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Abstract

Thanks to the rapid advances in the deep learning tech-

niques and the wide availability of large-scale training sets,

the performances of video saliency detection models have

been improving steadily and significantly. However, the

deep learning based visual-audio fixation prediction is still

in its infancy. At present, only a few visual-audio sequences

have been furnished with real fixations being recorded in

the real visual-audio environment. Hence, it would be nei-

ther efficiency nor necessary to re-collect real fixations un-

der the same visual-audio circumstance. To address the

problem, this paper advocate a novel approach in a weakly-

supervised manner to alleviating the demand of large-scale

training sets for visual-audio model training. By using the

video category tags only, we propose the selective class ac-

tivation mapping (SCAM), which follows a coarse-to-fine

strategy to select the most discriminative regions in the

spatial-temporal-audio circumstance. Moreover, these re-

gions exhibit high consistency with the real human-eye fixa-

tions, which could subsequently be employed as the pseudo

GTs to train a new spatial-temporal-audio (STA) network.

Without resorting to any real fixation, the performance of

our STA network is comparable to that of the fully super-

vised ones. Our code and results are publicly available at

https://github.com/guotaowang/STANet.

1. Introduction and Motivation

In the deep learning era, we have witnessed a growing

development in video saliency detection techniques [53, 34,

29, 14], where the primary task is to locate the most dis-

tinctive regions in a series of video sequences. At present,

this field consists of two parallel research directions, i.e.,

the video salient object detection and the video fixation pre-

diction. In practice, the former [19, 49, 41, 32, 13, 4, 5, 8]

aims to segment the most salient objects with clear object
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Figure 1. This paper mainly focuses on using a weakly-supervised

approach to predicting spatial-temporal-audio (STA) fixations,

where the key innovation is that, as the first attempt, we automat-

ically convert semantic category tags to pseudo-fixations via the

newly-proposed selective class activation mapping (SCAM).

boundaries (Fig. 1-A). The latter [35, 54, 12, 44, 18], as the

main topic of this paper, predicts the real human-eye fixa-

tions in the form of scattered coordinates spreading over the

entire scene without any clear boundaries (Fig. 1-B). In fact,

this topic has long been investigated extensively in the past

decades. Different from the previous works [39, 29, 51],

this paper is interested in exploiting the deep learning tech-

niques to predict fixations under the visual and audio cir-

cumstance, also known as visual-audio fixation prediction,

and this topic is still in its early exploration stage.

At present, almost all state-of-the-art (SOTA) visual-

audio fixation prediction approaches [47, 45] are devel-

oped with the help of the deep learning techniques, using

the vanilla encoder-decoder structure, facilitated with vari-

ous attention mechanisms, and trained in a fully-supervised

manner. Albeit making progress, these fully-supervised ap-

proaches are plagued by one critical limitation (see below).

It is well known that a deep model’s performance is

heavily dependent on the adopted training set, and large-
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scale training sets equipped with real visual fixations are al-

ready accessible in our research community. However, it is

time-consuming and laborious to re-collect real human-eye

fixations in the visual-audio circumstance, thus, to our best

knowledge, only a few visual-audio sequences are available

for the visual-audio fixation prediction task, where only a

small part of them are recommended for the network train-

ing, making the data shortage dilemma even worse. As

a result, according to the extensive quantitative evaluation

that we have done, almost all existing deep learning based

visual-audio saliency prediction models [47, 45], though re-

luctant to admit, might be overfitted in essence.

To solve this problem, we seek to realize the visual-audio

fixation prediction using a weakly-supervised strategy. In-

stead of using the labor-intensive frame-wise visual-audio

ground truths (GTs), we devise a novel scheme to produce

the GT-like visual-audio pseudo fixations by using the video

category tags only. Actually, there already exist plenty of

visual-audio sequences with well labeled semantic category

tags (e.g., AVE set [46]), where most of them are originally

collected for the visual-audio classification task.

Our approach is also inspired by the class activation

mapping (CAM, [64]) that has been used in the image

object localization [57, 50, 43] and video object location

[2, 3, 33]. The key rationale of CAM relies on the fact that

image regions with the strongest discriminative power re-

garding the classification task should be the most salien-

t ones, where these regions usually tend to have relatively

larger classification confidences than others.

