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Abstract

Face detection in low light scenarios is challenging

but vital to many practical applications, e.g., surveillance

video, autonomous driving at night. Most existing face

detectors heavily rely on extensive annotations, while col-

lecting data is time-consuming and laborious. To reduce

the burden of building new datasets for low light condi-

tions, we make full use of existing normal light data and

explore how to adapt face detectors from normal light to

low light. The challenge of this task is that the gap between

normal and low light is too huge and complex for both

pixel-level and object-level. Therefore, most existing low-

light enhancement and adaptation methods do not achieve

desirable performance. To address the issue, we propose

a joint High-Low Adaptation (HLA) framework. Through

a bidirectional low-level adaptation and multi-task high-

level adaptation scheme, our HLA-Face outperforms state-

of-the-art methods even without using dark face labels for

training. Our project is publicly available at: https:

//daooshee.github.io/HLA-Face-Website/.

1. Introduction

Face detection is fundamental for many vision tasks, and

has been widely used in a variety of practical applications,

such as intelligent surveillance for smart city, face unlock,

and beauty filters in mobile phones. Over the past decades,

extensive researches have made great progress in face de-

tection. However, face detection under adverse illumination

conditions is still challenging. Images captured without in-

sufficient illumination suffer from a series of degradations,

e.g., low visibility, intensive noise, and color cast. These

degradations can not only affect the human visual quality,

but also worsen the performance of machine vision tasks,

which may cause potential risks in surveillance video anal-

ysis and nighttime autonomous driving. In Fig. 1 (a), the
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Figure 1. Dark face detection visual results and our learning

paradigm. Compared with the result of DSFD [26] on original low

light images and the enhanced version by LIME [16], our method

can better recognize the faces in dark scenarios.

state-of-the-art face detector DSFD [26] can hardly detect

faces under insufficient illumination, in direct contrast to its

over 90% precision on WIDER FACE [49].

To promote the research of low light face detection, a

large scale benchmark DARK FACE [50] is constructed.

The emergence of dark face data gives birth to a number

of dark face detection researches [27]. However, existing

methods are dependent on extensive annotations, therefore

have poor robustness and scalability.

In this paper, based on the benchmarking platform pro-

vided by DARK FACE, we explore how to adapt normal

light face detection models to low light scenarios without

the requirement of dark face annotations. We find that there

are two levels of gaps between normal light and low light.

One is the gap in pixel-level appearance, such as the insuffi-

cient illumination, camera noise, and color bias. The other

is the object-level semantic differences between normal and

low light scenes, including but not limited to the exis-

tence of street lights, vehicle headlights, and advertisement

boards. Traditional low light enhancement methods [16, 52]

are designed for improving visual quality, therefore cannot

fill the semantic gap, as shown in Fig. 1 (b). Typical adapta-
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tion methods [24, 41] are mainly designed for the scenario

where the two domains share the same scene, such as adapt-

ing from Cityscapes [8] to Foggy Cityscapes [42]. But for

our task, the domain gap is more huge, raising a more diffi-

cult challenge for adaptation.

To adapt from normal light to low light, we propose

a High-Low Adaptation Face detection framework (HLA-

Face). We consider joint low-level and high-level adapta-

tion. Specifically, for low-level adaptation, typical meth-

ods either brighten the dark image or darken the bright im-

age. However, due to the huge domain gap, they do not

achieve desirable performance. Instead of unidirectional

low-to-normal or normal-to-low translation, we bidirection-

ally make two domains each take a step towards each other.

By brightening the low light images and distorting the nor-

mal light images, we build intermediate states that lie be-

tween the normal and low light. For high-level adaptation,

we use multi-task self-supervised learning to close the fea-

ture distance between the intermediate states built by low-

level adaptation. By combining low-level and high-level

adaptation, we outperform state-of-the-art face detection

methods even though we do not use the labels of dark faces.

Our contributions are summarized as follows:

• We propose a framework for dark face detection with-

out annotated dark data. Through a joint low-level and

high-level adaptation, our model achieves superior per-

formance compared with state-of-the-art face detection

and adaptation methods.

• For low-level adaptation, we design a bidirectional

scheme. Through brightening low light data and dis-

torting normal light data with noise and color bias, we

set up intermediate states and make two domains each

take a step towards each other.

