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Abstract

6D pose estimation from a single RGB image is a funda-

mental task in computer vision. The current top-performing

deep learning-based methods rely on an indirect strategy,

i.e., first establishing 2D-3D correspondences between the

coordinates in the image plane and object coordinate sys-

tem, and then applying a variant of the PnP/RANSAC al-

gorithm. However, this two-stage pipeline is not end-to-

end trainable, thus is hard to be employed for many tasks

requiring differentiable poses. On the other hand, meth-

ods based on direct regression are currently inferior to

geometry-based methods. In this work, we perform an in-

depth investigation on both direct and indirect methods, and

propose a simple yet effective Geometry-guided Direct Re-

gression Network (GDR-Net) to learn the 6D pose in an

end-to-end manner from dense correspondence-based inter-

mediate geometric representations. Extensive experiments

show that our approach remarkably outperforms state-of-

the-art methods on LM, LM-O and YCB-V datasets. Code

is available at https://git.io/GDR-Net.

1. Introduction

Estimating the 6D pose, i.e. the 3D rotation and 3D

translation, of objects with respect to the camera is a fun-

damental problem in computer vision. It has wide appli-

cability to many real-world tasks such as robotic manip-

ulation [10, 66, 53], augmented reality [35, 50] and au-

tonomous driving [32, 58]. Most traditional methods rely on

depth data for this task [13, 36, 14, 63, 54], while monocu-

lar methods lagged considerably behind [10, 12]. Nonethe-

less, with the advent of deep learning and especially the rise

of Convolutional Neural Networks (CNNs), accuracy and

robustness of monocular 6D object pose estimation have

been consistently improving, even at times surpassing meth-

ods relying on depth data [22, 42, 18].

Different strategies for predicting 6D pose from monoc-
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Figure 1: Illustration of GDR-Net. We directly regress the

6D object pose from a single RGB using a CNN and the

learnable Patch-PnP by leveraging the guidance of interme-

diate geometric features including 2D-3D dense correspon-

dences and surface region attention.

ular data have been proposed. For instance, learning of

an embedding space for pose [49] or direct regression of

the 3D rotation and translation [31]. While these meth-

ods generally perform well, they usually lack in accuracy

when compared with approaches that instead rely on estab-

lishing 2D-3D correspondences prior to estimating the 6D

pose [28, 15].

Differently, this latter class of methods usually involves

solving the 6D pose through a variant of the PnP/RANSAC

algorithm. While such a paradigm provides good estimates,

it also suffers from several drawbacks. First, these methods

are usually trained with a surrogate objective for correspon-

dence regression, which does not necessarily reflect the ac-

tual 6D pose error after optimization. In practice, two sets

of correspondences can have the same average error while

describing completely different poses. Second, these ap-

proaches are not differentiable with respect to the estimated

6D pose, which limits learning. For instance, these meth-
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ods cannot be coupled with self-supervised learning from

unlabeled real data [55, 34, 1], as they require the computa-

tion of the pose to be fully differentiable in order to obtain a

signal between data and pose. Finally, the RANSAC itera-

tive process can be very time-consuming when dealing with

dense correspondences.

To summarize, while methods grounded on 2D-3D cor-

respondences are dominating the field, they still exhibit

downsides due to the decoupling of the problem into two

separate steps one of which not differentiable. Conse-

quently, some efforts have been devoted to enabling back-

propagation through the PnP/RANSAC stage. However,

this either requires a complex training strategy in order to

have good initialization of scene coordinates [4, 6, 7], or

can only handle sparse correspondences of a predefined set

of keypoints [8]. Recently, the authors of [19] proposed

to leverage PointNet [41] in order to approximate PnP for

sparse correspondences. While this proves to work well,

PointNet disregards the fact that the correspondences are

organized with respect to the image pixels, which tends to

strongly deteriorate the performance as shown in [30].

In this work, we propose to overcome these limitations

by establishing 2D-3D correspondences whilst computing

the final 6D pose estimate in a fully differentiable way

(Fig. 1). In its core, we propose to learn the PnP opti-

mization, exploiting the fact that the correspondences are

organized in image space, which gives a significant boost in

performance, outperforming all prior works. To summarize,

we make the following contributions:

• We revisit the key ingredients in direct 6D pose regres-

sion and observe that by choosing appropriate repre-

sentations for the pose parameters, methods based on

direct regression show competitive performance com-

pared with state-of-the-art correspondence-based indi-

rect methods.

• We further propose a simple yet effective Geometry-

guided Direct Regression Network (GDR-Net) to

boost the performance of direct 6D pose regression

via leveraging the geometric guidance from dense

correspondence-based intermediate representations.

Extensive experiments on LM [13], LM-O [3], and YCB-

V [60] datasets show that our unified GDR-Net approach

achieves accurate, yet real-time and robust, monocular 6D

object pose estimation.

