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Abstract

For the single image rain removal (SIRR) task, the per-

formance of deep learning (DL)-based methods is main-

ly affected by the designed deraining models and training

datasets. Most of current state-of-the-art focus on con-

structing powerful deep models to obtain better derain-

ing results. In this paper, to further improve the derain-

ing performance, we novelly attempt to handle the SIRR

task from the perspective of training datasets by exploring

a more efficient way to synthesize rainy images. Specifi-

cally, we build a full Bayesian generative model for rainy

image where the rain layer is parameterized as a gen-

erator with the input as some latent variables represent-

ing the physical structural rain factors, e.g., direction, s-

cale, and thickness. To solve this model, we employ the

variational inference framework to approximate the expect-

ed statistical distribution of rainy image in a data-driven

manner. With the learned generator, we can automatically

and sufficiently generate diverse and non-repetitive training

pairs so as to efficiently enrich and augment the existing

benchmark datasets. User study qualitatively and quan-

titatively evaluates the realism of generated rainy images.

Comprehensive experiments substantiate that the proposed

model can faithfully extract the complex rain distribution

that not only helps significantly improve the deraining per-

formance of current deep single image derainers, but al-

so largely loosens the requirement of large training sam-

ple pre-collection for the SIRR task. Code is available in

https://github.com/hongwang01/VRGNet.

1. Introduction

Recently, single image rain removal (SIRR) has attracted

considerable attention, which is usually regarded as a neces-

sary pre-processing step of outdoor image processing tasks,
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Figure 1. Interpolation results in latent space z representing rain

factors. (a) The rain distribution is implicitly modeled as a gen-

erator G; (b) Three groups of generated rain layers through in-

terpolations in latent space. For each group, ra and rb (marked

as green) represent the rain layers in the original training dataset,

while the ones (marked as red) between them are generated from

latent codes (marked as red points) in z space. These codes are

obtained by linearly interpolating between za and zb which are

the latent codes of ra and rb, respectively.

e.g., autonomous driving [14], scene segmentation [5], and

object tracking [6]. Due to the complex and diverse rain

structures in real scenes, SIRR is still a typical challenging

task in computer vision [33, 45, 54].

Driven by massive training data (rainy images) and the

powerful fitting capability of deep convolutional neural net-

work (CNN), deep learning (DL) represents the current re-

search trend in the SIRR task. Clearly, the performance

of DL-based methods is mainly affected by two key fac-

tors, i.e., the rationality and capacity of deraining mod-

els and the quality of training datasets. Most of current

works focus on the former and aim to improve the derain-

ing results mainly by building more sophisticated network-

s [8,10,22,29,35,39,41,43,44,49,53,55,58] and designing
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better learning manners [23, 31, 37, 46, 48, 50, 56]. Albeit

achieving satisfied performance in some scenarios, they put

less emphasis on the impact of training data and largely rely

on the off-the-shelf datasets to train their deraining models.

Curiously, are the existing datasets sufficiently good? Is it

possible to further improve the performance of current DL-

based derainers directly by ameliorating the quality of these

datasets? This paper mainly concentrates on these issues.

Currently, for the SIRR task, the existing datasets are

mainly obtained by the following manners: 1) The com-

mon one is to synthesize rain streaks with the photo-realistic

rendering technique [12] and then add them on clear im-

ages [10, 33, 36, 53, 58, 59]. 2) Instead of such simple ad-

dition operation, inspired by [13], some works [18, 20] ex-

plored better fusion mechanisms between clear images and

rain streaks. However, the exploited rains are still synthe-

sized by manually setting some oscillation parameters of

raindrops [12]. 3) The unpaired image translation strategy

is another new generation manner, which attempts to learn

a mapping from a clean image to rainy one with adversarial

learning so as to generate paired rainy-clean images, such

as [38, 51, 62]. 4) There is one real rain dataset proposed

by [49], which is semi-automatically generated through

rain videos shot in real rain scenes by manually adjusting

camera parameters, including exposure duration and ISO.

Although these existing datasets can be used to train

deep derainers to some extent, their generation manners

still possess some evident limitations. Specifically, for 1)

and 2), rains are synthesized by empirically setting some

parameters through human subjective assumptions, which

would restrict the generated rain types. Besides, the ac-

quisition process of training samples needs human super-

vision and physical simulators. This is time-consuming and

labor-cumbersome. As for 3), the intrinsic mechanisms of

rains are more or less ignored and thus it has less physi-

cal interpretability. While for 4), it is always hard to shoot

enough rain scenes for sufficiently representing the compli-

cated rain shapes in real world. All these deficiencies tend

to adversely affect the quality and the diversity of training

datasets and limit the performance improvement of current

deep SIRR derainers. Thus, it is critical to build a proper

model representing the rain statistical distribution in order

to automatically and faithfully generate diverse rains.