• For high-level adaptation, we introduce cross-domain

self-supervised learning for feature adaptation. With

context-based and contrastive learning, we compre-

hensively close the feature distance among multiple

domains and further strengthen the representation.

2. Related Works

Low Light Enhancement. Low illumination is a common

kind of visual distortion, which might be caused by unde-

sirable shooting conditions, wrong camera operations, and

equipment malfunctions, etc. There have been many liter-

atures for low light enhancement. Histogram equalization

and its variants [37] stretch the dynamic range of the im-

ages. Dehazing-based methods [11] regard dark images as

inverted hazy images. Retinex theory assumes that images

can be decomposed into illumination and reflectance. Based

on the Retinex theory, a large portion of works [12, 16] es-

timate illumination and reflectance, then process each com-

ponent separately or simultaneously. Recent methods are

mainly based on deep learning. Some design end-to-end

processing models [15], while some inject traditional ideas

such as the Retinex theory [2, 48, 52]. Besides processing 8-

bit RGB images, there are also models for RAW images [4].

The problem is that these methods are mainly designed

for human vision rather than machine vision. How pixel-

level adjustment can benefit and guide high-level tasks has

not been well explored. In this paper, we provide corre-

sponding solutions for dark face detection.

Face Detection. Early face detectors rely on hand-crafted

features [47], which are now replaced by deep features

learned from data-driven convolutional neural networks. In-

herit from generic object detection, typical face detectors

can be classified into two categories: two-stage and one-

stage. Two-stage models [38, 40] first generate region pro-

posals, then refine them for the final detection. One-stage

models [29] instead directly predict the bounding boxes and

confidence. The difference between generic object and face

detection is that, in face detection, the scale variation is of-

ten much larger. Existing methods solve this problem by

multi-scale image and feature pyramids [19, 28], or various

anchor sampling and matching strategies [33, 51, 54].

Despite the prosperity of face detection researches, ex-

isting models seldom consider the scenario of insufficient

illumination. In this paper, we propose a dark face detec-

tor that outperforms state-of-the-art methods even without

using dark annotations.

Dark Object Detection. With the rapid development of

deep learning, object detection has attracted more and more

attention. However, few efforts have been made for dark

objects. For RAW images, YOLO-in-the-Dark [44] merges

models pre-trained in different domains using glue lay-

ers and a generative model. For RGB images, Loh et al.

build the ExDark [31] dataset and analyze the low light im-

ages using both hand-crafted and learned features. DARK

FACE [50] is a large-scale low light face dataset, giving

birth to a series of dark face detectors in the UG2 Prize

Challenge1. However, most of these models highly rely on

annotations, thus are of limited flexibility and robustness.

To get rid of the dependency on labels, Unsupervised

Domain Adaptation (UDA) may be a plain solution [21, 24].

Although UDA has been demonstrated to be effective in

many applications, due to the huge gap between normal and

low light, these methods have limited performance in dark

face detection. In this paper, we propose a superior method

by combining low- and high-level adaptation.

3. Joint Adaptation for Dark Face Detection

In this section, we firstly introduce the motivation of our

learning paradigm, then describe the detailed designs.

1http://cvpr2020.ug2challenge.org/
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Figure 2. Comparison of different adaptive low light detection techniques. L: low light data. H: normal light data. Existing enhancement-

based, darkening-based, and feature adaptation methods either ignore the high-level gap, or have limited effects due to the huge and complex

gap between L and H . Our method instead considers both low-level and high-level adaptation, therefore achieves better performance.

(a) WIDER FACE (b) DARK FACE

Figure 3. Comparison of WIDER FACE and DARK FACE. On the

right, DARK FACE is enhanced for better visibility.

3.1. Motivation

The task is to adapt face detectors trained on normal

light data H to unlabeled low light data L. As shown in

Fig. 2, existing methods can be roughly divided into three

categories: enhancement, darkening, and feature adapta-

tion. Enhancement-based methods [7] brighten the low

light images and directly test on them. They usually re-

quire no model fine-tuning, therefore are highly flexible.

Darkening-based methods [1, 25, 43] first darken the nor-

mal light data into a dark version, then re-train the model on

the transferred annotated data. Enhancement and darkening

are all pixel-level. For feature adaptation, typical meth-

ods use alignment [45], adversarial learning [13], or pseudo

labeling [21] to directly adapt the features of the model.