2. Related Work

While methods based on depth data used to domi-

nate the field of 6D pose estimation [13, 36, 14, 63, 54],

Deep Learning-based methods have recently demonstrated

promising results for the task at hand [17, 18]. In this sec-

tion, we review several commonly employed strategies for

monocular 6D pose estimation.

Indirect Methods. The most popular approach is to es-

tablish 2D-3D correspondences, which are then leveraged

to solve for the 6D pose using a variant of the RANSAC-

based PnP algorithm. For instance, [42] and [51] compute

the 2D projections of a set of fixed control points (e.g. the

3D corners of the encapsulating bounding box). To enhance

the robustness, [20] and [40] additionally conduct segmen-

tation coupled with voting for each correspondence. How-

ever, the recent trend goes towards predicting dense rather

than sparse correspondences [62, 28]. Moreover, while [38]

leverages a GAN on top of dense correspondences to in-

crease stability, [15] makes use of fragments in order to ac-

count for ambiguities in pose.

Another orthogonal line of works aims at learning a la-

tent embedding of pose which can be utilized for retrieval

during inference. These embeddings are commonly either

grounded on metric learning employing a triplet loss [57],

or via training of an Auto-Encoder [49, 48].

Direct Methods. Although indirect methods, leveraging

2D-3D correspondences, are currently performing better,

they cannot be directly employed in many tasks, which re-

quire the pose estimation to be differentiable [55]. Hence,

some methods directly regress the 6D pose, either leverag-

ing a point matching loss [60, 27, 25] or employing separate

loss terms for each component [31, 11]. Other methods dis-

cretize the pose space and conduct classification rather than

regression [22]. A few methods also try to solve a proxy

task during optimization. Thereby, [33] proposes to employ

an edge-alignment loss using the distance transform, while

[55] harnesses differentiable rendering to allow training on

unlabeled samples.

Differentiable Indirect Methods. Recently, a few works

attempt to make PnP/RANSAC differentiable. In [4, 6, 7]

the authors introduce a novel differentiable way to apply

RANSAC via sharing of hypotheses based on the predicted

distribution. Nonetheless, these approaches require a com-

plex training strategy, as they expect a good initialization for

the scene coordinates. As for PnP, [8] employs the Implicit

Function Theorem [23] to enable the computation of analyt-

ical gradients w.r.t. the pose loss. Yet, it is computationally

expensive especially given too many correspondences since

PnP/RANSAC is still needed for both training and infer-

ence. Instead, [19] attempts to learn the PnP stage with a

PointNet-based architecture [41] which learns to infer the

6D pose from a fixed set of sparse 2D-3D correspondences.

Beyond Instance-level 6D Pose Estimation. Noteworthy,

a few methods are recently trying to go beyond the instance-

level scenario, even estimating the pose [56], sometimes

paired with shape [9, 34, 37], for previously unseen objects.

3. Method

Given an RGB image I and a set of N objects O =
{Oi | i = 1, · · · , N } together with their corresponding
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Figure 2: Framework of GDR-Net. Given an RGB image I , our GDR-Net takes the zoomed-in RoI (Dynamic Zoom-In for

training, off-the-shelf detections for testing) as input and predicts several intermediate geometric features. Then the Patch-

PnP directly regresses the 6D object pose from Dense Correspondences (M2D-3D) and Surface Region Attention (MSRA).

3D CAD models M = {Mi | i = 1, · · · , N }, our goal is

to estimate the 6D object pose P = [R|t] w.r.t. the camera

for each object O present in I . Notice that R describes the

3D rotation and t denotes the 3D translation of the detected

object.

Fig. 2 presents a schematic overview of the proposed

methodology. In the core, we first detect all objects of inter-

est using an off-the-shelf object detector, such as [44, 52].

For each detection, we then zoom in to the corresponding

Region of Interest (RoI) and feed it to our network to predict

several intermediate geometric feature maps. Finally, we di-

rectly regress the associated 6D object pose from the dense

correspondence-based intermediate geometric features.

In the following, we first (Sec. 3.1) revisit the key in-

gredients of direct 6D object pose estimation methods.

Afterwards (Sec. 3.2), we illustrate a simple yet effec-

tive Geometry-Guided Direct Regression Network (GDR-

Net) which unifies regression-based direct methods and

geometry-based indirect methods, thus harnessing the best

of both worlds.

3.1. Revisiting Direct 6D Object Pose Estimation

Direct 6D pose estimation methods usually differ in one

or more of the following components. Firstly, the param-

eterization of the rotation R and translation t, and sec-

ondly, the employed loss for pose. In this section, we in-

vestigate different commonly used parameterizations and

demonstrate that appropriate choices have significant im-

pact on the 6D pose estimates.

Parameterization of 3D Rotation. Several different pa-

rameterization can be employed to describe 3D rotations.

