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Reference image Random samples generated by a reference image

Figure 1: Results from our proposed IMAGINE - the first attempt to use classifier inversion for reference-guided image generation.

Abstract

We introduce an inversion based method, denoted as

IMAge-Guided model INvErsion (IMAGINE), to generate

high-quality and diverse images from only a single train-

ing sample. We leverage the knowledge of image seman-

tics from a pre-trained classifier to achieve plausible gen-

erations via matching multi-level feature representations

in the classifier, associated with adversarial training with

an external discriminator. IMAGINE enables the synthesis

procedure to simultaneously 1) enforce semantic specificity

constraints during the synthesis, 2) produce realistic images

without generator training, and 3) give users intuitive con-

trol over the generation process. With extensive experimen-

tal results, we demonstrate qualitatively and quantitatively

*Work done during internship at Adobe Research

that IMAGINE performs favorably against state-of-the-art

GAN-based and inversion-based methods, across three dif-

ferent image domains (i.e., objects, scenes, and textures).

1. Introduction

Consider a reference image from the left-most column of

Fig. 1, we humans could easily imagine its variants in other

formats, e.g., patterns with different spatial arrangements,

objects in different positions or viewpoints. Can we give

machines such abilities to automatically synthesize seman-

tically meaningful variations of a reference image? Such a

system can generate interesting variations of assets for de-

sign ideations and can also be utilized as a data augmenta-

tion technique to benefit downstream data-hungry tasks.

With the popularity of generative adversarial networks
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Figure 2: Image generation by SinGAN [29] and our IMAGINE.

SinGAN only works well on repetitive images that contain repet-

itive structures such as mountains, but fails on non-repetitive im-

ages containing large semantic structures such as the ostrich and

the goldfish. IMAGINE can generate higher quality and more di-

verse images on both types.

(GANs) [12, 3, 21, 24, 6], two categories of GAN-based

approaches have been proposed for editing a specific image

and/or synthesizing its variations. The first one is based on

GAN projection (or inversion) [28, 32, 5, 16], which con-

sists of projecting the target image into the latent space of

the generator, jittering the projected latent code, and synthe-

sizing a new image. However, there are several limitations

to this type of approach. First, the projection step is far from

accurate often resulting in unrealistic images due to the pro-

jected latent code falling outside of the learning distribu-

tion [32]. Second, the projection step can only handle the

type of images that the generator is trained on. Since exist-

ing GANs are trained on specific domains, such as faces, or

datasets containing a few classes [21, 32, 27, 47, 4, 16], the

projection-based approaches cannot generalize. The sec-

ond category is to learn individual GANs for individual tar-

get images, e.g., SinGAN [29]. SinGAN leverages image

patches from the target image to learn image internal statis-

tics. While enforcing patch consistency across resolutions

enables the synthesis of multi-scale structures, SinGAN is

best suited for the synthesis of repetitive images, like the

mountain in Fig. 2. However, as the patch-based learning is

less effective in capturing high-level semantics, it struggles

to synthesize images of non-repetitive objects. As shown

in the second row of Fig. 2, properties like object identity,

shape, or consistency among parts are lost in their results.

This problem can be solved by model inversion of a pre-

trained deep classifier which can capture multi-scale ab-

stract features. Model inversion seeks to determine the im-

age responsible for a particular classifier prediction [23, 43,

26, 42]1. Given the prediction, an optimization is performed

to synthesize the image that best explains it. Although sev-

1In the remainder of the paper, we use “model inversion” to refer to

“classifier inversion”.

eral works have shown that introducing strong regulariz-

ers [23, 26, 42] can improve the quality of synthesized im-

ages, the quality is still not comparable to GANs. More im-

portantly, all these methods suffer from lack of specificity.

They simply generate random images with the appearance

characteristics of the target class, but they cannot synthesize

variations of a specific image.

In this work, to overcome the limitations of these previ-

ous methods, we introduce the concept of IMAge-Guided

model INvErsion (IMAGINE). IMAGINE leverages the

knowledge of image semantics from a pre-trained classifier

(e.g., ResNet-50 pre-trained on ImageNet [8]) to generate

semantically meaningful variations of a target. Specifically,

we feed the target image into the classifier and optimize for

a new image that best explains its class prediction, under the

constraint that the features of the synthesized image must

match those of the target at various network layers. This

is then complemented by the adversarial training to further

improve the realism of the synthesized images. However,

unlike GANs, our adversarial training is conducted by al-

ternating the optimization of the synthesized image and that

of the discriminator weights.