In this work, we attempt to explore the intrinsic genera-

tive mechanism underlying rain streaks and propose a better

generation process. As seen in Fig. 1, high quality of rain

streaks, with diverse and non-repetitive shapes, can be easi-

ly obtained through the learned generator G by our method

that represents the implicit distribution of rains. It is worth

mentioning that the generated rain streaks r (marked as red

in Fig. 1(b)) exhibit more unseen patterns in the original

training dataset ra and rb (marked as green). Especial-

ly, such generator with an explicit mapping form tends to

provide intrinsic clues for understanding the generation of

rains, which is meaningful for general tasks on rainy im-

ages. In summary, our contributions are mainly three-fold:

Firstly, this work specifically proposes a generative mod-

el to depict the generation process of a rainy image. Specifi-

cally, different from hand-crafted priors for rains [16,50,57]

or physics-based imaging analysis about rains [13], the pro-

posed model makes effort to explore an implicit distribution

of rain layer in statistics. A deep variational inference algo-

rithm is specifically designed to to approximate the expect-

ed distribution of rainy images.

Secondly, an interpretable rain generator can be ob-

tained, capable of delivering the intrinsic manifold projec-

tion from latent factors, such as direction and thickness, to

rain streaks as shown in Fig. 1. This makes it possible to

efficiently generate diverse and non-repetitive rain streak-

s without subjective human intervention and empirical pa-

rameter settings. Disentanglement and interpolation experi-

ments substantiate the rationality of the proposed generator,

and a user study evaluates the realism of generated rainy im-

ages. Moreover, the small sample experiment exhibits the

potentials of the proposed model in real applications.

Thirdly, the proposed generator facilitates an easy aug-

mentation of diverse rains for current DL-based SIRR de-

rainers. Comprehensive experiments on synthetic and re-

al datasets validate that the performance of these DL-based

derainers can be significantly improved by retraining them

on augmented datasets. This coincides with our motivation

that improving the quality of datasets is rational and helpful.

2. Related Work

Rain Dataset Synthesizing. Previously, Garg and Nayar

analyzed the appearance and imaging process of rain [13]

and synthesized a rain streak database with the photo-

realistic rendering technique [12]. Similarly, researchers

synthesize different rain streaks and then add them on clear

images to construct paired samples such as Rain100H [53],

Rain1400 [10], Rain800 [59], and DID-MDN [58]. Be-

sides, there are some works exploring how to merge rains

with background images, for example, RainCityscapes [20],

NYU-Rain [31], and MPID [33]. Recently, the unpaired im-

age translation idea is widely adopted to generate weather-

corrupted images [38, 51, 62]. These generation methods

often require setting model parameters, which would limit

the diversity of synthesized rains.

Instead of synthesizing rains, Wang et al. [49] proposed

a large-scale real rain dataset, called SPA-Data, which was

semi-automatically generated from real rain videos shot in

real rain scenes or collected from Internet. To construct

paired samples, the clean images are roughly estimated

based on successive several frames. The main limitation of

this dataset is that the expensive cost of shooting rain scenes

makes it difficult to capture large number of rain types.
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Rain Removal. Very recently, for the SIRR task, re-

searchers have designed various network structures, from

simple CNN [9, 10] to complicated recurrent and multi-

stage learning [35, 41, 52, 53]. Besides, some works incor-

porate multi-scale learning to exploit the self-similarity both

within the same scale or across different scales [11, 22, 55,

60]. There are also some other network frameworks, for

example, adversarial learning [31, 32, 51, 58, 59], encoder-

decoder [8, 20, 29, 44, 47], and semi-/un-supervised learn-

ing [23, 50, 51, 56, 62]. Now there is another novel research

line that prior knowledge is embedded into deep networks

to improve the interpretability, such as [37, 46, 48, 50].

Although these DL-based techniques have achieved re-

markable success, they mainly utilize the aforementioned

off-the-shelf datasets as training data. In this work, we aim

to explore an automatic generative mechanism with the ca-

pability to simulate possibly variant rain types, for amelio-

rating the quality of the existing datasets and thus expectant-

ly improving the deraining results of current deep derainers.