Since many representations exhibit ambiguities, i.e. Ri and

Rj describe the same rotation with Ri 6= Rj , most works

rely on parametrizations that are unique to help training.

Therefore, common choices are unit quaternions [60, 33,

27], log quaternions [37], or Lie algebra-based vectors [11].

Nevertheless, it is well-known that all representations

with four or fewer dimensions for 3D rotation have disconti-

nuities in the Euclidean space. When regressing a rotation,

this introduces an error close to the discontinuities which

becomes often significantly large. To overcome this lim-

itation, [65] proposed a novel continuous 6-dimensional

representation for R in SO(3), which has proven promis-

ing [65, 25]. Specifically, the 6-dimensional representation

R6d is defined as the first two columns of R

R6d = [R
·1 | R·2] . (1)

Given a 6-dimensional vector R6d = [r1|r2], the rotation

matrix R = [R
·1|R·2|R·3] can be computed according to











R
·1 = φ(r1)

R
·3 = φ(R

·1 × r2)

R
·2 = R

·3 ×R
·1

, (2)

where φ(•) denotes the vector normalization operation.

Given the advantages of this representation, in this work

we employ R6d to parameterize the 3D rotation. Neverthe-

less, in contrast to [65, 25], we propose to let the network

predict the allocentric representation [24] of rotation Ra6d.

This representation is favored as it is viewpoint-invariant

under 3D translations of the object. Hence, it is more suit-

able to deal with zoomed-in RoIs. Note that the egocen-

tric rotation can be easily converted from allocentric rota-

tion given 3D translation and camera intrinsics K follow-

ing [24].

Parameterization of 3D Translation. Since directly re-

gressing the translation t = [tx, ty, tz]
T ∈ R

3 in 3D space

does not work well in practice, previous works usually de-

couple the translation into the 2D location (ox, oy) of the

projected 3D centroid and the object’s distance tz towards
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the camera. Given the camera intrinsics K, the translation

can be calculated via back-projection

t = K−1tz [ox, oy, 1]
T
. (3)

Exemplary, [22, 49] approximate (ox, oy) as the bounding

box center (cx, cy) and estimate tz using a reference camera

distance. PoseCNN [60] directly regresses (ox, oy) and tz .

Nonetheless, this is not suitable for dealing with zoomed-in

RoIs, since it is essential for the network to estimate posi-

tion and scale invariant parameters.

Therefore, in our work we utilize a Scale-Invariant rep-

resentation for Translation Estimation (SITE) [28]. Con-

cretely, given the size so = max(w, h) and center (cx, cy)
of the detected bounding box and the ratio r = szoom/so
w.r.t. the zoom-in size szoom, the network regresses the

scale-invariant translation parameters tSITE = [δx, δy, δz]
T ,

where










δx = (ox − cx)/w

δy = (oy − cy)/h

δz = tz/r

. (4)

Finally, the 3D translation can be solved according to Eq. 3.

Disentangled 6D Pose Loss. Apart from the parameteriza-

tion of rotation and translation, the choice of loss function

is also crucial for 6D pose optimization. Instead of directly

utilizing distances based on rotation and translation (e.g.,

angular distance, L1 or L2 distances), most works employ

a variant of Point-Matching loss [27, 60, 25] based on the

ADD(-S) metric [13, 3] in an effort to couple the estimation

of rotation and translation.

Inspired by [46, 25], we employ a novel variant of dis-

entangled 6D pose loss via individually supervising the ro-

tation R, the scale-invariant 2D object center (δx, δy), and

the distance δz .

LPose = LR + Lcenter + Lz. (5)

Thereby,














LR = avg
x∈M

‖R̂x− R̄x‖1

Lcenter = ‖(δ̂x − δ̄x, δ̂y − δ̄y)‖1

Lz = ‖δ̂z − δ̄z‖1

, (6)

where •̂ and •̄ denote prediction and ground truth, respec-

tively. To account for symmetric objects, given R̄, the set

of all possible ground-truth rotations under symmetry, we

further extend our loss to a symmetry-aware formulation

LR,sym = min
R̄∈R̄

LR(R̂, R̄).

3.2. Geometryguided Direct Regression Network

In this section, we present our Geometry-guided Direct

Regression Network, which we dub GDR-Net. Harness-

ing dense correspondence-based geometric features, we di-

rectly regress 6D object pose. Thereby, GDR-Net unifies

approaches based on dense correspondences and direct re-

gression.

Network Architecture. As shown in Fig. 2, we feed the

GDR-Net with a zoomed-in RoI of size 256× 256 and pre-

dict three intermediate geometric feature maps with spatial

size of 64 × 64, which are composed of the Dense Cor-

respondences Map (M2D-3D), the Surface Region Attention

Map (MSRA) and the Visible Object Mask (Mvis).

