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Abstract

While Generative Adversarial Networks (GANs) show

increasing performance and the level of realism is becom-

ing indistinguishable from natural images, this also comes

with high demands on data and computation. We show that

state-of-the-art GAN models – such as they are being pub-

licly released by researchers and industry – can be used for

a range of applications beyond unconditional image gen-

eration. We achieve this by an iterative scheme that also

allows gaining control over the image generation process

despite the highly non-linear latent spaces of the latest GAN

models. We demonstrate that this opens up the possibility to

re-use state-of-the-art, difficult to train, pre-trained GANs

with a high level of control even if only black-box access is

granted. Our work also raises concerns and awareness that

the use cases of a published GAN model may well reach be-

yond the creators’ intention, which needs to be taken into

account before a full public release. Code is available at

https://github.com/a514514772/hijackgan.

1. Introduction

Generative Adversarial Nets (GANs) [14] have achieved

remarkable success in many applications, such as image

synthesis [20, 19, 21] and image translation [8, 10, 9, 33].

By learning a mapping between noise and images, the mod-

els are skilled to produce photo-realistic images from ran-

dom noise. However, as the architectures become sophis-

ticated [20, 19, 7], training modern GANs often requires

massive data and computation resources. For example, it

takes one high-quality face dataset, 8 V100 GPUs, and one

week to train a single StyleGAN [1] model. In light of

this trend, it is crucial to reuse existing pre-trained GANs,

such as those being released by researchers or industry, for

building green AI systems, in which the critical factor is to

achieve other tasks beyond the original intention of GANs.

To reuse GANs for other tasks, prior works have shown

that semantic manipulation can be realized by vector arith-

metic [23] or moving along constant attribute vectors [13,

28, 25, 12] in latent spaces. For instance, Interface-

GAN [25] demonstrates that facial attribute manipulation

can be achieved by moving noise close to or away from the

linear decision boundary of the desired attribute. Although

these methods reveal the potential that pre-trained GANs

could go beyond unconditional generation, they highly rely

on the assumption of linear manifolds, thereby ignoring

the nature of highly non-linear latent spaces (e.g., Z-space

of StyleGAN [25, 34]). This strong assumption could be

harmful, especially for rare attributes, and lead to ineffec-

tive manipulation.

Inspired by this observation, we propose a novel frame-

work, which gains high-level control over unconditional im-

age generation by iteratively traversing the non-linear latent

spaces. Specifically, we first train a proxy model that by-

passes the gradients from one pretrained GAN and other

fixed task models, and then dynamically decides the moving

direction in each step, thus producing smoother and more

effective attribute transition. Next, we propose an orthogo-

nal constraint to solely edit the attribute of interest while re-

taining others in images. Despite only black-box access, we

show that our method can achieve various unintended tasks,

including manipulation over facial attributes, head poses,

and landmarks.

As a result of our experiments, we find that our frame-

work with pre-trained GANs not only facilitates other vi-

sion tasks but raises concerns regarding further usage. Even

without access to model parameters, the models can still be

applied to unintended tasks potentially for malicious pur-

poses. The owners of GANs should be aware and cau-

tious about the potential risks before releasing their models.

Overall, our contributions are summarized below.

• We propose a framework which leverages off-the-shelf

GANs to approach unintended vision tasks in a black-

box setting.

• We propose a constraint that helps our framework

solely edit the attribute of interest while retaining oth-

ers in images.
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• Extensive results show that our method can produce

smoother and more effective manipulation while pre-

serving non-target attributes better, as compared to

prior work. We also shed light on the potential risks

of unintended usage by gaining control over facial at-

tributes, head poses, and landmarks.

2. Related Work

Generative Adversarial Nets (GANs). Since GAN [14]

was proposed, it has advanced many applications such as

image synthesis [1, 19, 21] and image translation [8, 10,

9, 33]. The rationale behind it is to map noise drawn

from a simple distribution (e.g., Gaussian) to a real data

distribution (e.g., images) by non-linear networks. Many

works [20, 7, 19, 21, 30, 4] have been proposed to improve

image quality while the demands on resources also signifi-

cantly increase. In this work, we consider two state-of-the-

art GANs, PGGAN [19] and StyleGAN [20], as our gen-

erator backbones. The former one takes a vector of noise

as input and progressively upsamples features to generate

images. The later one adopts a similar strategy but first em-

bed the noise vector by neural networks and treat them as

style representations. As observed by Shen et al. [25], the

z-space of StyleGAN is expected to be more entangled than

PGGAN. In general, GAN models for new tasks are often

trained from scratch, making them inefficient and difficult

to scale up. With our framework, we show that pre-trained

GANs can well approach a range of applications beyond

their original purposes.