Generative Models. As an active research topic in com-

puter vision and machine learning, deep generative mod-

els have been widely studied recently, such as variational

autoencoder (VAE) [27,42], generative adversarial network

(GAN) [15,40], and flow-based generative model [7]. Espe-

cially, as prominent models, VAE and GAN have achieved

remarkable success in many image generation tasks, includ-

ing face modeling [28, 34], style transfer [63], image noise

generation [3, 24] and so on. To the best of our knowledge,

there is still little work completely focusing on the rain gen-

eration task. Therefore, inspired by these deep generative

models, we take a step forward to explore the intrinsic gen-

erative mechanisms of rainy images as well as rain streaks.

3. The Proposed Method

Given a training set D = {on,xn}
N

n=1, where on is the

n-th rainy image and xn is the background, we aim to ex-

plore the physical mechanism of the rainy image and learn

its underlying distribution. To this aim, we construct a gen-

erative model for rainy image under the Bayesian frame-

work by implicitly modeling rain layer as a generator. With

our specifically designed inference algorithm, the model

can extract the general statistical distribution of rainy im-

age as well as rain streak based on the training dataset in

a data-driven manner. This enables the free generation of

rains with diverse shapes. The details are given below.

3.1. Generative Model

Similar to [41, 48, 49], given any single rainy image o ∈
R

d with size d as height × width, the generation process is:

o = r + b, (1)

where r and b denote the rain layer and latent clean back-

ground underlying o, respectively. Therefore, the genera-

tion of rainy image decomposes into two parts as follows:

Rain Modeling. For rain layer r, it is difficult to depict

it by using an accurate distribution in statistics. But it is

very intuitive that the appearance of rain can be represented

by some evident latent factors, such as direction, scale, and

thickness [30, 48, 58]. Motivated by this observation, we

encode such physical structural factors underlying rains as

latent variable z ∈ R
t and generally model the rain layer r

as a deep generator conditioned on z, i.e.,

r = G(z; θ), (2)

where θ denotes the parameters of the generator G.

As suggested in [2, 25], the isotropic Gaussian prior dis-

tribution is imposed on z as:

z ∼ N (z|0, It) , (3)

where It ∈ R
t×t is the unit matrix. Such a prior has the

potential to disentangle the physical rain factors in z. This

is visually validated in Section 5.1.

Background Modeling. In the given training pairs, the

rain-free image x is usually simulated or estimated based

on multiple rainy images taken on the same condition like

real SPA-Data [49], and it is not the exact latent clean back-

ground b. We thus embed x into the following Gaussian

prior distribution to constrain b as:

b ∼ N
(
b|x, ε20Id

)
, (4)

where ε20 is a hyper-parameter measuring the similarity be-

tween x and b, and can be easily set as a small value.

Note that for synthetic data where rainy images are ob-

tained by adding synthesized rains on the pre-collected im-

ages [10, 36, 53], x can be regarded as the true groundtruth

b. In this case, Dirac prior on b is a proper choice which

can be well approximated by setting ε20 close to 0 in Eq. (4).

From Eqs. (1)-(4), it is easy to derive a full Bayesian

model. Specifically, for rainy image o, the likelihood is:

o ∼ pθ (o|z, b) . (5)

Note that pθ (·) means that this implicit distribution also re-

lies on the parameters θ of generator G defined in Eq. (2).

Finally, the task of generating rainy image turns to learn

the general statistical distribution p (o), expressed as:1

p (o) =

∫ ∫
pθ (o|z, b) p (z) p (b) dzdb, (6)

where p (z) and p (b) are the prior distributions of z and b,

corresponding to Eq. (3) and Eq. (4), respectively.

Since the integral in Eq. (6) is intractable, next we adopt

the variational Bayesian framework to learn the p (o).

3.2. Variational Objective

To learn p (o), we can decompose its logarithm as [1]:2

logp (o)=L (z, b;o)+DKL [q (z, b|o) || p (z, b|o)] , (7)

1Here we assume that z and b are mutually independent.
2More derivations are included in supplementary material (SM).
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Figure 2. The flowchart of the proposed variational rain generation network (VRGNet). It contains four sub-networks, which are corre-

spondingly constructed based on the estimation of logp (o), i.e., L (z, b;o) in Eq. (11).

where the first term in Eq. (7) is expressed as:

L(z, b;o)=Eq(z,b|o)[logpθ(o|z, b)p(z)p(b)−logq(z, b|o)] .
(8)

Here Ep(a)[f(a)] is the expectation of function f(a) about

the stochastic variable a with the probability density func-

tion p(a). q (z, b|o) is the variational approximate posterior

of the true posterior p (z, b|o) about the latent variables z

and b. The second term in Eq. (7) is the KL divergence

measuring the difference between q (z, b|o) and p (z, b|o).
The non-negative property of KL divergence can thus lead

to the following inequality, i.e.,

logp (o) ≥ L (z, b;o) . (9)

Thus the variational lower bound L (z, b;o) can be viewed

as an estimation of logp (o) with error as the KL divergence.