Our network is inspired by CDPN [28], a state-of-the-art

dense correspondence-based method for indirect pose esti-

mation. In essence, we keep the layers for regressing MXYZ

and Mvis, while removing the disentangled translation head.

Additionally, we append the channels required by MSRA to

the output layer. Since these intermediate geometric fea-

ture maps are all organized 2D-3D correspondences w.r.t.

the image, we employ a simple yet effective 2D convolu-

tional Patch-PnP module to directly regress the 6D object

pose from M2D-3D and MSRA.

The Patch-PnP module consists of three convolutional

layers with kernel size 3× 3 and stride = 2, each followed

by Group Normalization [59] and ReLU activation. Two

Fully Connected (FC) layers are then applied to the flattened

feature, reducing the dimension from 8192 to 256. Finally,

two parallel FC layers output the 3D rotation R parameter-

ized as R6d (Eq. 1) and 3D translation t parameterized as

tSITE (Eq. 4), respectively.

Dense Correspondences Maps (M2D-3D). In order to com-

pute the Dense Correspondences Maps M2D-3D, we first

estimate the underlying Dense Coordinates Maps (MXYZ).

M2D-3D can then be derived by stacking MXYZ onto the cor-

responding 2D pixel coordinates. In particular, given the

CAD model of an object, MXYZ can be obtained by render-

ing the model’s 3D object coordinates given the associated

pose. Similar to [28, 56], we let the network predict a nor-

malized representation of MXYZ. Concretely, each channel

of MXYZ is normalized within [0, 1] by (lx, ly, lz), which

is the size of corresponding tight 3D bounding box of the

CAD model.

Notice that M2D-3D does not only encode the 2D-3D cor-

respondences, but also explicitly reflect the geometric shape

information of objects. Moreover, as previously mentioned,

since M2D-3D is regular w.r.t. the image, we are capable of

learning the 6D object pose via a simple 2D convolutional

neural network (Patch-PnP).

Surface Region Attention Maps (MSRA). Inspired by [15],

we let the network predict the surface regions as additional

ambiguity-aware supervision. However, instead of coupling

them with RANSAC, we use them within our Patch-PnP

framework.

Essentially, the ground-truth regions MSRA can be de-

rived from MXYZ employing farthest points sampling.

For each pixel we classify the corresponding regions,

thus the probabilities in the predicted MSRA implicitly rep-
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resent the symmetry of an object. For instance, if a pixel is

assigned to two potential fragments due to a plane of sym-

metry, Minimizing this assignment will return a probability

of 0.5 for each fragment. Moreover, leveraging MSRA not

only mitigates the influence of ambiguities but also acts as

an auxiliary task on top of M3D. In other words, it eases the

learning of M3D by first locating coarse regions and then re-

gressing finer coordinates. We utilize MSRA as a symmetry-

aware attention to guide the learning of Patch-PnP.

Geometry-guided 6D Object Pose Regression. The pre-

sented image-based geometric feature patches, i.e., M2D-3D

and MSRA, are then utilized to guide our proposed Patch-

PnP for direct 6D object pose regression as

P = Patch-PnP(M2D-3D,MSRA). (7)

We employ L1 loss for normalized MXYZ and visible masks

Mvis, and cross-entropy loss (CE) for MSRA.

LGeom = ‖M̄vis ⊙ (M̂XYZ − M̄XYZ)‖1 + ‖M̂vis − M̄vis‖1

+ CE(M̄vis ⊙ M̂SRA, M̄SRA).
(8)

Thereby, ⊙ denotes element-wise multiplication and we

only supervise MXYZ and MSRA using the visible region.

The overall loss for GDR-Net can be summarized as

LGDR = LPose + LGeom. Notice that our GDR-Net can be

trained end-to-end, without requiring any three-stage train-

ing strategy as in [28].

Decoupling Detection and 6D Object Pose Estimation.

Similar to [28, 25], we mainly focus on the network for

6D object pose estimation and make use of an existing 2D

object detector to obtain the zoomed-in input RoIs. This

allows us to directly make use of the advances in runtime

[43, 2] and accuracy [44, 52] within the rapidly growing

field of 2D object detection, without having to change or

re-train the pose network. Therefore, we adopt a simpli-

fied Dynamic Zoom-In (DZI) [28] to decouple the training

of our GDR-Net and object detectors. During training, we

first uniformly shift the center and scale of the ground-truth

bounding boxes by a ratio of 25%. We then zoom in the in-

put RoIs with a ratio of r = 1.5 while maintaing the original

aspect ratio. This ensures that the area containing the object

is approximately half the RoI. DZI can also circumvent the

need of dealing with varying object sizes.

Noteworthy, although we employ a two-stage approach,

one could also implement GDR-Net on top of any object

detector and train it in an end-to-end manner.