Considering that we aim at the fixation prediction

in the visual-audio circumstance, we propose the novel

selective class activation mapping (SCAM), which relies

on a coarse-to-fine strategy to select the most discrimina-

tive regions from multiple sources, where these regions ex-

hibit high consistency with the real human-eye fixation-

s. This coarse-to-fine methodology ensures the aforemen-

tioned less-discriminative scattered regions to be filtered

completely, and the selection operation between different

sources helps reveal the most discriminative regions, en-

abling the pseudo-fixations to be closer to the real ones.

Once the pseudo-fixations have been obtained, a spatial-

temporal-audio (STA) fixation prediction network will be

trained, and it learns the common consistency of all pseudo-

fixations. Consequently, it can predict fixations accurately

for videos without being assigned to any semantic category

tag in advance.

It is worth mentioning that this paper is one of the first at-

tempts to explore the deep learning based visual-audio fix-

ation prediction in a weakly-supervised manner, which is

expected to contribute to visual-audio information integra-

tion and relevant applications in computer vision.

Figure 2. Existing SOTA approaches (e.g., Zeng et al. [57]) are

mainly designed for locating salient objects rather than simulating

human fixations; thus their results tend to be large scatter regions

(b), which are quite different from the real fixations (d).

2. Related Work

Unsupervised Visual Fixation. Almost all conventional

hand-crafted approaches should be categorized into the un-

supervised class, and we will document several most rep-

resentative ones. Fang et al. [15] detected visual saliency

combining both spatial and temporal information founded

upon uncertainty measures. Hossein et al. [22] proposed

a model of visual saliency based on reconstruction error

and cruder measurements of self information. Leboran et

al. [30] implemented an explicit short term visual adapta-

tion of the spatial-temporal scale decomposition feature to

determine dynamic saliency. Let us now move to the deep

learning based ones. Zhang et al. [62] learned saliency map-

s from multiple noisy unsupervised saliency methods and

formulated the problem as the joint optimization of a latent

saliency prediction module and a noise modeling module.

Li et al. [31] adopted a super-pixel-wise variational auto-

encoder to better preserve object boundaries and maintain

the spatial consistency (and also refer to Kim et al. [27])

Weakly-supervised Visual Fixation. Based on the pre-

given image-level labels [50], points [40], scribbles [61],

and bounding boxes [11], it can usually outperform the un-

supervised approaches. Zeng et al. [58]proposed to com-

bine bottom-up object evidences with top-down class confi-

dence scores in the weakly-supervised object detection task.

Zhang et al. [59] harnessed the image-level labels to pro-

duce reliable pixel-level annotations and design a fully end-

to-end network to learn the segmentation maps.

Supervised Visual-audio Fixation. In recent years, the

visual-audio saliency detection has received more atten-

tion than before, including STAVIS [47], DAVE [45], and

AVC [37]. Since the audio source may correlate to some

specific semantic categories, these models assume that the

human-eye fixations may easily be affected by the audio

source when the visual and audio sources are semantical-

ly synchronized, where the research foci of these models

rely on designing better visual-audio fusion schemes. At

present, there only exist totally 241 visual-audio sequences
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with real fixations collected in the visual-audio circum-

stance, where these sequences are provided by [36, 9, 10]

respectively. Motivated by these, this paper proposes

to fully mine audio-visual pseudo-fixations in a weakly-

supervised manner for the video fixation prediction task.

3. The Proposed Algorithm

3.1. Relationship between Video Tags and Fixations

In the video classification field, each training sequence is

usually assigned with a semantic tag which associates this

sequence with a specific video category. In general these

semantic tags are assigned by performing the majority vot-

ing between multiple persons, aiming to represent the most

meaningful objects or events in the given video. Similar to

the process of tag assignment, the real human visual fixa-

tions tend to focus on those most meaningful and represen-

tative regions when watching a video sequence. Thus, for-

mulating pseudo-fixations from video category tags is theo-

retically feasible.

3.2. Preliminary: Class Activation Mapping (CAM)

The fundamental idea of class activation mapping

(CAM) is to rely on the weighted summation of feature

maps in the last convolutional layer to coarsely locate the

most representative image regions regarding the curren-

t classification task. In practice, as can be seen in Fig. 3,

those weights (wi) correlated with the highest classification

confidence in the last fully connected layer are selected to

weigh the feature maps (fi). The CAM — a 2-dimensional

matrix, can be obtained by:

CAM = ξ
[

d
∑

i

wi × fi

]

, (1)

where d represents the feature channel number and ξ[·] is

the normalization function. From the qualitative perspec-

tive, the CAM, which has been visualized in the bottom-

right of Fig. 3, usually shows large feature response to frame

regions (i.e., the ‘motorbike’) that has contributed most re-

garding the classification task, and frequently, these regions

usually correlate to the most salient object in the scene.