The resulting algorithm enables the synthesis procedure

to simultaneously 1) enforce semantic constraints during

the synthesis, 2) produce realistic images, without the need

for a separate generator training, and 3) allow multifaceted

control over the image to be synthesized. When compared

to the SinGAN, it captures much more abstract high-level

image semantics, such as object shape or identity. This

enables the successful synthesis of non-repetitive images,

such as the objects of Fig. 1 and 2. Because the feature

matching constraints are based on the matching of distribu-

tions, rather than minimizing geometric distances between

feature maps [28, 34], IMAGINE leads to more visual vari-

ations in the synthesized results (Fig. 1). We show that,

by manipulating the target feature statistics at the different

levels of the network, it is possible to recreate objects with

modified semantics, such as different shapes (Fig. 7). Fur-

thermore, through the use of attribution functions [31, 37],

it is even possible to manipulate the location of the target

objects in the synthesized image (Fig. 6). Several other ap-

plications of IMAGINE are also discussed.

Our paper makes four main contributions. (1) To the best

of our knowledge, this is the first attempt to utilize model

inversion for image-guided synthesis problem. (2) We in-

troduce adversarial training to improve the image quality of

optimization-based model inversion. (3) We perform exten-

sive quantitative and qualitative evaluations to demonstrate

the superiority of IMAGINE over GAN counterparts and

its generalizability across different image domains includ-

ing single objects in front of simple backgrounds, complex

scenes, and non-stationary textures. (4) We show multiple

multifaceted image control applications including a newly
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proposed object position control task.

2. Related Work

Model inversion. The goal of model inversion in vision

tasks is usually to synthesize an image that maximizes the

likelihood of either a network prediction or the response of

some intermediate network unit. This includes the gen-

eration for adversarial attacks [10, 13], where a real im-

age is used to initialize the optimization and the latter only

seeks a prediction that is imperceptible under some con-

straints [38, 36]. Another application would be explainable

AI, where the image is initialized with noise and the goal

is to determine what image structures elicit different net-

work predictions [35]. Several works in the literature have

shown that the addition of different regularizers enables the

synthesis of realistic images [23, 26, 25]. Recently, Deep-

Inversion [42] used a regularizer based on feature match-

ing to improve synthesis quality and showed its benefits for

data-free knowledge distillation and other high-level vision

tasks. These methods either produce images indistinguish-

able from the target image (attacks) or suffer from lack of

specificity, i.e. synthesized images do not look similar to a

target image. Our approach allows us to generate different

variants of target image which are non-identical to target

image and look real at the same time.

Image-guided image generation. There are several types

of image-guided synthesis techniques. The most popular is

GAN-inversion that uses a target image to guide the sam-

pling of a trained GAN, attempting to sample similar im-

ages by inverting a pre-trained GAN generator [1, 28, 32,

5, 16]. They first project the target image into the latent

space of the generator by minimizing certain reconstruc-

tion losses, then jitter or edit this projection so as to syn-

thesize a new image. However, generator inversion is a dif-

ficult problem. It is hard to guarantee that the latent space

projection of the target falls within the training distribution

and find a semantic jittering direction. Although some im-

provements have been proposed with better reconstruction

quality including finetuning the generator during projec-

tion [28], using multiple latent codes [16], these literature

only work on specific domains such as faces or datasets of a

few classes [1, 32, 47], or produce inadequate results [28],

since capturing the distribution of highly diverse datasets

with multiple object classes is still a challenging problem.

Finetuning the generator is also not space-efficient because

it needs a specific GAN trained for each target image in or-

der to work well. A more promising alternative is to train

a generator specifically for image-guided synthesis. For

example, [34] proposes to feed the target image to a pre-

trained classifier and introduces the resulting features into

the layers of a generator, trained to simultaneously replicate

the classifier features and produce realistic images. While

Figure 3: The framework of IMAGINE. The red characters repre-

sent losses for the input noise whereas blue for the discriminator.

Bold arrows mean the data flow and dotted arrows loss computa-

tion.

improving on GAN inversion, these methods still have sig-

nificant limitations. Training a GAN to support the syn-

thesis of images from many classes is still a difficult prob-

lem [6], in particular when those are relatively fine grained

and require representations with multiple semantic levels,

such as ImageNet [8].

Recently, some work [29, 33] propose to bypass these

difficulties by leveraging internal statistics of patches within

the image to train a patch-based GAN from scratch. These

methods can be image conditional, i.e. take an image as in-

put, in which case they are best suited for image processing

operations, such as upsampling or retargeting [33], or un-

conditional, i.e. take noise as input, in which case they can

perform image-guided synthesis [29]. Nevertheless, due to

the patch-level learning, they have limited ability to cap-

ture high-level semantics, such as object parts and consis-

tency among them, e.g., that ‘an ostrich has two legs and a

neck that are connected by a torso.’ As a result, they have

limited ability to synthesize images that lack self-similar

repetitive structure, such as the objects of Fig. 2. Pyra-

mid model of [29] fixes the overall structure of images but

loses variations. By leveraging a deep representation with

many levels of semantic abstraction not just patch-level, our

image-guided model inversion offers a natural solution to

this problem.