4. Experiments

In this section we first introduce our experimental setup,

and then present the evaluation results for several com-

monly employed benchmark datasets. Thereby, we first

present experiments on a synthetic toy dataset, which

clearly demonstrates the benefit of our Patch-PnP com-

pared to the classic optimization-driven PnP. Additionally,

we demonstrate the effectiveness of our individual compo-

nents by performing an ablative study on LM [13]. Finally,

we compare GDR-Net with state-of-the-art methods on two

challenging datasets, i.e. LM-O [3] and YCB-V [60].

4.1. Experimental Setup

Implementation Details. All our experiments are imple-

mented using PyTorch [39]. We train all our networks end-

to-end using the Ranger optimizer [29, 64, 61]1 with a batch

size of 24 and a base learning rate of 1e-4, which we anneal

at 72% of the training phase using a cosine schedule [21].

Datasets. We conduct our experiments on four datasets:

Synthetic Sphere [26, 19], LM [13], LM-O [3], and YCB-

V [60]. The Synthetic Sphere dataset contains 20k samples

for training and 2k for testing, created by randomly captur-

ing a unit sphere model using a virtual calibrated camera

with focal length 800, resolution 640×480, and the prin-

cipal point located at the image center. The Rotations and

translations are uniformly sampled in 3D space, and within

an interval of [−2, 2] × [−2, 2] × [4, 8], respectively. LM

dataset consists of 13 sequences, each containing ≈ 1.2k

images with ground-truth poses for a single object with clut-

ter and mild occlusion. We follow [5] and employ ≈15%

of the RGB images for training and 85% for testing. We

additionally use 1k rendered RGB images for each object

during training as in [28]. LM-O consists of 1214 images

from a LM sequence, where the ground-truth poses of 8

visible objects with more occlusion are provided for test-

ing. Apart from the real data from LM, we also leverage

synthetic data for training. Similarly, we render 10k syn-

thetic images (syn) for each object as in [40]. YCB-V is a

very challenging dataset exhibiting strong occlusion, clut-

ter and several symmetric objects. It comprises over 110k

real images captured with 21 objects, both with and with-

out texture. For both LM-O and YCB-V, we also leverage

the publicly available synthetic data using physically-based

rendering (pbr) [18] for training.

Evaluation Metrics. We use two common metrics for

6D object pose evaluation, i.e. ADD(-S) [13, 16], and

n°, n cm [45]. The ADD metric [13] measures whether the

average deviation of the transformed model points is less

than 10% of the object’s diameter (0.1d). For symmetric

objects, the ADD-S metric is employed to measure the error

as the average distance to the closest model point [13, 16].

When evaluating on YCB-V, we also compute the AUC

(area under curve) of ADD(-S) by varying the distance

threshold with a maximum of 10 cm [60]. The n°, n cm

metric [45] measures whether the rotation error is less than

n° and the translation error is below n cm. Notice that to ac-

1Ranger means the RAdam [29] optimizer combined with Looka-

head [64] and Gradient Centralization [61].
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Figure 3: Results of PnP variants on Synthetic Sphere.

(a, b): We compare our Patch-PnP module with the tra-

ditional RANSAC EPnP [26] and another learning-based

PnP [19]. The pose error is reported as relative ADD er-

ror w.r.t. the sphere’s diameter (y-axis in log-scale). (c):

Zoomed-In (64× 64) synthetic examples for Patch-PnP.

count for symmetries, n°, n cm is computed w.r.t. the small-

est error for all possible ground-truth poses [27].

4.2. Toy Experiment on Synthetic Sphere

We conduct a toy experiment comparing our approach

with PnP/RANSAC and [19] on the Synthetic Sphere

dataset. We generate MXYZ from the provided poses and

feed them to our Patch-PnP. For fairness, MSRA is excluded

from the input. Following [19], during training, we ran-

domly add Gaussian noise N (0, σ2) with σ ∈ U [0, 0.03]
to each point of the dense coordinates maps. Since the co-

ordinates maps are normalized in [0, 1], we choose 0.03 as

it reflects approximately the same level of noise as in [19].

Additionally, we randomly generated 0% to 30% of outliers

for MXYZ (Fig. 3c). During testing, we report the relative

ADD error w.r.t. the sphere’s diameter on the test set with

different levels of noise and outliers.

Comparison with PnP/RANSAC and [19]. In Fig. 3,

we demonstrate the effectiveness and robustness of our

approach by comparing Patch-PnP with the traditional

RANSAC-based EPnP [26] and the learning-based PnP

from [19]). As depicted in Fig. 3, while RANSAC-based

EPnP2 is more accurate when noise is unrealistically mini-

mal, learning-based PnP methods are much more accurate

and robust as the level of noise increases. Moreover, Patch-

PnP is significantly more robust than Single-Stage [19]

w.r.t. to noise and outliers, thanks to our geometrically rich

and dense correspondences maps.