The problem for dark face detection is that the gap

between H and L is too huge and complex for existing

methods to handle. As shown in Fig. 3, the images in

WIDER FACE [49] and DARK FACE [50] not only have

different pixel-level appearance (bright v.s. dark, clean v.s.

noisy), but also contain different objects and scenes (pho-

tos, paintings v.s. street views). However, enhancement-

and darkening-based methods only consider the pixel-level

gap. Feature adaptation methods try to fill the whole gap in

one step. But as shown Sec. 4.2, the effect is limited.

To jointly fill both pixel-level and feature-level gaps for

dark face detection, we propose a High-Low Adaptation

(HLA) scheme. As shown in Fig. 2 (e), we set low-level

intermediate states between L and H , and based on these

states adapt the corresponding high-level representations.

Specifically, the low-level distance is reduced by both en-

hancing and darkening. Compared with L-to-H or H-to-L
unidirectional translation, our bidirectional translation: L-

to-E(L) and H-to-D(H), can not only ease the difficulty

of adaptation, but also provide more tools for feature-level

adaptation. The high-level distance is reduced by push-

ing the feature spaces of multiple states towards each other.

Moreover, the feature representation is further enhanced by

contrastive learning. While testing, we first process the im-

age by E(·), then apply the adapted face detector.

The framework detail is shown in Fig. 4. In the follow-

ing, we will respectively introduce the proposed low-level

and high-level adaptation schemes.

3.2. Bidirectional Low­Level Adaptation

The challenge of low-level adaptation lies in two aspects.

One is the co-existence of the high-level gap, which can

confuse pixel-level transfer models. For example, we show

the effect of some methods for transferring H to L in Fig. 5.

Different from WIDER FACE, DARK FACE contains many

street lights, vehicle highlights, and signboards. Accord-

ingly, CUT [36] generates weird lights on human bodies,

and CycleGAN [55] generates street lights on faces. MU-

NIT [20] can distinguish content and style, therefore has no

street light artifact. However, MUNIT cannot completely

darken the image, and the result is visually far from L.

The other challenge is the difficulty of low light enhance-

ment itself. Existing low light enhancement methods are

mainly designed for human vision rather than machine vi-

sion. Some methods draw black edges, keep noisy parts

dark, or enhance the contrast to improve the comprehen-

sive visual quality, which can damage the high-level detec-

tion performance. Moreover, images in DARK FACE suf-

fer from intensive noise and color bias. However, existing

denoising and color reconstruction methods are not robust

enough to handle this extreme case.

To solve the above challenges, we propose the bidirec-

tional low-level adaptation scheme. Low light degradation

is a complex process. We roughly decompose the related

factors into three aspects: illumination, noise, and color
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Figure 4. The overview of our joint High-Low Adaptation (HLA) framework for dark face detection. Low-level adaptation fills the gap by

creating intermediate states. We bidirectionally brighten the low light data as well as distort the normal light data with noise and color bias.

Based on the built intermediate states, we use multi-task cross-domain self-supervised learning to fill the high-level gap.
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Figure 5. Results of transferring between WIDER FACE and

DARK FACE. (b) and (d) are enhanced for better visualization.

bias. Although denoising and color correction is difficult,

adding noise and applying color bias inversely is relatively

easy. On this basis, we bright L into E(L), and distort H
with noises and color bias to form D(H). Compared with

L and H , E(L) and D(H) are more similar. In this way,

we ease the difficulty of adaptation by making L and H
take a step towards each other. Also, by formulating the

specific components of low light degradation, the transfer

model will not be disturbed by the semantic gap between

the domains. In the following, we will introduce the de-

tailed designs of each procedure.

Brightening. Different from common low light enhance-

ment tasks, here we want to adjust the illumination without

denoising or color reconstruction. Moreover, low light im-

ages suffer from nonuniform illumination. Some faces may

be brightened by street lights, while some may be covered

in severe darkness. Therefore, we also need to prevent over-

exposure as well as under-exposure.

Our module is based on nonlinear curve mapping [15],

which is made up of iterative quadratic curves LE(·):

LE(x,A) = x+Ax(1− x), (1)

LEn = LE(LEn−1;An), (2)

where LE0 is the input image, LEn is the result at iteration

n, and An is a pixel-wise three-channel adjustment map es-

timated by neural networks. Compared with common end-

to-end or Retinex-based deep enhancement methods, curve

mapping does not introduce extra noise or artifacts. We

follow [15] to use a 7-layer CNN with symmetrical skip-

connections and the corresponding training objectives.