3. Proposed Method

In this section, we first describe existing model inversion

work for image synthesis and their limitations. After that,

we introduce our image-guided model inversion work for

image synthesis which overcomes the limitation of previous

approaches.

3.1. Image Synthesis by Model Inversion

A classifier f(x) maps images x ∈ X into classes

y ∈ Y = {1, ..., C}, according to y = argmaxŷ fŷ(x). In

this work, we consider classifiers implemented with convo-

lutional neural networks (CNNs). Model inversion aims to

synthesize an image x that elicits a class response y∗ from
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the classifier. This is formulated as

x
∗ = argmin

x̂

L(f(x̂), y∗) +R(x̂), (1)

where L is the cross-entropy loss, R a regularization term,

and x̂ is initialized randomly.

Model inversion has long been used in the explainable

AI literature, to visualize the patterns most representative

of particular class predictions [23, 35, 43, 26]. These works

have shown that the addition of the regularizer R(x̂) is im-

portant to avoid highly non-realistic images. A popular

choice is to combine the total variance (TV) loss [14] and

the L2 norm of x to steer x away from unrealistic images

with no discernible visual information [42], i.e. use

Rimg(x̂) = αRTV (x̂) + β||x̂||2, (2)

where α and β are scaling factors.

Recently, [42] has shown that realism can be substan-

tially improved by penalizing the distance between the net-

work activations in response to x̂ and the average activa-

tions over the data used to train the network. This is denoted

as a feature distribution regularizer

Rfeat(x̂)=
∑

l ||µl(x̂)−<µl>D||2+
∑

l ||σ
2

l (x̂)−<σ2

l >D||2, (3)

where µl(x̂) and σ2
l (x̂) are the vectors of feature means and

variances at network layer l, for image x̂, and < µl >D and

< σ2
l >D the corresponding averages over the dataset D

used to train the network.

While improving realism, these methods suffer from lack

of specificity. Although it can synthesize images of a par-

ticular class, it is impossible to synthesize image variations

of a particular image. This problem has been considered in

the GAN literature by inverting a pre-trained generator G.

Given a target image x0, this consists of solving

z
∗ = argmin

z∈Rd

M(x0, G(z)), (4)

where M is a distance metric and z∗ is the projection of

x0 on the latent space. New images can then be generated

with x∗ = G(z∗ + δ), where δ is a noise term. Although

it overcomes lack of specificity, it has two problems. First,

the solution of (4) is not trivial. Simple metrics M, such

as the L2 or perceptual loss [20], favour similarity in terms

of low-level statistics, such as color and texture, over more

abstract features, such as shape or object identity. A second

problem is that GANs are still too difficult to train for large

scale datasets involving many classes, such as ImageNet,

where mode collapse and class leakage become exponen-

tially more difficult [6]. Hence most models in the litera-

ture are trained for specific image domains, such as faces

or datasets of a few classes [1, 32], and do not support the

synthesis beyond these domains. [28] proposed to solve this

problem by finetuning the generator G to the target image,

but this fails to guarantee realistic images because the opti-

mization process is difficult and non-trivial (see Fig. 4).

Single image based GANs [33, 29] offer an alternative

to this problem. In the image-guided synthesis context, the

SinGAN [29] uses the target image x0 to learn a patch gen-

erator from scratch. To guarantee image consistency, both

generator and discriminator operate on patches of multi-

ple resolutions, using a pyramid structure where each stage

improves on the synthesis by a stage of lower resolution.

While the patch-based formulation bypasses the problem of

training data scarcity, it has a few drawbacks. First, Sin-

GAN needs to train a specific generator for each target im-

age, which is not space-efficient. This is also true for GAN

finetuning method [28]. Second, while the multi-resolution

structure constrains the organization of patches at differ-

ent scales, these constraints are of low-level: the network

mostly learns to tile and replicate patches at multiple scales

to resemble the target image. As a result, it does not neces-

sarily learn the high-level semantic features needed to rep-

resent object shape or long-range correlations of such fea-

tures, e.g. that “an ostrich has two legs and a neck connected

by a torso” or that a “fish has an head and a tail at oppo-

site ends of the body.” As shown in Fig. 2 and 4, while the

SinGAN is very effective for repetitive images (character-

ized by highly self-similar regions of different resolutions),

it cannot synthesize visual concepts like object that require

learning high-level semantic features capturing shape and

relationships between object parts. We next introduce a new

model inversion technique that aims to solve these prob-

lems.

3.2. Image Guided Model Inversion

To avoid the difficulties discussed above for GANs, we

consider image synthesis by inversion of an image classi-

fier. This immediately guarantees large models that encom-

pass many classes (1k for ImageNet) and representations

with multiple levels of abstraction, learned from very large

datasets. However, as we saw earlier that image synthesis

by inversion of an image classifier would have issues with

specificity and realism. Hence, we do image guided inver-

sion to improve these two aspects of the synthesized image.