4.3. Ablation Study on LM

We present several ablation experiments for the widely

used LM dataset [13]. We train a single GDR-Net for all

objects for 160 epochs without applying any color augmen-

2We follow the state-of-the-art method CDPN [28] for the implemen-

tation and hyper-parameters of PnP/RANSAC in all our experiments, see

supplement for details.

tation. For fairness in evaluation, we leverage the detection

results from Faster-RCNN as provided by [28].

Number of Regions in MSRA. In Tab. 1a, we show re-

sults for different numbers of regions in MSRA. Thereby,

without our attention MSRA (number of regions = 0), the

accuracy is deliberately good, which suggests the effective-

ness and versatility of Patch-PnP. Nevertheless, the overall

accuracy can be further improved with increasing number

of regions in MSRA, despite starting to saturate around 64

regions. Thus, we use 64 regions for MSRA in all other ex-

periments as trade-off between accuracy and memory.

Effectiveness of Patch-PnP. We demonstrate the

effectiveness of the image-like geometric features

(M2D-3D,MSRA) by comparing our Patch-PnP with

traditional PnP/RANSAC [28], the PointNet-like [41]

PnP from [19], and a differentiable PnP (BPnP [8]). For

PointNet-like PnP, we extend the PointNet in [19] to

account for dense correspondences. Specifically, we utilize

PointNet to pointwisely transform the spatially flattened

geometric features (M2D-3D and MSRA) and directly pre-

dict the 6D pose with global max pooling followed by

two FC layers. Since the correspondences are explicitly

encoded in M2D-3D, no special attention is needed for the

keypoint orders as in [19]. For BPnP [8], we replace the

Patch-PnP in our framework with their implementation

of BPnP3. As BPnP was originally designed for sparse

keypoints, we further adapt it appropriately to deal with

dense coordinates.

As shown in Tab. 1b, Patch-PnP is more accurate than

traditional PnP/RANSAC (B0 vs. A0), PointNet-like PnP

(B0 vs. C0) and BPnP (B0 vs. C1) in estimating the 6D

pose. Furthermore, in terms of rotation, our Patch-PnP

outperforms PointNet-like PnP by a large margin, which

proves the importance of exploiting the ordering within the

correspondences. Noteworthy, Patch-PnP is much faster in

inference and up to 4× faster in training than BPnP, since

the latter relies on PnP/RANSAC for both phases.

Parameterization of 6D Pose. In Tab. 1b, we illustrate the

impact of our proposed 6D pose parameterization. In partic-

ular, the 6-dimensional R6d (Eq. 1) achieves a much more

accurate estimate of R than commonly used representations

such as unit quaternions [60, 27], log quaternions [37] and

the Lie algebra-based vectors [11] (c.f. B0 vs. D1-D3, and

G0 vs. G2). Moreover, we can deduce that the allocentric

representation is significantly stronger than the egocentric

formulation (B0 vs. D0).

Similarly, the parameterization of the 3D translation is

of high importance. Essentially, directly predicting t in

3D space leads to worse results than leveraging the scale-

invariant formulation tSITE (E0 vs. B0). Additionally, re-

placing the scale-invariant δz in tSITE with the absolute dis-

tance tz or directly regressing the object center (ox, oz)

3https://github.com/BoChenYS/BPnP
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MEAN

(a)

Row Method
ADD(-S)