The learning of p (o) can be achieved through approaching

logp (o) by maximizing its estimation L (z, b;o).
Based on the analysis above, once θ is optimized

by maximizing L (z, b;o), the obtained explicit mapping

G(z; θ) can be directly used to synthesize rainy image, i.e.,

o = G(z; θ)+b, where z and b are sampled from p (z) and

p (b), respectively. Therefore, for this generation task, the

key problem is how to maximize the L (z, b;o) in Eq. (8).

3.3. Optimization

Now we give the optimization algorithm for maximizing

the L (z, b;o). From Eq. (8), the key is to deal with the

variational posterior q (z, b|o) and the implicit pθ (o|z, b).
As for q (z, b|o), like the commonly-used factorized hy-

pothesis in the mean-field variational inference [27], we in-

troduce the conditional independence assumption as:

q (z, b|o) = q (z|o) q (b|o) . (10)

Then, the L (z, b;o) in Eq. (8) can be equally rewritten as:

L (z, b;o)= Eq(z,b|o) [logpθ (o|z, b)]

−DKL [q (z|o) || p (z)]−DKL [q (b|o) || p (b)] .
(11)

To maximize L (z, b;o) in Eq. (11), we impose Gaus-

sian distribution on the posteriors q (z|o) and q (b|o) to ap-

proach the Gaussian priors p (z) and p (b), respectively, i.e.,

q (z|o) =
∏t

i=1
N (zi|αi (o;WR) , βi (o;WR)) , (12)

q (b|o) =
∏d

j=1
N

(
bj |µj (o;WB) , σ

2
j (o;WB)

)
, (13)

where αi (o;WR) and βi (o;WR) are functions for infer-

ring the posterior parameters (i.e., mean and variance, re-

spectively) of latent variable z, and they are integrally pa-

rameterized as one rain inference network, called RNet with

parameter WR. µj (o;WB) and σ2
j (o;WB) are functions

from o to variational posterior parameters of latent variable

b. They are jointly parameterized as another network, called

BNet with parameter WB for restoring clean background.
From Eqs. (3), (4), (12), and (13), it is easy to compute

the last two terms in Eq. (11) as:

DKL[q (z|o) || p (z)] =
∑t

i=1

{
α2

i

2
+

1

2
(βi − logβi − 1)

}
,

DKL[q (b|o) || p (b)]=
∑d

j=1

{
(µj − xj)

2

2ε2
0

+
1

2

(
σ2

j

ε2
0

−log
σ2

j

ε2
0

−1

)}
.

(14)

where we simplify αi (o;WR), βi (o;WR), µj (o;WB),
and σ2

j (o;WB), as αi, βi, µj , and σ2
j , respectively.

However, we cannot directly calculate the first term in

Eq. (11) due to the implicity of pθ (o|z, b). Fortunately, the

generator G enables the sampling from pθ (o|z, b), i.e.,

o ∼ pθ (o|z, b) ⇐⇒ o = G(z; θ) + b, (15)

which motivates us to introduce a discriminator D with pa-

rameter WD to approximate the first term in Eq. (11) by the

following two-player game [15]:

min
G

max
D

Ladv(z, b) = Eo∼pdata
[D (o)]

−Ez∼q(z|o),b∼q(b|o)[D (G(z; θ) + b)].
(16)

Thus, from Eqs. (14) and (16), we can reformulate the

negative lower bound in Eq. (11) as follows:

L̂ (z, b;o) = γLadv(z, b) +DKL [q (z|o) || p (z)]

+DKL [q (b|o) || p (b)] ,
(17)

where γ is a hyper-parameter controlling the importance be-

tween the adversarial loss and KL divergence. The value is

set empirically and will be explained in experiment section.
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Algorithm 1 Variational Inference for Rain Generation

Input: Training dataD={on,xn}
N

n=1
, batch size nb, ncritic times

updating of D for every updating BNet, RNet, and G

Output: Network parameters W = {WB ,WR, θ,WD}
1: while The loss in Eq. (18) is not convergent do

2: for m = 1 to ncritic do

3: {o,x} ← SampleMiniBatch(D, nb).

4: {α,β} ← RNet(o;WR).
5: z ← Reparameterization(α,β).

6: {µ,σ2} ← BNet(o;WB).
7: b← Reparameterization(µ,σ2).
8: ô← G(z; θ) + b.

9: Update D with fixed BNet, RNet, and G.

10: end for

11: Update BNet with fixed RNet, D, and G.