The issue of [15] is that, the enhancement is conservative

(Weak). As shown in Fig. 6 (b), many faces are still covered

in darkness. This is because further enhancing the image

can bring more noise, and [15] choose to hide these noises

in darkness, so that the visual quality of the whole image is

better. We instead propose strong illumination enhancement

(Strong). By doubling the iteration number in Eq. (1) and

widening the curve estimation network, the model can en-

hance the image with higher brightness. The drawback may

be that noise and color bias come along, but we can leave

it to the following H → D(H) process. This is also the

difference between our enhancement module and common

low light enhancement methods.

Noise Synthesis. Although the pixel-level distance can be

reduced by brightening, the gap between E(L) and H is

still challenging. Therefore, we further decompose the gap

remained into color and noise. Also, by separating out the

color, we can use color to guide the noise synthesis process.

As shown in Fig. 4, we first blur E(L) by a strong Bi-

lateral filter of d = 25 and σ = 75. The blurring result

E(L)blur works as the color guidance. Then, a Pix2Pix [22]
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(a) Input (b) Weak (c) Strong

Figure 6. Effects of weak and strong brightening. Compared with

(c), many faces are still covered in darkness in (b).

is trained for transferring from E(L)blur to E(L). Finally,

we blur H in the same way and use the trained Pix2Pix to

add noise. As shown in Fig. 5, Hnoise successfully imitates

the noise pattern of E(L). Their difference in color distri-

bution will be handled in the next step.

Color Jittering. We want the color distribution of D(H) to

match that of E(L). Based on statistical analysis, we set the

jittering range to brightness: (0.4, 1.2), contrast: (0.6, 1.4),

saturation: (0.6, 1.4) and hue: (0.8, 1.2).

3.3. Multi­Task High­Level Adaptation

Most feature adaptation methods are based on alignment,

pseudo labeling, and adversarial learning. However, align-

ment and pseudo labeling cannot well handle the huge gaps,

while adversarial learning is not stable. We instead fully use

the natural information of the images themselves, i.e., self-

supervised learning. By forcing the self-supervised learn-

ing classifiers to be shared across domains, the features are

forced to be mapped into the same high dimensional sub-

space, therefore closing the high-level gap.

To push E(L), H and D(H) towards each other, we

first close E(L)-H by cross-domain context-based self-

supervised learning, then close H-D(H) by cross-domain

contrastive learning. We further enhance the representation

of E(L) by single-domain contrastive learning. The whole

adaptation works in a multi-task way. In the following, we

will introduce the details of each learning scheme.

Closing E(L) and H. Context-based self-supervised learn-

ing designs pretext tasks, through which the model can learn

to understand the spatial context of objects. Here, we use

the jigsaw puzzling game [35]. We have also tried rota-

tion [14] and combining jigsaw with rotation, but find that

using jigsaw alone works the best. One possible explana-

tion for this may be that many images in WIDER FACE

are paintings or advertisements, where the faces may have

strange angles. Therefore, the rotation prediction pretext

task can be ambiguous.

Similar to [3], we assemble 3 × 3 patches into a whole

image and set the patch permutation number to 30, i.e., 30

classification problem. Denote pjig as the permutation la-

bel, and Lc as the cross-entropy loss, we have:

L
E(L)
jig = Lc(F

E(L)
jig , p

E(L)
jig ), (3)

LH
jig = Lc(F

H
jig, p

H
jig), (4)

where Fjig stands for the feature extracted from the corre-

sponding domain. E(L) and H share classification heads,

which can force the semantic features to be mapped into the

same space, therefore closing high-level gaps. The final loss

for closing E(L) and H is:

LE(L)↔H = L
E(L)
jig + LH

jig. (5)

Closing H and D(H). The idea of contrastive learning is

that, given a query v, identifying its “positive” pair v+ and

“negatives” pairs v− = {v−1 , v
−
2 ..., v

−
N}. With similarity

measured by dot product, the objective Lq(v, v
+, v−) is:

Lq = −log

[

σ(v, v+)

σ(v, v+) +
∑N

n=1 σ(v, v
−
n )

]

, (6)

σ(x, y) = exp(x · y/τ), (7)

where τ is a temperature hyper-parameter. Intuitively, this

is an (N + 1) classification problem.