3.3. Limitation of the Conventional CAM

In fact, the CAM is quite different from the real human-

eye fixations in essence. For example, as can be seen in

Fig. 2-b, when performing the video classification task,

the image regions that have contributed to the ‘deer’ cat-

egory most are capable of highlighting the salient object

(the deer). Following this rationale, several previous work-

s [63, 16, 48, 1, 7] have resorted to the CAM for locat-

ing salient objects. However, the CAMs obtained by these

methods are quite different from the real human-eye fixa-

tions, and the main reasons for causing this difference main-

ly comprise the following two aspects.

Figure 3. Illustration of the class activation mapping (CAM) de-

tails. FC: fully connected layer; GAP: global average pooling;

numbers in the classifier represent the classification confidences.

First, since both local and non-local deep features would

contribute to the classification task, the CAMs tend to be

large scatter regions. For example, as shown in Fig. 2, the

main body of the deer can help the classifier to separate this

image from other non-animal cases, while only the ‘deer

head’ can tell the classifier that the animal in this scene is

a ‘deer’. Instead of gazing at the ‘main body’, our human

visual system tends to pay more attention on the most dis-

criminative image regions (e.g., the ‘deer head’, see Fig. 2-

d).

Second, most of the existing works [57, 50, 56, 55, 23]

have only considered the spatial information when comput-

ing CAM. However, the real human-eye fixations are usual-

ly affected by multiple sources, including spatial, temporal,

and audio ones. In fact, this multi-source nature has long

been omitted by our research community, because, com-

pared with the spatial information — a stable source, the

other two sources (temporal and audio) are still considered

to be rather unstable ones thus far, and this unstable attribute

makes them difficult to be used for computing CAM. How-

ever, in many practical scenarios, it is exactly these two

sources that could most benefit the classification task.

3.4. Computing SCAM on Multiple Sources

Compared with the single image case, the problem do-

main of our visual-audio case is much more complicated,

where we need to consider multiple sources simultaneous-

ly, including spatial, temporal, and audio sources. As men-

tioned above, the conventional CAMs derived from using

spatial information solely tend to be large scatter region-

s, which might be quite different from the real fixation-

s; even worse, it cannot take full advantage of the com-

plementary status between different sources in the spatial-

temporal-audio circumstance. The main reason is that, in

the spatial-temporal-audio circumstance, the feature maps

tend to be multi-scale, multi-level, and multi-source, where

all of them will jointly contribute to the classification task,

thus there would be more false-alarms and redundant re-

sponses, making the CAMs far away from being the most

discriminative regions.

To overcome this problem, we propose to decouple the

spatial-temporal-audio circumstance to three independen-

t sources, i.e., spatial (S), temporal (T), and audio (A); in

this way, we recombine them using three distinct fusion net-

works, i.e., S, ST, and SA classification nets (Fig. 4 and
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Figure 4. The proposed selective class activation mapping (S-

CAM) follows the coarse-to-fine methodology, where the coarse

stage localizes the region of interest and then the fine stage reveals

those image regions with the strongest local responses. S: spatial;

ST: spatiotemporal; SA: Spatial-audio.

Fig. 6). Then, the most discriminative regions that are more

closer to the real fixations can be easily determined by s-

electively fusing CAMs derived from these classification

nets. We name this process as selective class activation

mapping (SCAM), which can be detailed by Eq. 2.

SCAM =

ξ

[

∮ (

Cv
S

)

· ΦS +
∮ (

Cv
ST

)

· ΦST +
∮ (

Cv
SA

)

· ΦSA + λ
∮ (

Cv
S

)

+
∮ (

Cv
ST

)

+
∮ (

Cv
SA

)

+ λ

]

,

(2)

where λ is a small constant for avoiding any division by

zero; ΦS , ΦST , and ΦSA respectively represent the CAM

derived from either S, ST, or SA classification nets; C ∈
(0, 1)1×c represents the classification confidences regard-

ing c classes; ξ[·] is the normalization function; suppose the

pre-given category tag of the S classification net is the v-

th category in C, we use Cv
S to represent this confidence;

∮

(·) is a soft filter (Eq. 3), which aims to compress those

features of low classification confidences to be considered

when computing the SCAM.