12: Update RNet and G with fixed BNet and D.

13: end while

From the analysis above, learning the generative pro-

cess of rainy image is closely related to the minimization

of L̂ (b, z;o). For optimizing the involved network param-

eters WB , WR, θ, and WD, the total objective function on

the entire training dataset, can be formulated as:
∑N

n=1
L̂ (zn, bn;on) . (18)

Note that during training, WB , WR, θ and WD are shared

across the entire training data, leading to a general statistical

distribution modelling for rainy image as well as rain layer.

Based on Eqs. (12), (13), (16), and (17), we can easily

construct the inference framework as shown in Fig. 2, called

variational rain generation network (VRGNet).3

4. Implementation Details

Training Strategy. The entire framework in Fig. 2 is

first jointly trained based on the loss function in Eq. (18).

The whole training procedure is summarized as Algorith-

m 1, where we adopt the gradient penalty strategy for D to

stabilize the adversarial learning [17].

After obtaining the rain generator G, we can use it to

automatically generate sufficient rain streaks, by taking z

sampled from normal distribution as the input of G. Based

on the augmented training dataset, including original and

generated pairs, we retrain current representative DL-based

derainers so as to further improve their performance (see

Section 6). It is noteworthy that the augmentation operation

is implemented on the original dataset, without introducing

extra training pairs requiring pre-collecting groundtruth.

Training Details. During the joint training, the entire

network in Fig. 2 is optimized by the Adam algorithm [26].

The initial learning rates for BNet, RNet, G, and D are 2 ×
10−4, 1× 10−4, 1× 10−4, and 4× 10−4, respectively, and

divided by 2 at epochs [400, 600, 650, 675, 690, 700]. The

3More details can be found in supplementary material.

(b)Varying latent code       from -3 to 3 (Direction: left to right) 𝑧24
(a)Varying latent code       from -3 to 3 (Scale: small to big) 𝑧22

(c)Varying latent code        from -3 to 3 (Thickness: heavy to light) 𝑧110
Figure 3. Manipulating latent code z ∈ R

128. Taking subfigure

(a) as an example, we sample a random vector (latent code z )

from the normal distribution, and then only vary the latent ele-

ment at the 22-th dimension of z from -3 to 3 with the interval as

0.8. Taking each varied vector z as the input of the generator G,

the corresponding output r is each rain layer shown in (a), which

demonstrates the scale property of rain. (a)-(c) denote varying d-

ifferent latent elements and the learned latent variables physically

represent scale, direction, and thickness, respectively.

different initialized learning rate settings for G and D are

inspired by [19]. The prior hyper-parameter ε20 is set as 1×
10−6 and the dimension t of latent variable z is 128. In each

epoch, the batch size nb is set as 18, and we randomly crop

18 × 3000 patches with size 64 × 64 pixels from the rainy

image o in D for training. As suggested in [17], the penalty

coefficient in WGAN-GP is 10, and ncritic is 5, meaning that

we update D 5 times for each updating of BNet, RNet, and

G. The coefficient γ in Eq. (17) is empirically set as 1 for

synthetic datasets and 0.01 for SPA-Data.

5. Rain Generation Experiments

We first conduct disentanglement and interpolation anal-

ysis to verify the potential of the VRGNet in extracting

physical structural rain factors, and then evaluate the per-

ceptual realism of our synthetic rain. Besides, with small

sample experiments, we finely substantiate the effectiveness

of our model in compactly capturing the manifold of rain.

5.1. Disentanglement and Interpolation

Similar to [2,4,25], we manipulate the latent code z and

the disentanglement results are displayed in Fig. 3, where

the proposed VRGNet is trained on Rain100L [53]. From it,

we can easily observe that these latent variables well repre-

sent interpretable physical properties in characterizing rain,

including scale, direction, and thickness. Clearly, the pro-

posed VRGNet has the capability of discovering meaning-

ful latent rain factors, which finely complies with our latent

variable modelling for rain layer in Eq. (2).

Besides, we also conduct interpolation operations in the

latent space as shown in Fig. 1 (b). The results validate

that our rain generator possesses the manifold continuity in

the latent space for changing the direction and thickness of

rains, and thus it can generate diverse and non-repetitive
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Rain1400 [10]RainCityscapes [20] Rain800 [55] DID-MDN [54]Rain100H [49]
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Figure 4. Rainy images randomly selected from seven different

datasets. Only SPA-Data [49] is captured in real rain scenes.
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Figure 5. User study results. Upper figure: the ratings given by

all participants on various datasets. Lower table: (1st row) the

mean and standard deviation of the ratings; (2nd row) the realism

computed by converting the mean rating to the [0,1] interval.

rain types instead of simply memorizing the patterns in in-

put images. More results as video clips are provided in SM.