Study on Latent Spaces of GANs. A considerable amount

of works has attempted to understand the latent space of

GANs. In particular, [23, 28] show that semantic manipula-

tion is achievable by vector arithmetic on latent code; [20]

show that style transfer can be achieved by mixing two la-

tent represents. Some studies have attempted to identity se-

mantically meaningful directions by self-supervised learn-

ing [29] or PCA on latent spaces [15]. They are able to per-

form transformations by moving noise toward the direction.

However, since they approach it in an unsupervised fash-

ion, they may be limited to generalize to new tasks beyond

simple transformations.

Recent works further indicate that various semantic

meanings may be implicitly encoded in the latent space of

pre-trained GANs even though the concepts are not spec-

ified in the training set, ranging from memorability [13],

transformation [18], to facial attributes [25, 12, 27]. For

instance, InterfaceGAN [25] uses the normal vector of the

SVM decision boundary to edit facial attributes by mov-

ing noise along the vector. Notably, most of the works

mentioned above assume that the manifolds expand lin-

early in the latent space, ignoring that the underlying mani-

fold could be extremely non-linear. In contrast to the prior

works, we propose a general framework that can be applied

to various vision applications by traversing the non-linear

manifolds in an iterative scheme.

Study on Leveraging Pre-trained GANs. Recently, sev-

eral studies have investigated how to leverage existing

GANs to achieve new tasks. One way is to treat pre-

trained GANs as strong image priors, which can be achieved

by either exploiting GANs as a component of their net-

works [22, 5, 6, 17, 3] or directly editing the latent code

to find feasible solutions [1, 2, 11]. These methods often

require access to model parameters or additional training

data. In contrast, this work aims to study the potential us-

age of black-box pretrained GANs, advising the owners to

be careful about the risk before releasing models.

3. Hijack-GAN

In this section, we first formalize the problem and then

describe how to reuse models by our framework, followed

by a proposed orthogonal constraint to improve disentangle-

ment ability. Lastly, we discuss the practical considerations.

The overall architecture is shown in Figure 1.

3.1. Problem Statement

We aim to study the possibility that pre-trained GANs

can be used for unintended applications beyond uncondi-

tional generation. Specifically, we consider a victim gener-

ator G : z → I that maps noise z ∼ p(z) to realistic images

I , and one or multiple victim task models M : I → A that

map images I to the attributes space A. We aim to find a

trajectory T in the latent space p(z) such that, as traversing

along the path, the desired task can be gradually achieved,

which can be further expressed as follows:

L ◦M ◦G(z(i+1)) ≤ L ◦M ◦G(z(i)), ∀z(i) ∈ T , (1)

where L is the loss function of unintended tasks. Note that

the parameters and training data for the task are inacces-

sible, making it impossible to be directly solved by opti-

mization methods since they require the gradients from the

models.

3.2. Nonlinear Traversal

To identify a meaningful trajectory in the black-box set-

ting, we have to address the following two issues: (1) the

gradients from the GAN and the task models are impass-

able. (2) we need to identify a trajectory that precisely de-

scribes the highly non-linear manifolds.

Since the gradients are impassable, we first train a proxy

model P to distill the information from the models. We

assume that only z-space is available and synthesize data

pairs (z,M ◦ G(z)) to train the proxy model such that it

can map input noise to the attribute space; therefore, we
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Figure 1. An overview of the proposed framework. The framework takes two steps to reuse GANs: (a) train a proxy model to distill

information from pre-trained models, circumventing accessing the gradients of pre-trained models; (b) identify and iteratively traverse a

non-linear trajectory under the guidance of gradients.

circumvent directly accessing the gradients while remaining

informed about the relation between attributes and noise.

Next, we compute the Jacobian matrix of the proxy model

P with respect to the input noise z ∈ R
n.

J =
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where Pj denotes j-th attributes predicted by the proxy.

Each row vector of the matrix J, termed Jj for simplicity,

can be interpreted as the direction in which the correspond-

ing attribute changes most quickly; meanwhile, this vector

also gives us a hint to identify a meaningful non-linear tra-

jectory.