To reduce the distance between H and D(H), we take

advantage of the behavior that contrastive learning brings

positive samples closer. In specific, we make the positive

pair of H to be the patch from D(H), and vice versa:

L̃H↔D(H) = Lq(H,D(H)+, H−)

+ Lq(D(H), H+, D(H)−). (8)

In this way, the feature similarity between H and D(H) can

be improved, and the high-level gap can be closed.

We also introduce single-domain contrastive learning on

H and D(H) themselves to make the features better. In

the implementation, the above four losses are simplified by

regarding D(·) as a part of the augmentation:

LH↔D(H) = Lq(D
∗
i (H), D∗

j (H)+, D∗
k(H)−), (9)

where D∗(H) has a 50% probability of being H , and 50%

of being D(H). While training, we use the Momentum

Contrast (MoCo) [17] and follow [5] for other settings.

Enhancing E(L). We also find that it is beneficial to en-

hance the feature on E(L) by contrastive learning:

LE(L)↑ = Lq(E(L), E(L)+, E(L)−). (10)

Final objective. Our model learns in a multi-task way. De-

note Ldet as the detection loss, the final objective is:

L = λdetLdet + λE(L)↔HLE(L)↔H

+ λH↔D(H)LH↔D(H) + λE(L)↑LE(L)↑, (11)

where λs are hyper-parameters to balance different losses.
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4. Experimental Results

4.1. Implementation Details

Network Architecture. DSFD [26] is used as the face

detection baseline. Our headers for self-supervised learn-

ing are added on the conv3 3, conv4 3, conv5 3, conv fc7,

conv6 2, and conv7 2 layers of the backbone. For more de-

tails, please refer to the supplementary material.

Training and Evaluation Settings. All experiments are

based on WIDER FACE [49] and DARK FACE [50]. Our

model is allowed to use the labels of WIDER FACE, but not

allowed to use the labels of DARK FACE. The framework

is first pre-trained on WIDER FACE, then fine-tuned with

both WIDER FACE and the images of DARK FACE. Pre-

training follows the same process of [26]. For fine-tuning,

the batch size is set to 8. We use SGD with 0.9 momen-

tum and 5e-4 weight decay. The learning rate is set to 1e-4

for the first 20k iterations, and 1e-5 for another 40k itera-

tions. Fine-tuning takes about 15 hours with two GeForce

RTX 2080Ti. The testing process is the same as the original

DSFD implementation.

For DARK FACE, we use the official train/test setting,

and further split 500 images from the training set for valida-

tion. Finally, there are 5500 images for training, 500 images

for validation, and 4000 images for testing. Performance is

measured by mean Average Precision (mAP), and evaluated

with the official tool2 of DARK FACE.

4.2. Comparisons with State­of­the­Art Methods

The proposed model is compared with 22 state-of-the-

art methods, covering the categories of face detection, low

light enhancement, image-to-image translation, and unsu-

pervised domain adaptation. The benchmarking results are

shown in Table 1 and Fig. 8.

Face Detection. Our model is compared with seven face

detectors and one generic object detector. Due to the poor

visibility caused by low light conditions, existing detectors

all achieve undesirable performance. As shown in Table 1,

Faster-RCNN3 [39] (re-trained on WIDER FACE) performs

worse than detection models designed especially for faces.

State-of-the-art face detection methods, SSH [34], Reti-

naFace [9], SRN [6], SFA [32], and PyramidBox [46] all

have mAP scores less then 15%, showing that insufficient

illumination can greatly hurt the performance of high-level

tasks. The best results here are achieved by DSFD [26] and

Small Hard Faces [53], but their mAP scores are still unsat-

isfactory. By adapting to the dark environment, our model

outperforms these detectors by a significant margin.

2https://github.com/Ir1d/DARKFACE eval tools
3https://github.com/playerkk/face-py-faster-rcnn

Table 1. Comparison results on DARK FACE.