∮

(

Cv
S

)

=

{

Cv
S if Cv

S > Cu
S |v 6=u,1≤u≤c

0 otherwise
. (3)

3.5. SCAM Rationale

Generally speaking, either spatial, temporal, or audio

source could influence our visual attention, while, com-

pared with the last two, the spatial source is usually more

important and stable in practice. For example, a given frame

may remain static for a long period of time, where the tem-

poral source becomes completely absent; similar situation

may also take place for the audio source. Thus, when we

perform the classification task in computing CAM, the spa-

tial information should be treated as the main source, while

the other two can only be its complementary sources. This

is the reason why we recombine S, T and A sources to S (no

change), ST, and SA, respectively.

Considering all S, ST, and SA classification nets have al-

ready been trained on training instances labeled with video

category tags only, most of these training instances usually

perform very well if we feed them into these nets for test-

ing. However, the CAMs derived from these nets are still

rather different in essence, because their inputs are differ-

ent, and we have demonstrated some most representative

qualitative results in Fig. 5. Normally, the consistency level

between CAM and real fixations is often positively related

to the classification confidence level. By using the classifi-

cation confidences as the fusion weights to compress those

less trustworthy CAMs, the pseudo-fixations obtained by s-

electively fusing all these multi-source CAMs using Eq. 2

can be very closer to the real ones.

3.6. Multi­stage SCAM

Benefiting from the selective fusion over multiple

sources, the proposed SCAM is able to outperform the con-

ventional CAM in revealing pseudo-fixations. However,

the pseudo-fixations produced by SCAM may still differ

from the real ones occasionally, especially for scenes with

complex background, where the pseudo-fixations tend to

mess-up. The main reasons are two-fold: 1) complex video

scenes usually contain more contents, yet it has been as-

signed with only one category tag, thus more contents be-

longing to out-of-scope categories may contribute to the

classification task; 2) the aforementioned SCAM has fol-

lowed the single-scale procedure, while, in sharp contrast,

the real human visual system is a multi-scale one, where

we tend to fast locate the region-of-interest unconsciously

before assigning our real fixations to the local regions in-

side it. To further improve, we follow the coarse-to-fine

methodology to sequentially perform SCAM twice. The

15122



Figure 5. Qualitative illustration of CAMs derived from different sources. ‘STA(S/SA/ST)-CAM’: CAM obtained from the spatial-

temporal-audio (spatial/spatial-audio/spatioteporal) circumstance; the ‘SCAM’ represents the pseudo-fixations obtained by Eq. 2, where

we can easily observe that the results in this column can be very consistent with the GTs.

coarse stage decreases the given problem domain, thus the

pseudo-fixations revealed in the fine stage are more likely to

be those real discriminative regions, improving the overall

performance significantly.

In the coarse stage, we use a rectangular box to tight-

ly warp the pseudo -fixations that have been binarized by a

hard threshold (2× average), and the video sequences will

be cropped into video patches via these rectangular box-

es. In the fine stage, the video sequences are replaced by

the these video patches to be the classification nets’ input,

and we perform SCAM again to obtain the final pseudo-

fixations. Compared with the conventional CAM (i.e., the

CAM derived from the S classification net, Fig. 4-a), the

pseudo-fixations (Fig. 4-b) obtained in this stage are clearly

more consistent with the real fixations (Fig. 4-c), where the

quantitative evidences can be seen in Sec. 4.

3.7. The Detail of Classification Nets

All networks adopted in this paper have followed the

simplest encoder-decoder architecture. Following the previ-

ous work [45], we have converted audio signals to 2D spec-

trum histograms in advance. We use plain 3D convolution

to sense temporal information. We believe all these imple-

mentations are quite simple and straightforward, and almost

all network details have been clearly represented in Fig. 6.

Enhanced alternatives, of course, could result in additional

performance gain.

Audio Switch (φ). Different from the conventional imple-

mentation, we proposed the ‘audio switch’ module in both

SA Fuse and STA Fuse (Fig. 6). The main function of this

module is to alleviate the potential side-effects from the au-

dio signal when performing the SA fusion and the STA fu-

sion, and we will explain this issue as follows.

Compared with the temporal source, the audio source

is usually associated with strong semantic information,

making it more easily to influence its spatial counterpart.