In light of this, we design an algorithm that iteratively

updates the position of noise under the guidance of the vec-

tor Jj :

z(i+1) = z(i) − λJ
(i)
j , (3)

where λ is a hyper-parameter deciding moving speed and

J
(i)
j is associated with the attribute of interest at step i.

Note that we normalize the J
(i)
j to better control the level

of changes. By repeatedly computing Eq. 3 in each step,

the target attribute in the generated image G(z) would be

gradually modified, granting us high-level control over im-

age generation despite the black-box access.

3.3. Constraint for Disentanglement

In many cases, attributes may be entangled with each

other, meaning that other non-target attributes would be

changed if we solely follow the steepest direction in Eq. 3.

To alleviate the problem, we additionally propose a con-

straint to encourage disentanglement. Since each row vec-

tor Jj in Eq. 2 represents one direction that affects certain

attributes most, we aim to find a vector which have the max-

imum inner product with the target direction Jj while being

orthogonal to other non-target directions Jk 6=j . We formu-

late the constraint as a linear program as follows.

maximize
n

J
T
j n

subject to An = 0,
(4)

where n is the direction vector of interest, and each row of

A consists of the attribute vector Jk 6=j on which we want to

condition. By substituting n for J
(i)
j in Eq. 3, we can solely

edit the attribute of interest while retaining other non-target

attributes in the image. Note that since Eq. 4 is evaluated

at each iteration, we are still capable of capturing the non-

linear manifolds.

3.4. Implementation

We consider two state-of-the-art GANs, PGGAN [19]

and StyleGAN [20], as the victim generators. The input

of both models is 512-D noise drawn from a standard nor-

mal distribution. Following Shen et al. [25], we do not nor-

malize the input noise for both models. The proxy models

are implemented by a stack of fully-connected layers. Ex-

cept for the last layer, each layer is followed by a ReLU

activation function and a Dropout [26] layer with a rate of

0.2. We empirically find that a proxy model with 3 layers

works sufficiently well for PGGAN, while it takes 8 layers

to work on StyleGAN. It is also observed that the Dropout

function plays a critical role to prevent over-fitting on Style-

GAN. These observations imply that the z-space of Style-

GAN may be highly entangled and non-linear.

For attribute manipulation, we find it important to train

the proxy models with balanced datasets. We synthesize

datasets for every attribute, each of which involves 100k

positive and 100k negative samples. Since the annotations

are unavailable, we adopt a ResNet-50 [16] classifier pre-

trained on CelebAHQ [19] to annotate the generated im-

ages. We discard data with confidence lower than 0.9 to re-

duce the ambiguity. For other regression tasks, we generate

random samples over the latent space and discard those with

lower confidence. It is also observed that the proxy model
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on StyleGAN benefits from more training data, while the

effect is marginal on PGGAN.

4. Experiments

In this section, we provide analysis of our non-linear iter-

ative scheme by applying it to attribute manipulation, head

pose manipulation, and landmark editing, showing that our

method benefits from the non-linearity and demonstrates

the possibility of unintended usage.

4.1. Experiment Setup

Settings. We take two state-of-the-art GANs, Style-

GAN [20] and PGGAN [19], as our backbone generators.

Both models are pre-trained on CelebAHQ [19]. We adopt

different task models according to the applications. We use

ResNet-50 [16] pre-trained on CelebAHQ for attribute ma-

nipulation, HopeNet [24] pre-trained on 300W-LP [35] for

head pose manipulation, and MTCNN [31] to crop faces

and detect landmarks for landmark editing. Note that in all

experiments, the model parameters and additional training

data are unavailable.

Baselines. We consider two baselines here. First, follow-

ing Denton et al. [12], we employ the same classifier as our

framework to compute the gradient with respect to the ini-

tial point and take it as a constant attribute vector v. The

attribute manipulation is realized as below,

z(i+1) = z(i) + λv. (5)

We refer to this baseline as Linear. The key difference is

that the proposed framework recomputes gradients in every

step. Similarly, the second baseline, InterfaceGAN [25],

adopts the same linear strategy but derive the vector v from

the normal vector of the decision boundary of a linear SVM,

which can be viewed as a common direction that changes

the attribute most. InterfaceGAN achieves conditional ma-

nipulation by pairwisely computing an orthogonal vector

for the normal vectors. Note that, instead of using a com-

mon direction for all data, we derive moving directions for

specific input.