Category Method mAP (%)

Face Detection

Faster-RCNN [39] 1.7

SSH [34] 6.9

RetinaFace [9] 8.6

SRN [6] 9.0

SFA [32] 9.3

PyramidBox [46] 12.5

Small Hard Face [53] 16.1

DSFD [26] 16.1

Enhancement Zero-DCE [15] 37.7

(with Small Hard Face) MF [12] 38.3

Enhancement

SICE [2] 4.7

(with DSFD)

RetinexNet [48] 12.0

KinD [52] 15.8

EnlightenGAN † [23] 20.8

EnlightenGAN [23] 31.3

Zero-DCE † [15] 37.3

LIME [16] 40.7

Zero-DCE [15] 41.3

MF [12] 41.4

Darkening
MUNIT [20] 29.7

(with DSFD)
CycleGAN [55] 31.9

CUT [36] 32.7

Unsupervised DA
OSHOT [10] 25.4

(with DSFD)
Progressive DA [18] 28.5

Pseudo Labeling [21] 35.1

Fully Supervised Fine-tuned DSFD [26] 46.0

Ours 44.4

† denotes retrained with DARKFACE.

Enhancement. We also explore the effect of illumination

adjustment, i.e., the scheme in Fig. 2 (b). We first use low

light enhancement methods to enhance the DARK FACE

images, then apply the face detectors. Although DSFD and

Small Hard Face are comparable on original dark images,

when the images are brightened, DSFD outperforms Small

Hard Face by 3.35% in mAP on average. This indicates that

DSFD is of better robustness and generalization. Therefore,

in the rest of the experiments, we use DSFD as the baseline.

Although some low light enhancement methods can im-

prove the performance to a large extent, some may even

damage the detection performance. This is because these

methods introduce more artifacts to the images. As shown

in Fig. 7, SICE [2] distorts the details. KinD [52] over-

denoises the images, leading to blurry edges and dull color.

RetinexNet [16] instead generates weird green colors on

dark regions. These three methods widen the gap between

the testing images and the daytime natural photographies,

therefore hurt the performance of the face detector. MF [12]

and Zero-DCE [15], LIME [16] can help DSFD better rec-

ognize faces. The visual quality of their subjective results
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(a) Ground truth (b) SICE (c) RetinexNet (d) KinD (e) LIME (f) Zero-DCE (g) MF (h) Ours

Figure 7. Qualitative comparison of different enhancement-based methods. (a) Input low light image and the ground truth boxes. (b)-(g)

Results of low-light enhancement methods with DSFD. (h) Our result.
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Figure 8. Precision-Recall (PR) curves on DARK FACE.

is also better. However, compared with our model, their

performance is still relatively poor. This is because when

simply combining low light enhancement and face detec-

tion, the semantic gap between WIDER FACE and DARK

FACE still remains.

Darkening. Darkening-based adaptation, i.e., the scheme

in Fig. 2 (c), proposes to re-train models on synthetic

dark data. Specifically, we first transfer WIDER FACE to

DARK FACE, then use the transferred WIDER FACE to

re-train DSFD. Most darkening-based methods [30, 43] are

based on the classic unsupervised image-to-image transla-

tion model CycleGAN [55]. We also test more powerful

MUNIT [20], and the newest CUT [36].

Quantitative and qualitative results can be found in Fig. 5

and Table 1, respectively. Although MUNIT is more pow-

erful than CycleGAN, the effect of benefitting dark face

detection is worse. This is because MUNIT cannot fully

darken the image as shown in Fig. 5 (f). In Fig. 5 (d)

and (e), although the result of CycleGAN looks like night

street views at the first glance, after enhancing the image,

we can see that CycleGAN actually distorts the details and

puts street light on faces. CUT generates less artifact than

CycleGAN, therefore the mAP score is higher. However,

compared with our model, the performances of darkening-

based methods are all unsatisfactory. This demonstrates our

Table 2. Comparison with Top 10 teams (with labels) in the UG2

Prize Challenge. Scores are copied from the official website.

Rank Team Name mAP (%)

1 CAS-Newcastle-TUM 62.45

2 CAS-NEU 61.84

- Ours 44.44

3 MSFace 42.71

4 iie 40.49

5 NTU-MiRA 37.50

6 DUTMedia 35.65

7 SCUT-CVC 35.18

8 IIAI VOS 34.73

9 USTC-NELSLIP 32.81

10 PHI-AI 29.95

assumption that the gap between normal and low light is too

huge and complex for pixel-level transfer models to handle.

Unsupervised Domain Adaptation. Most UDA methods

are based on Faster-RCNN, which performs too poor on

face detection as shown in Table 1. For a fair comparison,

we re-implement all compared UDA methods with DSFD.