2°, 2 cm 2° 2 cm MEAN
0.02d 0.05d 0.1d

A0 CDPN [28] - - 89.9 - - 92.8 -

B0 GDR-Net (Ours) 35.5 76.3 93.7 62.1 63.2 95.5 71.0

B1 B0: → Test with PnP/RANSAC 31.0 72.1 92.2 67.1 68.9 94.5 71.0

B2 B0: → Patch-PnP for t; PnP/RANSAC for R 35.6 76.0 93.6 67.1 69.0 95.5 72.8

C0 B0: Patch-PnP → PointNet-like PnP 29.2 72.6 92.3 44.5 45.8 94.3 63.1

C1 B0: Patch-PnP → BPnP [8] 34.3 72.6 92.0 64.3 66.0 94.4 70.6

D0 B0: Ra6d → Egocentric R6d 36.1 75.7 93.2 60.4 61.5 95.3 70.4

D1 B0: Ra6d → Allocentric quaternion 24.8 67.4 90.5 35.5 36.9 92.2 57.9

D2 B0: Ra6d → Allocentric log quaternion 22.7 64.6 88.9 33.7 35.4 90.9 56.0

D3 B0: Ra6d → Allocentric Lie algebra vector 23.0 66.3 89.7 33.8 35.3 91.4 56.6

E0 B0: tSITE → t 28.3 72.0 92.4 61.6 63.2 94.6 68.7

E1 B0: tSITE → (ox, oy); tz 31.4 73.7 93.3 50.4 51.6 94.7 65.8

E2 B0: δz → tz 32.8 73.5 93.3 63.3 64.8 94.9 70.4

F0 B0: LPose → LPM = avg
x∈M

‖(R̂x + t̂) − (R̄x + t̄)‖1 33.7 76.5 94.1 47.4 48.2 95.8 65.9

F1 F0: LPM → Disentangling R; t 30.8 71.1 91.8 64.6 66.8 93.5 69.8

F2 F0: LPM → Disentangling R; (tx, ty); tz 32.2 73.9 93.6 63.8 65.3 94.8 70.6

F3 B0: LR → Angular loss 32.4 75.5 93.8 40.2 40.9 95.7 63.1

F4 B0: LR → LR,sym 35.5 75.8 93.9 61.6 62.7 95.4 70.8

G0 B0: LGDR → w/o LGeom 30.8 72.7 92.2 45.9 46.8 94.1 63.7

G1 G0: → w/o M2D 18.6 60.1 85.6 26.0 27.8 87.6 51.0

G2 G0: Ra6d → Allocentric quaternion 6.7 40.6 73.2 6.2 7.4 75.6 34.9

H0 B0: Faster-RCNN [44] → Yolov3 [43] 33.9 75.6 93.7 60.9 62.1 95.2 70.2

(b)

Table 1: Ablation Study on LM. (a): Ablation of number of regions in MSRA. (b): Ablation of PnP type, the parameteriza-

tion of R and t, loss type and geometric guidance.

leads to inferior poses w.r.t. translation (B0 vs. E1, E2).

Hence, when dealing with zoomed-in RoIs, it is essential

to parameterize the 3D translation in a scale-invariant fash-

ion.

Ablation on Pose Loss. As mentioned in Section 3.1, the

loss function has an impact on direct 6D pose regression.

In Tab. 1b, we compare our disentangled LPose to a simple

angular loss and the Point-Matching loss [27] (F0). Further-

more, we present its disentangled versions following [46].

As shown in (B0 and F0-F4), all variants of the PM loss

are clearly better than the angular loss in terms of rota-

tion estimation. In addition, disentangling the rotation R

and distance tz in LPM largely enhances the rotation accu-

racy. Nonetheless, the overall performance is slightly infe-

rior to our disentangled formulation LPose, which disentan-

gles tSITE rather than the 3D translation t. It is worth noting

that LR,sym has a rather insignificant contribution compared

with LR. This can be accounted to the lack of severe sym-

metries in LM and to our proposed surface region attention

MSRA.

Effectiveness of Geometry-Guided Direct Regression.

Furthermore, we train GDR-Net leveraging only our

pose loss LPose by discarding the geometric supervision

LGeom. Surprisingly, even the simple version outperforms

CDPN [28] w.r.t. ADD(-S) 0.1d, when employing R6d for

rotation (Tab. 1b G0 vs. A0). Yet, we clearly outperform

our baseline using GDR-Net with explicit geometric guid-

ance. If we predict the rotation as allocentric quaternions,

the accuracy decreases (G2 vs. G0), which can partially ac-

count for the weak performance of previous direct meth-

ods [60, 11]. Moreover, when we remove the guidance of

M2D, the accuracy drops significantly (G0 vs. G1). Based

on these results, we can see that an appropriate geometric

guidance is essential for direct 6D pose regression.

Direct pose regression also enhances the learning of ge-

ometric features as the error signal from pose can be back-

propagated. Tab. 1b (B1, B2) shows that when evaluating

GDR-Net with PnP/RANSAC from the predicted M2D-3D,

the overall performance exceeds CDPN [28]. Similar to

CDPN, we run tests using PnP/RANSAC for R and Patch-

PnP for t, which achieves the overall best accuracy (B2).

This demonstrates that our unified GDR-Net can leverage

the best of both worlds, namely, geometry-based indirect

methods and direct methods.

Effectiveness of Detection and Pose Decoupling. Similar

to CDPN [28], we decouple the detector and GDR-Net by

means of Dynamic Zoom-In (DZI). When evaluating GDR-

Net with the Yolov3 detections from [28], the overall ac-

curacy only drops slightly while the accuracy for ADD(-S)

0.1d almost remains unchanged (Tab. 1b H0).