4.2. Attribute Manipulation

We show that our framework can be applied to attribute

manipulation. We consider unconditional and conditional

settings, respectively. The former one is achieved by solely

applying Eq. 3; The latter one adopts Eq. 4 to ensure the

preservation of non-target attributes.

Unconditional Manipulation. In the unconditional setting,

we expect to see an effective transition as compared to the

baselines since our method dynamically decides the mov-

ing direction in each step and follows the steepest direc-

tion. Note that although the main objective here is to change

the target attribute, other attributes might change arbitrarily.

Figure 2 compares our method to two baselines, Linear and

InterfaceGAN, on 4 attributes. On PGGAN, all three meth-

ods successfully edit the attributes, while our method pro-

duces transition with much less distortion, e.g., smile and

age. Also, we observe that our method and InterfaceGAN

perform similarly on eyeglasses and gender. It may imply

that for some attributes, the underlying manifold expands

linearly as is derived by InterfaceGAN.

On the other hand, our method behaves clearly differ-

ently from the two linear baselines on StyleGAN, showing

that the manifold may be highly non-linear. We verify the

benefit of the iterative scheme by comparing our method

to the baselines. First, Linear appears to fail to edit smil-

ing even if it uses the same classifier as our framework.

When comparing to InterfaceGAN, our method preserves

more non-target contents than InterfaceGAN although the

goal is not to preserve attributes. For example, age changes

when editing eyeglasses, and hair color changes when edit-

ing smiles.

Effectiveness. To further verify the effectiveness of the pro-

posed method, we compare our method to InterfaceGAN

on logit changes over steps. We experiment on StyleGAN

since it tends to be more non-linear as observed in Figure 2.

Specifically, we choose 7 attributes and sample 2500 trajec-

tories for each attribute, each of which consists of 40 steps

with the step size equal to 0.2. Next, we compute the mean

values over trajectories and report the target and non-target

logit changes, respectively.

Figure 3 shows that our method can rapidly change the

target attribute on most attributes, especially on rare at-

tributes such as blond hair, pale skin, and narrow eyes. The

result aligns with our hypothesis that not all attributes in

the latent space distribute linearly; thus, our framework can

benefit from the non-linearity. We additionally visualize the

manipulation over the rare attributes in Figure 4, confirm-

ing the effectiveness of our method. In addition to effective

manipulation, it is also seen that the non-target attributes of

all methods are changed during the manipulation. It is thus

crucial to limit such an undesired effect.

Conditional Manipulation. We present that our frame-

work along with the proposed constraint in Eq. 4 can pre-

serve the non-target attributes better. In this experiment, we

consider 1 of 4 attributes to edit while conditioned on the

other three. Figure 5 presents the results on PGGAN and

StyleGAN, respectively. On PGGAN, our method strongly

preserves the non-target attributes and effectively modify

the target attribute. InterfaceGAN appears to be ineffective

when it has to maintain non-target attributes. For example,

the smiling is changed when editing eyeglasses. On Style-

GAN, both methods succeed to edit the attributes while our

method looks closer to the input. These results suggest that

our method with the constraint can effectively edit the target

attribute while retaining others.
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Figure 2. Unconditional attribute manipulation on PGGAN (left) and StyleGAN (right) with respect to Eyeglasses, Gender, Smile, and

Age. We compare our method to Linear and InterfaceGAN.

Figure 3. Logit changes over steps on StyleGAN. From left to right: Eyeglasses, Gender, Smile, Age, Narrow Eyes, Blond Hair, and

Pale Skin. The solid lines represent the predictions of the target attributes while the dot lines represent the mean values over all the other

non-target attribute predictions. Zoom in for better visualization.

Attribute Preservation. To inspect how well our method

can preserve the non-target attributes, we follow the same

sampling strategy as in Figure 3 and measure the ratio of

target prediction changes to non-target prediction changes

on StyleGAN. Higher values indicate that the subject can

more effectively edit target attributes with lower perturba-

tion to non-target attributes. We consider 7 attributes to

edit. The former four attributes are conditioned on each

other except themselves, and the latter three attributes are

conditioned on all the former four. This design makes the

latter three more challenging since they have to edit rare at-

tributes while maintaining 4 attributes simultaneously.