However, the audio source itself has a critical drawback,

where video sequences may usually couple with meaning-

less background music or noise. In such case, fusing audio

source with spatial source may make the classification task

more difficult. In fact, the nature of the proposed ‘audio

switch’ is a plug-in, and we implement it as an individual

network with an identical structure as the SA classification

net. Instead of aiming at the video classification task, this

plug-in is trained on visual-audio data with binary labels

considering that the current audio signal is really benefiting

the spatial source. To obtain these binary labels automati-

cally, we resort to an off-the-shelf audio classification tool

(VggSound [6]), which was trained on a large-scale audio

classification set including almost 300 categories. Our ra-

tionale is that the audio source would be able to benefit the

spatial source only if it has been synchronized with its s-

patial counterpart, sharing an identical semantical informa-

tion. Therefore, for a visual-audio fragment (1 frame and 1s

audio), we assign its binary label to ‘1’ if the audio category

predicted by the audio classification tool is identical to the

pre-given video category, otherwise, we assign its binary la-

bel to ‘0’. Here we take the ‘SA Fuse’ for instance, where

the SA fusion data flow can be represented as Eq. 4.

SA← Relu
(

σ
(

φ(A)
)

⊙ S + S
)

, (4)

where S denotes spatial flow; A denotes audio flow; ⊙ is

the typical element-wise multiplicative operation; Relu(·)
denotes the widely-used rectified linear unit (ReLU) acti-

vation operation; σ(·) is the sigmoid function; φ(·) is the

proposed audio switch, which returns 1 if the given audio

can be classified (via VggSound [6]) to the category that is

identical to the the pre-given tag. Our quantitative results

suggest that the ‘audio switch’ can persistently improve the

overall performance for about 1.5% averagely.

3.8. STA Fixation Prediction Network

The implementation of STA fixation prediction network

is also very intuitive, where the spatial features are respec-

tively fused with either temporal features or audio features

in advance and later are combined via the simplest feature
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Figure 6. Network Details. Loss1: cross entropy loss; Loss2: binary cross entropy loss; ‘Class.’: Classification; VC: Video Categories;

Decoder: VGG16; ‘3D’: 3D convolutional; A-C respectively show the network architectures of the adopted classification nets (Fig. 4); D

is the STA fixation prediction network.

concatenation operation. Then a typical decoder with three

de-convolutional layers is used to convert the feature maps

derived from the STA fusion module to the final fixations.

The data flow in the ’STA Fuse’ module can be formulated

as Eq. 5.

STA←

Relu

[

Cov

(

Con
(

σ
(

φ(A)
)

⊙ S + S, σ
(

T
)

⊙ S + S
)

)

]

,

(5)

where Con(·) is the typical concatenation operation;

Cov(·) denotes 1 × 1 convolution; all other symbols are

identical to that in Eq. 4.

The binary cross entropy loss (LB) adopted for the S-

TA fixation prediction network training is detailed in Eq. 6,

where ‘N ’ denotes training instances number; ‘PseudoGT’

represents the pseudo-fixations obtained via the two-stage

SCAM; Dec(·) denotes the decoder layers.

LB =−
1

N

N
∑

i

[

PseudoGTi · log
(

Dec(STAi)
)

+ (1− PseudoGTi) · log
(

1−Dec(STAi)
)

]

.

(6)

A more powerful decoder equipped with multi-scale con-

nections and channel-wise attentions may give rise to some

additional performance gain, but full justification w.r.t. this

issue is beyond the main topic of this paper, and we shall

leave it for future research investigation. The training pro-

cess of our STA fixation prediction network relies on the

pseudo-fixations only, thus it is able to predict fixations for

unseen visual-audio sequences without category tags.

4. Experiments and Validations

4.1. Datasets and Evaluation Metrics

Testing Sets. We have tested the proposed approach and

other competitors on 6 datasets, including AVAD [36],

Coutrot1 [9], Coutrot2 [10], DIEM [26], SumMe [20] and

ETMD [28]. All these sets (241 sequences) are furnished

with pixel-wise real fixations that are collected in the visual-

audio circumstance.

Quantitative Metrics. Following the previous work [52],

we have adopted 5 commonly-used evaluation metric-

s to measure the agreement between model prediction-

s and the real human eye fixations, including AUC-Judd

(AUC-J), similarity metric (SIM), shuffled AUC (s-AUC),

normalized scanpath saliency (NSS), and linear correlation

coefficient (CC). Higher scores on each metric indicate bet-

ter performance.

4.2. Implementation Details

Training Set. Recently, Google has released the Au-

dioset [17], the largest visual-audio set thus far, and we use

its subset audio visual event (AVE) [46]1 location dataset,

which contains 4,143 sequences covering 28 semantic cate-

gories, as the classification training set for the S, ST and SA

classification nets (Sec. 3.4).