OSHOT [10] directly closes the gap by self-supervised

learning of rotation angle prediction. It is originally de-

signed for one-shot adaptation. We change it into fine-

tuning on the whole DARK FACE. The performance of OS-

HOT is poor. This is because the gap between normal light

and low light faces is too huge to be handled by feature

adaptation. Pseudo Labeling [21] is a two-step progressive

UDA method. It first uses CycleGAN to artificially generate

training data, then uses pseudo labels to fine-tune the detec-

tor. Compared with directly training on images synthesized

by CycleGAN, the performance improves from 31.9% to

35.1% in mAP, demonstrating the effectiveness of pseudo

labels. However, the mAP is still less than 40%. Progressive

DA [18] combines pixel-level transferring and feature-level

adversarial learning. But adversarial learning still cannot

close the huge gap between normal and low light domains.

With Dark Annotations. Our model is also compared

with face detection methods that have access to the labels

of DARK FACE. The result of fine-tuning DSFD with la-

bels is shown in Table 1. We can see that our model is
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Table 3. Ablation study results on DARK FACE. † denotes using

the pyramid multi-scale testing scheme in DSFD.

E(·) E(L) ↔ H H ↔ D(H) E(L) ↑ mAP (%)

- - - - 15.3

Weak - - - 38.3

Strong - - - 39.1

- Rotation - - 22.7

- Jigsaw - - 26.9

- Rot + Jig - - 25.3

Strong - Pseudo labels - 40.2

Strong - H only - 38.2

Strong - Cross-domain - 40.9

Strong Jigsaw - - 40.2

Strong - Cross-domain X 41.1

Strong Jigsaw Cross-domain X 41.4

Strong Jigsaw Cross-domain X 44.4 †

much closer to the supervised learning upper bound 46.0%

in mAP, demonstrating the effectiveness of our adaptation

framework. We also show the leader board of the UG2 Prize

Challenge4 in Table 2, where our model outperforms most

of the teams. Notice that the teams in UG2 are allowed

to use labels for training, while our model uses no DARK

FACE annotations.

4.3. Ablation Studies

To support our motivation and the joint high-low adap-

tation framework, in this section, we analyze the effect of

each technical design. The results are shown in Table 3.

Effectiveness of E(L). Enhancing the testing images can

improve the performance from 15.3% to 39.1% in mAP.

Compared with the baseline (Weak), the performance of our

E(L) is higher by 0.8%, supporting our proposed strong en-

hancement.

Effectiveness of E(L) ↔ H. We show the effect of dif-

ferent choices of context-based self-supervised learning for

closing E(L) and H . Using jigsaw alone works the best.

Adding rotation can damage the performance. As we men-

tioned in Sec. 3.3, since many images in WIDER FACE are

paintings or advertisements, the rotation angle prediction

pretext task can be ambiguous. As shown in Table 4, the

rotation top-1 classification accuracy on WIDER FACE is

only slightly over random guess. In comparison, although

the jigsaw pretext task is a 30-class problem, the top-1 ac-

curacies are higher than 85%. We also notice that for both

jigsaw and rotation, the performance on DARK FACE is

higher than that on WIDER FACE. This is because the im-

ages in WIDER FACE are more diverse.

4 http://cvpr2020.ug2challenge.org/program19/leaderboard19 t2.html

Table 4. Top-1 classification accuracy of jigsaw and rotation self-

supervised learning pretext tasks in different domains.

Layer Jig, E(L) Jig, H Rot, E(L) Rot, H

conv3 3 97.5% 80.6% 19.2% 15.4%

conv4 3 98.9% 87.8% 33.6% 26.2%

conv5 3 99.0% 89.6% 51.2% 36.7%

conv fc7 99.3% 89.7% 54.9% 33.5%

conv6 2 99.3% 89.7% 51.2% 28.3%

conv7 2 99.3% 90.0% 41.8% 19.3%

average 98.9% 87.9% 42.0% 26.6%

Effectiveness of H ↔ D(H). We further explore the strategy

for closing H and D(H). The proposed cross-domain con-

trastive learning scheme LH↔D(H) can improve the mAP

score by 1.8%. If we only use contrastive learning on H ,

the performance even drops from 39.1% to 38.2%. This

is because if we enhance features only in H , the detection

model will concentrate more on H , therefore increasing the

distance between H and E(L). The result also supports our

design of cross-domain contrastive learning and the neces-

sity of setting the intermediate domain D(H).

Contrastive learning can be regarded as a kind of “soft”

label. Naturally, we wonder about the effect of “hard” label.