Figure 6 compares our method to InterfaceGAN in both

conditional (Eq. 4) and unconditional (Eq. 3) settings. It

is immediately observed that our method with the proposed

constraint achieves the highest ratio on almost all attributes,

validating that the non-linear iterative scheme not only ad-

vances the attribute manipulation but also help the attribute

preservation. Interestingly, the ratio of our unconditional

method on the last three attributes are higher than Interface-

GAN in the conditional setting. It could be attributed to

inefficiency of linear methods. As observed in Figure 3,

linear methods are less activate on rare attributes. More-

over, it uses the same direction for every step, which may

be sub-optimal for the points far away from the initial point.

Both two reasons together lead to the phenomenon.

4.3. Analysis

We conduct two analysis to provide more insights from

the perspective of smoothness and function approximation.

Smoothness. We compare the trajectories generated by our

method to those by linear methods such as InterfaceGAN in

terms of smoothness. Previously, Karras et al. [20] propose

a metric, Perceptual Path Length (PPL), to measure smooth-

ness over the whole latent space. However, we only focus

on smoothness of trajectories; thus we propose to use modi-
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Bald Narrow Eyes
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Figure 4. Unconditional rare attribute manipulation on StyleGAN with respect to Bald, Narrow Eyes, Pale Skin, and Blond Hair. Each set

consists of input (left), our method (middle), and InterfaceGAN (right).
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Figure 5. Conditional attribute manipulation on PGGAN (left) and StyleGAN (right) with respect to Eyeglasses, Gender, Smile, and Age.

We compare our method to InterfaceGAN.

fied PPL (mPPL) that only consider noise sampled from the

generated trajectories. Formally, we have

lz = Ez(i)∼T ,T ∼p(T )[
1

ǫ2
d(G(lerp(z(i), z(i+1), t)),

G(lerp(z(i), z(i+1), t+ ǫ)))],
(6)

where T is a generated trajectory, z(i) is the noise of i-th

step in the trajectory, G is the generator, lerp is linear in-

terpolation function with factor t drawn from uniform dis-

tribution, ǫ is a small displacement, and d(·) is LPIPS met-

ric [32]. For each attribute, we sample 1000 trajectories and

each consists of 600 steps with step size 0.01, leading to

600k images in total. Following Karras et al. [20], we set ǫ

to 1e-4 and report the mean value over all samples. Lower

values mean smoother trajectories.

Table 1 presents the evaluation results on both PGGAN

and StyleGAN. In the unconditional setting, both methods

produce comparably smooth trajectories. It also happens in

the condition setting on PGGAN. It could be attributed to

the relatively linear manifolds. Note that smoothness does

not mean the effectiveness. One could generate images with

no change to gain smoother transition. Lastly, our method

surpasses the baseline on StyleGAN in the conditional set-

ting by a large margin since it can strongly retain the non-

target attributes, leading to smoother transition.

Function Approximation. We show that our iterative

scheme can better traverse the highly non-linear latent space

from the perspective of function approximation. We first re-
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Figure 6. Attribute preservation ratio. We compare our method

(orange) to InterfaceGAN (mist blue) in unconditional (non-stripe)

and conditional (stripe) settings. The higher values, the better at-

tributes are preserved during attribute manipulation.

Cond. Eyeglass Gender Smile Age

PGGAN

InterfaceGAN
N

60.69 65.00 54.49 61.16

Ours 64.10 62.50 56.55 60.28

InterfacGAN
Y

54.51 55.65 55.07 56.59

Ours 57.40 59.79 55.00 55.30

StyleGAN

InterfaceGAN
N

99.15 101.65 96.90 96.62

Ours 103.08 97.93 97.93 91.86

InterfaceGAN
Y

80.46 81.52 92.75 83.51

Ours 57.23 71.67 78.18 55.41

Table 1. Modified Perceptual Path Length measured on PGGAN

and StyleGAN. Lower is better.

< 1 < 2 < 3 >= 3 Avg.

Eyeglasses

InterfaceGAN 1.760 2.779 3.644 1.481 2.416

Ours 1.675 2.401 2.469 1.557 2.026

Gender

InterfaceGAN 5.702 4.045 1.798 0.891 3.109

Ours 4.469 3.694 1.790 0.812 2.692

Smile

InterfaceGAN 1.764 1.783 1.693 0.961 1.550

Ours 3.191 2.391 1.611 0.921 2.028

Age

InterfaceGAN 2.350 2.434 2.312 1.354 2.113

Ours 0.969 1.109 1.893 1.285 1.314

Table 2. Errors of first order Taylor approximation. Errors are re-

ported according to the L2-norm between the initial point and the

estimated points. f consists of the generator and the task model.

call the first order Taylor approximation,

f(x) = f(a) + f ′(a)(x− a). (7)

If a method models the underlying manifold better, it is ex-

pected to have lower error between the real logit f(z(i+1))
and the estimated logit f(z(i)) + f ′(z(i))(z(i+1) − z(i)).
Note that the real gradient f ′ in Eq. 7 is unavailable for all

baselines and our model. Instead, all methods use estimated

gradients, namely Jj (Eq. 3) for our method and v (see Sec-

tion 4.1) for InterfaceGAN.