Training Details. We follow the widely-used multi-stage

training scheme. In the coarse-stage, all classification net-

s are trained on AVE set, where the batch size equals

20 and all video frames are resized to 256×256. Taking

1 https://sites.google.com/view/audiovisualresearch
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Table 1. Quantitative evidence towards the effectiveness of the pro-

posed selective fusion scheme. This experiment is conducted on

the AVAD set [36]. ‘CO.’: the coarse stage; ‘FI.’: the fine stage.

Module AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

C
O

. SCAMavg 0.786 0.219 0.538 0.297 1.312

SCAMsel 0.801 0.256 0.554 0.345 1.364

F
I. SCAMavg 0.845 0.303 0.573 0.399 1.797

SCAMsel 0.873 0.334 0.580 0.438 2.018

the cropped video patches as input, three completely new

classification nets in the fine-stage will be trained, where

the batch size equals 3 and all video patches are resized

to 356×356. The STA fixation prediction network takes

the pseudo-fixations as GTs, where video frames are re-

sized to 356×356, thus the batch size is assigned to 3.

All these training processes have adopted the stochastic

gradient descent (SGD) optimizer with learning rate 0.001.

4.3. Component Evaluation

Effectiveness of the Selective Fusion. In order to selective-

ly fuse the multi-source CAMs, we have adopted the clas-

sification confidences as the fusion weights (e.g., the CS in

Eq. 2). Actually, the effectiveness of this implementation

is based on the pre-condition that the classification confi-

dences are really positively related to the consistency level

between CAMs and real fixations. To verify this issue, we

have compared the proposed selective fusion and the con-

ventional scheme (i.e., averaging all CAMs derived from

different sources, SCAMavg).

As shown in Table 1, the overall performance can be

improved significantly via the proposed selective fusion

SCAMsel, where the proposed SCAMsel outperforms the

SCAMavg by about 3%.

Effectiveness of the Multi-stage Methodology. To verity

this aspect, we have respectively tested all CAMs derived

from different sources (i.e., S, SA, ST, and STA) in differ-

ent stages (i.e., COARSE and FINE, Table 2). We take the

first row of Table 2 for instance, where the ‘CAMS’ de-

notes the result of CAM obtained from the spatial source in

the coarse-stage. Notice that the ‘CAMS’ can also be used

to represent the performance of the classic CAM that has

been widely-adopted by previous works. The ‘CAMSTA’

denotes the performance of CAM derived using all spatial,

temporal, and audio sources at the same time, where we

simply adopt a network sharing similar fusion process to

the proposed STA fixation prediction network (Fig. 6-D).

As documented in Table 2, all CAMs obtained in the

fine-stage can significantly outperform those obtained in the

coarse-stage. Meanwhile, we can easily observe that con-

sidering all sources simultaneously cannot take full advan-

tage of the complementary nature between them, thus the

performance improvement achieved by the CAMSTA is re-

ally marginal. As for the proposed SCAM, it can persistent-

Table 2. Quantitative evidence towards the effectiveness of the pro-

posed multi-stage SCAM. This experiment is conducted on the

AVAD set [36].

Module AUC-J ↑ SIM↑ s-AUC↑ CC↑ NSS↑

C
O

A
R

S
E

CAMS 0.774 0.202 0.545 0.261 1.269

CAMST 0.785 0.223 0.536 0.269 1.292

CAMSA 0.780 0.214 0.542 0.277 1.276

CAMSTA 0.793 0.227 0.551 0.293 1.273

SCAM 0.801 0.256 0.554 0.345 1.364

F
IN

E

CAMS 0.834 0.291 0.574 0.376 1.528

CAMST 0.843 0.289 0.571 0.372 1.581

CAMSA 0.845 0.304 0.564 0.384 1.622

CAMSTA 0.856 0.296 0.579 0.415 1.803

SCAM 0.873 0.334 0.580 0.438 2.018

ly outperform the conventional CAM scheme in both stages.

Also, by comparing the first and the last row, we can easily

observe that the proposed multi-stage SCAM outperforms

the classic CAM significantly, e.g., the CC metric has been

improved from 0.261→0.438 and similar trends take place

in other metrics.

Table 3. Quantitative evidence towards the effectiveness of the pro-

posed audio switch (AS, Eq. 5). This experiment is conducted on

the AVAD set [36].