5.2. User Study

Fig. 4 displays the visual comparisons of rainy images

randomly selected from 7 different datasets, including SPA-

Data [49] captured in real rain scenes by controlling camer-

a parameters, the samples randomly generated by the pro-

posed VRGNet trained on SPA-Data, RainCityscapes [20]

generated based on a rain streak database [12], and the oth-

er 4 synthetic datasets for rain removal, i.e., Rain1400 [10],

DID-MDN [58], Rain800 [59], and Rain100H [53]. As

seen, our synthetic rains have better diversity and their ap-

pearances look closer to the real SPA-Data.

We further conduct a user study to quantitatively evaluate

the quality (i.e., how realistic) of the generated rain streak-

s. Specifically, we prepare for 70 rainy images randomly

selected from these 7 datasets with 10 samples from each

dataset. Then, we recruit 55 participants with 14 females

and 41 males. For each participant, we present him/her the

70 rainy images in a random order. Then they are asked to

rate how real every image is, using a 5-point Likert scale.

Finally, we get 550 ratings for each category.

Results are reported in Fig. 5, showing that our synthetic

rain is judged to be significantly more realistic than most

of SOTA datasets. Besides, there are three points to clari-

fy: 1) Owning to the good diversity of generated rains (see

Fig. 3 and Fig. 4), the ratings of our synthesized rainy im-

ages even outperform SPA-Data. 2) The realism of the syn-

thetic RainCityscapes is slightly better than ours. Howev-

er, RainCityscapes focus on modelling the fusion process

of the pre-collected background layer and rain streaks that

are synthesized by manually setting some model parame-

ters [12], and our method is for learning an interpretable

generator to synthesize diverse rain streaks. From the per-

spective of rain layer, our method has a better capability

to synthesize more diverse rain streaks than RainCityscapes

(see Fig. 4). 3) As compared with SPA-Data and RainCi-

tyscapes, our method is able to automatically generate more

sufficient and diverse rain patterns without any human inter-

vention and empirical parameter settings, which is helpful

for improving the deraining performance (see Section 6).

As seen, our method is mainly limited by directly adopt-

ing the commonly-used addition operation in Eq. (1) be-

tween rain and background layer to generate rainy image.

To synthesize more realistic rainy images, it is worth fur-

ther exploring how to combine our rain generator and the

fusion mechanism of RainCityscapes in the future.

5.3. Small Sample Experiments on Real SPAData

To further verify that our generator is able to efficiently

generate more non-repetitive and diverse rain patterns, we

conduct a small sample experiment on real SPA-Data with

∼600K training pairs and 1K test pairs. Specifically, we

randomly select 1K pairs from the training set and augment

them with ratio Nf (i.e., generate NfK fake pairs) for train-

ing. Meanwhile, we also randomly choose the same num-

ber (i.e., 1K+NfK) of real pairs all from the original SPA-

Data and take this case as a baseline. Due to its simplicity

and fast training speed, we adopt the latest PReNet [41] as

the deep derainer to implement this experiment.

Table 1 reports the PSNR averaged over 5 repetitions for

different augmentation ratios.4 From it, we can observe that

with the increase of ratio Nf from 0 to 6, the average PSNR

under augmented training is superior (Nf = 2, 3, 4, 5, 6) or

at least comparable (Nf = 0, 1) to the performance (40.16 d-

B) under original training based on the ∼600K real pairs.

This is mainly attributed to two points: 1) In SPA-Data, the

rain scenes are not sufficiently collected to cover compli-

cated shapes of rain streaks and many pairs are obtained by

cropping one rain video shot in the same scene, which both

lead to the repeatability of rain patterns. 2) The proposed

generator learns the rain distribution in SPA-Data and thus

can efficiently generate possible non-repetitive and diverse

rain types that more compactly scatter on the manifold of

such rain distribution. This also tells that the learned gen-

erator can loosen the requirement on pre-collected training

4More peak-signal-to-noise raito (PSNR) [21] and structure similarity

(SSIM) [61] results are listed in SM.
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Table 1. Average PSNR of PReNet on the SPA-Data test set. Baseline denotes that training samples are all from SPA-Data (∼600K), and

GNet means the augmented training where training samples consist of 1K real pairs randomly selected from ∼600K and different number

of fake pairs generated by our generator that is jointly trained on ∼600K. In each scene, the training pairs between Baseline and GNet

keep the same, and the result is computed over 5 random attempts. The case that Baseline with∼600K has no randomness about samples.