We test the result of directly training with transferred labels

on D(H), i.e., pseudo labeling. The mAP can be improved

from 39.1% to 40.2%, but the improvement is smaller than

using our contrastive learning. This is because representa-

tion learning based on “soft” labels can avoid the inaccuracy

of manual annotations and better refine the features.

Combination Effect. Finally, we demonstrate the combi-

nation effect of our design. Enhancing the feature on E(L)
(LE(L)↑) can further improve the mAP score. The full ver-

sion of our model achieves the best performance, demon-

strating the effectiveness of our joint high-level and low-

level adaptation framework.

DSFD uses a pyramid multi-scale testing scheme. Al-

though it can improve the performance, the running time

increases from 1.25 hours to 10 hours. Even without this

multi-scale scheme, i.e., using a more weak face detection

baseline, the performance of our model (41.4% in mAP) can

still outperform most of the state-to-the-arts in Table 1.

5. Conclusion

We design a joint high-level and low-level adaptation

framework for dark face detection. We propose a bidi-

rectional pixel translation pipeline for the low level, and

a multi-task adaptation strategy based on self-supervised

learning for the high level. Our framework demonstrates

the potential of joint high-low adaptation and can inspire

other related low light high-level vision tasks.
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Hervé Jégou, editors, ECCV, 2016. 3
[46] Xu Tang, Daniel K. Du, Zeqiang He, and Jingtuo Liu. Pyra-

midbox: A context-assisted single shot face detector. In

Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and

Yair Weiss, editors, ECCV, 2018. 6
[47] Paul A. Viola and Michael J. Jones. Robust real-time face

detection. IJCV, 57(2):137–154, 2004. 2
[48] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu.

Deep retinex decomposition for low-light enhancement. In

BMVC, 2018. 2, 6
[49] Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang.

WIDER FACE: A face detection benchmark. In CVPR, 2016.

1, 3, 6
[50] Wenhan Yang, Ye Yuan, Wenqi Ren, Jiaying Liu, Wal-

ter J. Scheirer, Zhangyang Wang, Taiheng Zhang, Qiaoy-

ong Zhong, Di Xie, Shiliang Pu, Yuqiang Zheng, Yanyun

Qu, Yuhong Xie, Liang Chen, Zhonghao Li, Chen Hong,

Hao Jiang, Siyuan Yang, Yan Liu, Xiaochao Qu, Pengfei

Wan, Shuai Zheng, Minhui Zhong, Taiyi Su, Lingzhi He,

Yandong Guo, Yao Zhao, Zhenfeng Zhu, Jinxiu Liang, Jing-

wen Wang, Tianyi Chen, Yuhui Quan, Yong Xu, Bo Liu, Xin

Liu, Qi Sun, Tingyu Lin, Xiaochuan Li, Feng Lu, Lin Gu,

Shengdi Zhou, Cong Cao, Shifeng Zhang, Cheng Chi, Chu-

bin Zhuang, Zhen Lei, Stan Z. Li, Shizheng Wang, Ruizhe

Liu, Dong Yi, Zheming Zuo, Jianning Chi, Huan Wang, Kai

Wang, Yixiu Liu, Xingyu Gao, Zhenyu Chen, Chang Guo,

Yongzhou Li, Huicai Zhong, Jing Huang, Heng Guo, Jianfei

Yang, Wenjuan Liao, Jiangang Yang, Liguo Zhou, Mingyue

Feng, and Likun Qin. Advancing image understanding in

poor visibility environments: A collective benchmark study.

IEEE TIP, 29:5737–5752, 2020. 1, 2, 3, 6
[51] Shifeng Zhang, Xiangyu Zhu, Zhen Lei, Hailin Shi, Xiaobo

Wang, and Stan Z. Li. Sˆ3fd: Single shot scale-invariant face

detector. In ICCV, 2017. 2
[52] Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling

the darkness: A practical low-light image enhancer. In ACM

MM, 2019. 1, 2, 6
[53] Zhishuai Zhang, Wei Shen, Siyuan Qiao, Yan Wang, Bo

Wang, and Alan L. Yuille. Robust face detection via learning

small faces on hard images. In WACV, 2020. 6
[54] Chenchen Zhu, Ran Tao, Khoa Luu, and Marios Savvides.

Seeing small faces from robust anchor’s perspective. In

CVPR, 2018. 2
[55] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, 2017. 3, 6, 7

16204