Module AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

w/o. AS 0.864 0.330 0.571 0.421 1.833

w. AS 0.873 0.334 0.580 0.438 2.018

Effectiveness of the Proposed Audio Switch. In Table 3,

we have reported the performance of the proposed model

without (‘w/o’) using the audio switch (AS). We can ob-

serve that the audio switch is capable of improving the over-

all performance by about 2%. The main reason is that it can

filter those meaningless background audio, alleviating the

learning ambiguity when fusing unsynchronized spatial and

audio information.

4.4. Quantitative Comparisons

We have compared our model (i.e., the STANet, which

is trained using pseudo-fixations only) with other 14 SO-

TA methods, including 5 unsupervised methods, 5 weakly-

supervised methods, and 4 fully-supervised methods on al-

l 6 testing sets. Shown in Table 4, our method outper-

forms all unsupervised methods significantly, and it also

outperforms the most recent weakly-supervised competitors

(e.g., MWS [57] and WSSA [61]). In addition, our method

achieves comparable result to the fully-supervised method-

s, especially, our method outperforms the fully-supervised

DeepNet [39] for all testing sets except the Coutrot2. The

main reason is that the semantic contents of the Coutrot2 set

is quite different from that of the AVE set, while our model

is weakly-supervised by the category tags of the AVE set.

Notice that the performance of our approach can be boosted

further by including more tagged sequences.

Different to the conventional video based CAM ap-
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Table 4. Quantitative comparisons between our method with other fully-/weakly-/un-supervised methods. Bold means the best result. Due

to the space limitation, we have included the corresponding qualitative comparisons in the uploaded ‘supplementary material’.

Means
DataSet AVAD [36] DIEM [26] SumMe [20]

Methods AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑ AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑ AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

U
n
-

su
p
er

v
is

ed

ITTI [24] 0.688 0.170 0.533 0.131 0.611 0.663 0.217 0.583 0.137 0.555 0.666 0.151 0.559 0.097 0.436

GBVS [21] 0.854 0.247 0.572 0.337 1.556 0.830 0.318 0.605 0.356 1.277 0.808 0.221 0.567 0.272 1.134

SCLI [42] 0.747 0.210 0.535 0.170 0.792 0.739 0.267 0.590 0.207 0.779 0.746 0.209 0.577 0.184 0.796

SBF [60] 0.833 0.272 0.576 0.308 1.489 0.759 0.292 0.608 0.301 1.081 0.783 0.228 0.590 0.230 1.023

AWS-D [30] 0.825 0.221 0.589 0.304 1.378 0.733 0.250 0.612 0.301 1.128 0.747 0.192 0.603 0.186 0.853

W
ea

k
ly

-

su
p
er

w
is

ed GradCAM++ [3] 0.777 0.273 0.559 0.255 1.217 0.732 0.216 0.583 0.271 0.778 0.774 0.217 0.593 0.225 0.924

VUNP [33] 0.574 0.067 0.500 0.142 0.292 0.558 0.047 0.515 0.172 0.186 0.555 0.013 0.507 0.114 0.048

WSS [50] 0.858 0.292 0.592 0.347 1.655 0.803 0.333 0.620 0.344 1.293 0.812 0.245 0.589 0.279 1.098

MWS [57] 0.834 0.272 0.573 0.309 1.477 0.806 0.336 0.628 0.350 1.308 0.808 0.237 0.607 0.258 1.155

WSSA [61] 0.807 0.261 0.574 0.285 1.339 0.767 0.305 0.608 0.311 1.178 0.755 0.225 0.585 0.231 1.058

OUR(STANet) 0.873 0.334 0.580 0.438 2.018 0.861 0.391 0.658 0.469 1.716 0.854 0.294 0.627 0.368 1.647

F
u
ll

y
-

su
p
er

v
is

ed DeepNet [39] 0.869 0.256 0.561 0.383 1.850 0.832 0.318 0.622 0.407 1.520 0.848 0.227 0.645 0.332 1.550

SalGAN [38] 0.886 0.360 0.579 0.491 2.550 0.857 0.393 0.660 0.486 1.890 0.875 0.289 0.688 0.397 1.970

DeepVS [25] 0.896 0.391 0.585 0.528 3.010 0.840 0.392 0.625 0.452 1.860 0.842 0.262 0.612 0.317 1.620

ACLNet [52] 0.905 0.446 0.560 0.580 3.170 0.869 0.427 0.622 0.522 2.020 0.868 0.296 0.609 0.379 1.790