# Real samples 1K 1.5K 2K 3K 4K 5K 6K 7K ∼600K

Baseline (PSNR), mean±std 39.41±0.24 39.70±0.21 39.86±0.20 39.96±0.20 40.05±0.19 40.04±0.18 40.00±0.18 40.06±0.15 40.16

# Samples (real+fake) 1K+0K 1K+0.5K 1K+1K 1K+2K 1K+3K 1K+4K 1K+5K 1K+6K -

GNet (PSNR), mean±std 39.41±0.24 39.71±0.26 39.83±0.20 40.25±0.21 40.24±0.17 40.53±0.20 40.68±0.17 40.70±0.11 -

Table 2. PSNR and SSIM comparisons on synthetic datasets. “+” denotes the augmented training. △↑ represents the performance gain

brought by the augmented rains generated by our rain generator. Note that the baseline of one method “A+” is “A”.
Methods Input DSC JCAS DDN DDN+ △↑ SPANet SPANet+ △↑ PReNet PReNet+ △↑ JORDER E JORDER E+ △↑

Rain100L
PSNR 26.90 27.34 28.54 32.38 35.56 3.18 35.33 35.83 0.50 37.42 37.74 0.32 37.68 38.01 0.33

SSIM 0.838 0.849 0.852 0.926 0.966 0.040 0.969 0.972 0.003 0.979 0.980 0.001 0.979 0.980 0.001

Rain100H
PSNR 13.56 13.77 14.62 22.85 25.99 3.14 25.11 27.24 2.13 30.11 30.42 0.31 30.50 32.16 1.66

SSIM 0.371 0.312 0.451 0.725 0.797 0.072 0.833 0.883 0.050 0.905 0.910 0.005 0.897 0.921 0.024

Rain1400
PSNR 25.24 27.88 26.20 28.45 30.07 1.62 29.85 30.14 0.29 32.21 32.51 0.30 32.00 32.55 0.55

SSIM 0.810 0.839 0.847 0.889 0.917 0.028 0.915 0.927 0.012 0.943 0.945 0.002 0.935 0.946 0.011

PReNet  28.96 / 0.901

PReNet+  29.29 / 0.911

SPANet  23.50 / 0.809

SPANet+  27.87 / 0.869

DDN  25.49 / 0.782

DDN+  26.36 / 0.769

DSC  17.56 / 0.390

JCAS  16.67 / 0.514

Input  14.72 / 0.352

Groundtruth  Inf / 1 JORDER_E+  32.10 / 0.934

JORDER_E  29.13 / 0.884

Figure 6. Vertical contrast. Performance comparison on a test image from Rain100H, including rainy image/groundtruth, derained results

from DSC/JCAS, and deep SOTAs trained on the original (1st row) / augmented (2nd row) Rain100H training set.

samples, which should be meaningful for real applications.

6. Rain Removal Experiments

Similar to the augmented strategy in [18], we now utilize

the generator to augment the existing datasets with ratio 0.5

so as to further improve the deraining performance of cur-

rent deep derainers on synthetic and real rain datasets. More

experiments as well as ablation studies are included in SM.

6.1. Evaluation on Synthetic Data

Representative Methods and Datasets. We evalu-

ate the effectiveness of the augmentation strategy benefit-

ted from VRGNet through latest DL-based SIRR method-

s, including DDN [10], PReNet [41], SPANet [49], and

JORDER E [53], based on common synthetic datasets, in-

cluding Rain100L [53], Rain100H [53], and Rain1400 [10].

In the followings, we use notation “A+” to denote the result-

s of the method A after being retrained on the augmented

dataset. We also list the performance of model-based D-

SC [57] and JCAS [16] for comprehensive comparisons.

Deraining Results. Table 2 lists the quantitative perfor-

mance of all competing methods. As seen, the deraining

performance of every deep derainer after augmented train-

ing is significantly improved on all datasets and the gain △↑
far outperforms the sensitivity value of human visual system

(about 0.1 dB). This strongly confirms that the generated

rains indeed ameliorate original training sets and thus fur-

ther improve the performance of DL-based methods. Nat-

urally, the gain △↑ varies among different deep derainers,

which is mainly caused by their different model capacities.

Fig. 6 illustrates the visual deraining results on one hard

sample from Rain100H. For every DL-based method, when

trained on augmented dataset generated by VRGNet, its re-

constructed background (2nd row) has better visual quali-

ty, especially in texture preservation, than the correspond-

ing one (1st row) trained on original Rain100H. Clearly,

the VRGNet has the potential to generate rains with higher

quality and better diversity.