Since InterfaceGAN uses normal vectors of SVM deci-

sion boundaries as guiding signals, we expect it to work

well in a local region while becoming less accurate in the

farther distance. To verify this assumption, we measure the

errors and categorize them according to the L2 distance be-

tween the estimated and initial points. Table 2 compares

our method to InterfaceGAN. It shows that our method ap-

proximates the underlying function more accurately on av-

erage. As for the smiling, since we discard the data with

lower confidence (see Section 3.4), it may make the proxy

model less robust at the region where many ambiguous sam-

ples happen. Lastly, due to the iterative scheme, our method

achieves lower errors even when the estimated points moves

far away from the initial points.

4.4. Head Pose Manipulation

To further study the possibility of unintended us-

age of pretrained GANs, we employ our framework to

achieve head pose manipulation by leveraging pre-trained

HopeNet [24] as the task model. In particular, we attempt

to gain control over the yaw and pitch axes since the train-

ing dataset of the pre-trained GANs, CelebAHQ, is well-

aligned by eyes; thus it is almost impossible to control the

roll axis. It also suggests that the framework could be still

limited by the training dataset of pretrained GANs even

though we are capable of gaining control over the genera-

tion process. To generate fine-grained transition, we choose

small step size 0.01 and produces 1000 steps in total.

Due to the proposed constraint in Eq. 4, our framework

can solely edit one axis by conditioning on four attributes

and the other axis. As shown in Figure 7, we smoothly in-

terpolate the images for yaw and pitch axes. We also note

that some artifacts or undesired changes happen when forc-

ing the pose to go beyond certain degrees. With our frame-

work, we can generate faces with arbitrary poses if they re-

main feasible in the training data of pre-trained GANs.

4.5. Landmark Editing

By utilizing pre-trained MTCNN [31], we take one step

further to consider landmark editing, which is a relatively

challenging application. The reasons are three-fold. First,

a landmark is two coordinates, which are extremely local

attributes as compared to, e.g., age or gender. Second, since
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Figure 7. Pose manipulation on StyleGAN with respect to yaw (top) and pitch (bottom).

Nose up/down Nose left/right

Left corner of mouth Right conrner of mouth
Figure 8. Landmark editting on StyleGAN with respect to Nose up/down, Nose left/right, Left corner of mouth, Right corner of mouth.

landmarks are coordinates, it becomes very sensitive for an-

notation. The performance may be degraded if the accuracy

of task models are not satisfactory. Lastly, landmarks are

often correlated with other features. Based on the results of

previous experiments, we edit landmarks while condition-

ing on 4 attributes, poses, and a subset of landmarks. Note

that since the training dataset is well aligned, the landmark

of eyes are not editable.

Figure 8 demonstrates the results when editing the co-

ordinates of noses and mouths. Surprisingly, we find some

attributes are highly entangled. For instance, mouth land-

marks is highly correlated with smile. To measure the cor-

relation, we additionally compute the cosine similarity be-

tween direction vectors (Eq. 3). Higher similarity indicates

higher entanglement. We analyze the correlation of mouth

landmarks vs. smile (0.296) and mouth landmarks vs. gen-

der (0.035). The former one is around 8.5 times larger than

the latter. Additionally, nose landmarks vs. yaw are highly

correlated by 0.5014. In this analysis, we do find measur-

able entanglement.

5. Conclusion

In this paper, we demonstrate that publicly released

state-of-the-art GANs can be applied for a wide range of

applications beyond the creators’ intention. To achieve this,

we propose a framework to gain high-level control over

unconditional image generation. Extensive results show

that the framework is advantageous over non-iterative lin-

ear baselines in many aspects and can be readily applied

to various unintended tasks. While this allows to re-use

high quality GANs that are becoming increasingly costly to

train for new applications, we hope that this work also raises

awareness regarding potential unintended usage, urging the

creators and owners to be cautious about the possible risks

of their models before a full release.
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