4.4. Comparison with State of the Art

We compare our approach with state-of-the-art methods

on the LM-O and YCB-V datasets.4 During training, we

4We follow the most commonly used evaluation protocol for LM-O and

YCB-V, which has also been employed by another learned PnP [19] and

many other works such as [60, 40, 47, 62, 27, 25]. We kindly refer the

readers to our supplement for the results under BOP [18] setup.
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Method
w/o Refinement w/ Refinement

PoseCNN [60] PVNet [40] Single-Stage [19] HybridPose [47] GDR-Net (Ours) DPOD [62] DeepIM [27]

P.E. 1 N N N 1 N 1 N 1 1

Training

Data

real

+syn

real

+syn

real

+syn

real

+syn

real

+syn

real

+syn

real

+pbr

real

+pbr

real

+syn

real

+syn

Ape 9.6 15.8 19.2 20.9 41.3 39.3 44.9 46.8 - 59.2

Can 45.2 63.3 65.1 75.3 71.1 79.2 79.7 90.8 - 63.5

Cat 0.9 16.7 18.9 24.9 18.2 23.5 30.6 40.5 - 26.2

Driller 41.4 65.7 69.0 70.2 54.6 71.3 67.8 82.6 - 55.6

Duck 19.6 25.2 25.3 27.9 41.7 44.4 40.0 46.9 - 52.4

Eggbox∗ 22.0 50.2 52.0 52.4 40.2 58.2 49.8 54.2 - 63.0

Glue∗ 38.5 49.6 51.4 53.8 59.5 49.3 73.7 75.8 - 71.7

Holep. 22.1 36.1 45.6 54.2 52.6 58.7 62.7 60.1 - 52.5

MEAN 24.9 40.8 43.3 47.5 47.4 53.0 56.1 62.2 47.3 55.5

Table 2: Comparison with State of the Art on LM-O. We report the Average Recall (%) of ADD(-S). P.E. means whether

the method is trained with 1 pose estimator for the whole dataset or 1 per object (N objects in total). (∗) denotes symmetric

objects and “-” denotes unavailable results.

Method Ref. P.E. ADD(-S)
AUC of

ADD-S

AUC of

ADD(-S)

PoseCNN [60] 1 21.3 75.9 61.3

SegDriven [20] 1 39.0 - -

PVNet [40] N - - 73.4

Single-Stage [19] N 53.9 - -

GDR-Net (Ours) 1 49.1 89.1 80.2

GDR-Net (Ours) N 60.1 91.6 84.4

DeepIM [27] X 1 - 88.1 81.9

CosyPose [25] X 1 - 89.8 84.5

Table 3: Comparison with State of the Art on YCB-V.

We report the results evaluated w.r.t. ADD(-S), and AUC of

ADD-S and ADD(-S). As in [60], ADD-S uses the symmet-

ric metric for all objects, while ADD(-S) only uses the sym-

metric metric for symmetric objects. P.E. means whether

the method is trained with 1 pose estimator for the whole

dataset or 1 per object (N objects in total). Ref. stands for

Refinement and “-” denotes unavailable results.

apply similar color augmentation as in [49] to prevent over-

fitting. For YCB-V, due to the large number of symmetric

objects, the symmetric variant for the pose loss LR,sym is

employed. During testing, for LM-O, we employ Faster-

RCNN [44] to obtain 2D detections from the RGB images;

for YCB-V, we utilize the publicly available detections from

FCOS [52] 5.

Results on LM-O. Tab. 2 presents the results of GDR-Net

compared with state-of-the-art methods on LM-O. When

trained with “real+syn”, our single GDR-Net is com-

parable to [47, 62]. Nevertheless, using one network per

object, we easily surpass state of the art without refinement.

Moreover, our GDR-Net trained with “real+pbr” even

outperforms the refinement-based method DeepIM [27].

Results on YCB-V. We compare GDR-Net to state-of-the-

art approaches on YCB-V in Tab. 3 (see supplement for de-

tailed results). Our GDR-Net trained one network per object

5https://github.com/LZGMatrix/BOP19 CDPN 2019ICCV

exceeds again state of the art, even without leveraging any

refinement. Our single model for all objects is also com-

parable to the refinement-based methods such as [27, 25]

w.r.t. AUC of ADD-S metric. Noteworthy, our approach

runs much faster than the methods requiring refinement.

4.5. Runtime Analysis

On a desktop with an Intel 3.40GHz CPU and an

NVIDIA 2080Ti GPU, given a 640× 480 image, using the

Yolov3 [43] detector, our approach takes ≈ 22ms for a sin-

gle object and ≈ 35ms for 8 objects, including 15ms for

detection.

5. Conclusion

In this work, we revisited the ingredients of direct 6D

pose regression and proposed a novel GDR-Net to unify di-

rect and geometry-based indirect methods. The key idea

is to exploit the intermediate geometric features regarding

2D-3D correspondences organized regularly as image-like

2D patches, which facilitates us to utilize a simple yet effec-

tive 2D convolutional Patch-PnP to directly regress 6D pose

from geometric guidance. Our approach achieves real-time,

accurate and robust monocular 6D object pose estimation.

In the future, we want to extend our work to more challeng-

ing scenarios, such as the lack of annotated real data [55, 34]

and unseen object categories or instances [56, 37].
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