6.2. Generalization Evaluation on Real Data

We further verify the role of the generated rains in help-

ing improve the robustness of all these deep derainers to

rainy images in real-world, based on two real datasets both

from [49], i.e., SPA-Data and Internet-Data (no label).

Comparisons on SPA-Data. Table 3 quantitative-

ly compares the generalization performance on SPA-Data

where all deep derainers are trained on Rain100L. In o-

riginal training, we can find that the generalization perfor-

mance of all deep methods is not optimistic since the do-

main gap between Rain100L and SPA-Data is extremely

large. Even under such a challenging scenario, after aug-

mented training, the performance of all these methods has
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Table 3. Generalization performance on the test data of SPA-Data. All the DL-based methods are trained on Rain100L. The rain patterns

between Rain100L and SPA-Data are quite different, which makes the generalization task hard.
Methods Input DSC JCAS DDN DDN+ △↑ SPANet SPANet+ △↑ PReNet PReNet+ △↑ JORDER E JORDER E+ △↑
PSNR 34.15 34.83 34.95 34.66 35.01 0.35 35.13 35.42 0.29 34.91 35.13 0.22 35.04 35.15 0.11

SSIM 0.927 0.941 0.945 0.935 0.943 0.008 0.944 0.948 0.004 0.940 0.942 0.002 0.941 0.942 0.001

SPANet+

Input 

DDN+ PReNet+ JORDER_E+JCAS

DDN SPANet PReNet JORDER_EDSC

Figure 7. Vertical contrast. Generalization results on a real image from Internet-Data. All DL-based methods are trained on SPA-Data.

(a) Original samples  (b) Discrete points covering small
part of the unknown manifold

(c) Resampling on learned manifold

Learn  
manifold 
with our 
generator 

(d) Sampled rain layers

Figure 8. The diagram about the insights of the proposed method.

been improved to some extent. Note that due to larger net-

work capacity (parameters), JORDER E is easier to fall in-

to the overfitting issue and thus the performance gain △↑
is lower. Besides, owning to the dual influence of network

structure and the quality of training set, the improvement

room △↑ for every method is different.

Comparisons on Internet-Data. Fig. 7 shows the gen-

eralization performance on a real rainy image from Internet-

Data. Under such a complex rain scene not seen in SPA-

Data, these DL-based methods with augmented training ev-

idently remove heavy rains (see the amplified red boxes).

This can be rationally attributed to the diversity of gener-

ated rain types. Note that since the Internet-Data has no

groundtruth, here we only provide the visual comparisons.

7. More Discussions about VRGNet

Under the VAE framework, we have approached the

complicated rain distribution by our model. Fig. 8 shows

the underlying insights. Specifically, the original rains can

be regarded as samples generated from the high dimension-

al distribution, only covering a small discrete part of the

entire manifold surface underlying this distribution. With

the learned generator that reflects such distribution implic-

itly, we can easily sample sufficient and diverse rain pat-

terns to obtain an augmented training dataset, being able to

more compactly cover this manifold. Using such augment-

ed dataset, the derainers are expected to more completely

capture the rain information so as to achieve better results.

However, there are still some limitations. First, due to

the inherent nature of VAE, we can only implicitly con-

trol the rain intensity, but cannot perfectly disentangle com-

pletely independent and interpretable latent codes strictly

corresponding to physical factors. Admittedly, the ideal

case is that we can explicitly control the rain and gener-

ate the types we want. Second, although the proposed gen-

erator can generate diverse rain samples, it does not con-

tain any more information than that of the original training

set. The effectiveness of the proposed method can be fur-

ther substantiated through some downstream tasks. Third,

when the domain gap between training set and testing set is

very large, our method might possibly fail to help current

deep single image derainers achieve evident improvement.

8. Conclusion
In this paper, we have explored the rain generative mech-

anism and constructed a full Bayesian model for generat-

ing rains from latent factors representing physical structural

rain factors, such as direction, scale, and thickness. To

solve this model, we have proposed a variational rain gen-

eration network (VRGNet), which implicitly infers the gen-

eral statistical distribution of rains in a data-driven manner.

From the learned generator, rain patches can be automati-

cally generated to simulate diverse training samples, which

facilitates a beneficial augmentation and enrichment of the

existing benchmark dataset. Comprehensive rain genera-

tion verifications have fully substantiated the rationality of

our generative model and evaluated the realism of the gen-

erated rain both qualitatively and quantitatively. Moreover,

rain removal experiments implemented on synthetic and re-

al datasets have finely validated the effectiveness of our gen-

erated rains in helping significantly improve the robustness

of current deep single image derainers to rains in real world.
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