly improves the performance of large-
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Figure 9: For ground-truth motion with different magnitudes, the

variants of FESTA perform differently.

scale motion, which is expected because the TA2 directly

shifts its attended region according to an initial scene flow.

Differently, the SA2 layer benefits scene flow with smaller

magnitudes. That is because the SA2 layer is able to adjust

its attended region gently—the convex hull of an input point

group (Section 4.1), which enhances the granularity of the

estimation and benefits mainly small-scale motion.

6. Conclusion

We propose a new spatial-temporal attention mechanism

to estimate 3D scene flow from point clouds. The effective-

ness of our proposed Flow Estimation via Spatial-Temporal

Attention (FESTA) has been proven by our state-of-the-

art performance of extensive experiments. Essentially, our

spatial-temporal attention mechanism successfully rectifies

the region of interest (RoI) based on the feedback from ear-

lier trials. Its rationale resembles existing literature utilizing

the attention mechanism, such as [6] for image recognition

and [36] for sentence modeling. For future research, we plan

to investigate the potentials of the SA2 and TA2 layers for

different point cloud processing tasks, such as classification,

registration, and compression.
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