Means
DataSet ETMD [28] Coutrotl [9] Coutrot2 [10]

Methods AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑ AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑ AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

U
n
-

su
p
er

v
is

ed

ITTI [24] 0.661 0.127 0.582 0.083 0.425 0.616 0.178 0.529 0.082 0.319 0.694 0.142 0.530 0.040 0.331

GBVS [21] 0.856 0.226 0.613 0.299 1.398 0.798 0.253 0.526 0.272 1.055 0.819 0.189 0.577 0.183 1.071

SCLI [42] 0.761 0.165 0.570 0.129 0.617 0.754 0.216 0.536 0.239 0.883 0.669 0.137 0.510 0.014 0.093

SBF [60] 0.805 0.232 0.641 0.262 1.298 0.726 0.187 0.530 0.215 0.789 0.827 0.152 0.583 0.131 1.101

AWS-D [30] 0.754 0.161 0.664 0.181 0.907 0.729 0.214 0.581 0.207 0.872 0.783 0.170 0.590 0.146 0.842

W
ea

k
ly

-

su
p
er

w
is

ed GradCAM++ [3] 0.575 0.124 0.157 0.576 0.736 0.704 0.137 0.537 0.210 0.511 0.733 0.114 0.567 0.168 0.625

VUNP [33] 0.505 0.030 0.103 0.132 0.593 0.589 0.063 0.514 0.152 0.304 0.661 0.101 0.536 0.162 0.491

WSS [50] 0.854 0.277 0.661 0.334 1.650 0.772 0.247 0.547 0.233 0.975 0.835 0.208 0.578 0.192 1.178

MWS [57] 0.833 0.237 0.649 0.293 1.425 0.743 0.231 0.528 0.201 0.798 0.839 0.188 0.581 0.168 1.197

WSSA [61] 0.793 0.201 0.622 0.222 1.075 0.701 0.180 0.535 0.169 0.780 0.797 0.185 0.571 0.180 1.263

OUR(STANet) 0.908 0.318 0.682 0.448 2.176 0.829 0.306 0.542 0.339 1.376 0.850 0.247 0.597 0.273 1.475

F
u
ll

y
-

su
p
er

v
is

ed DeepNet [39] 0.889 0.225 0.699 0.387 1.900 0.824 0.273 0.559 0.340 1.410 0.896 0.201 0.600 0.301 1.820

SalGAN [38] 0.903 0.311 0.746 0.476 2.460 0.853 0.332 0.579 0.416 1.850 0.933 0.290 0.618 0.439 2.960

DeepVS [25] 0.904 0.349 0.686 0.461 2.480 0.830 0.317 0.561 0.359 1.770 0.925 0.259 0.646 0.449 3.790

ACLNet [52] 0.915 0.329 0.675 0.477 2.360 0.850 0.361 0.542 0.425 1.920 0.926 0.322 0.594 0.448 3.160

proaches [2, 3, 33] which tend to highlight the single object

persistently, the frame regions highlighted by our approach

the most discriminative ones, might vary from frame to

frame, because, in the visual-audio circumstance, either

spatial, temporal, or audio could alternatively contribute

most to the classification task. This attribute is very con-

sistent with the real human fixation, because we human n-

ever pay our attention to a fixed location for a long period

of time, especially in the visual-audio circumstance.

4.5. Limitation

We have only considered one single semantic tag for

each visual-audio sequence, while, in practice, a video se-

quence could be assigned with multiple tags. Thus, our

method might not be able to perform very well for se-

quences with massive out-of-scope semantic contents. This

problem can be alleviated by including more data with mul-

tiple tags, which calls for new research in the near future.

5. Conclusion and Future Work

In this paper, we have detailed a novel scheme for

converting video-audio semantic category tags to pseudo-

fixations. Compared with the widely-used CAM, the pro-

posed SCAM is able to produce pseudo-fixations that are

more consistent with the real ones. The key technical in-

novations include the multi-source based selective fusion

and its multi-stage methodology, where the effectiveness

has been respectively validated by the component evalua-

tion. We have also compared our model — the STA fixation

prediction network trained using our pseudo-fixations, with

other SOTA methods. The results favor our new method

over unsupervised and weakly-supervised methods. They

also show that our method is even better than some fully-

supervised methods. In the near future, we are interest-

ed in exploring a full-automatical way for mining category

tags which contribute most regarding the classification task.

Thus, the pseudo fixations derived from this new small-

group tags may be more consistent with the real ones.
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