In practice, we complement R in (2) with two image-guided

regularizers.

The first is a regularizer inspired by (3). Like (3), we

aim to preserve similarity between target (x0) and synthe-

sized image at all levels of semantics, from class identity, to

shape, contours, texture, and color. This is implemented by

matching feature statistics at multiple network layers. How-

ever, to avoid lack of specificity, we seek a regularizer based

on the target image alone. The goal is met by the feature
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distribution matching regularizer

Rdm(x̂;x0,Φ) =
∑

l∈Φ

||µl(x̂)−µl(x
0)||2+||σl(x̂)−σl(x

0)||2,

(5)

where µl(x) and σl(x) are the channel-wise mean and stan-

dard deviation of feature maps at the lth network layer, Φ
the sets of layers included in the summation.

While this regularizer enforces semantic consistency, en-

abling the synthesis of object-like structures, it is not suffi-

cient to synthesize realistic images. The fine levels of image

detail are usually not reproduced with enough quality to cre-

ate a realistic image. To address this problem, inspired by

SinGAN, we train a patch-based discriminator D [22, 19]

adversarially during image synthesis. Given synthesized

image x̂, a patch classifier d∗ is trained to discriminate be-

tween x̂ and the target x0, using a Wasserstein loss

d∗ = argmax
d

Ep∼x0 [d(p)]− Ep∼x̂[d(p)], (6)

where p denotes an image patch. The image discriminator

is then implemented as

D(x̂) = Ep∼x̂[d
∗(p)]. (7)

For improving training stability we use a WGAN-GP

loss [17] instead of (6), but omit the details for brevity. A

patch consistency regularizer

Rpc(x̂) = −D(x̂) (8)

is then introduced in the optimization of (1). This encour-

ages images that cannot be discriminated from x0 in terms

of the visual consistency of their patches.

Finally, IMAGINE solves the optimization of (1) with

regularizer

R(x̂;x0,Φ) = Rimg(x̂) + λRdm(x̂;x0,Φ) + γRpc(x̂).
(9)

where λ and γ are scaling factors.

3.3. Implementation Details

The overall framework is illustrated in Fig. 3. In

all cases, the loss of (5) was computed on four lay-

ers: {conv1 1, conv2 3, conv3 4, conv4 6} for ResNet-50

models, y∗ = argmaxŷ fŷ(x
0) in (1), by default unless

otherwise noted. The detailed structure of the discriminator

D is discussed in the supplementary material. Adam was

used for all optimizations (learning rate 0.2 for that of x̂

and 5e − 4 for the discriminator). Except where otherwise

stated, images were synthesized with 224× 224 pixels.

For all scaling weights involved in (9), α and β of Rimg

in (1) are set to 1e − 4 and 1e − 5, respectively, follow-

ing [42]. For λ, we have found that the overall performance

is stable as long as λ > 1. All results reported in this work

were obtained with λ = 5. The bulk of the complexity of

this optimization is in the training of the discriminator used

by Rpc. We have found that a much more efficient solution

is to use a two-stage optimization. In the first stage, γ is

set to zero, i.e. only the feature distribution matching regu-

larizer is used. The discriminator D(x) is then introduced

in the second stage (γ = 10), to refine the synthesized im-

age by adversarial training. The first stage can be seen as a

warm-up stage that provides a good initialization, which is

refined by the second. Under this approach, training time is

still dominated by the optimization of the patch-based ad-

versarial loss in the second stage. However, the availabil-

ity of a good initialization significantly reduces the conver-

gence time of this optimization and, consequently, of the

overall image synthesis. In experiments, 2000 iterations are

assigned for each stage. We have also tried a single stage

optimization with non-zero λ and γ but this did not have a

noticeable effect on the quality of the synthesized images

and takes much more time.

4. Experiments and Applications

We extensively evaluate the proposed IMAGINE on dif-

ferent types of images against existing approaches and dis-

cuss some novel and interesting applications of our method.

4.1. Image Synthesis

IMAGINE is a new paradigm for image synthesis, which

fills a void in the landscape of synthesis techniques. To

the best of our knowledge, it is the first method to support

image-guided synthesis by classifier inversion. Fig. 4 com-

pare its image synthesis performance to those of two GAN

methods, DGP [28] and SinGAN [29], and an image-guided

version of DeepInversion [42], implemented by comple-

menting (5) to (3) with weight factor of 5. Just like our ap-

proach, DeepInversion method uses ResNet-50 pre-trained

on ImageNet [8] and Places365 [46] for object and scene

images respectively as a classifier.

The results of SinGAN, DGP, and IMAGINE are all

clearly superior to those of DeepInversion. This shows the

benefits of adversarial training. However, SinGAN tends

to synthesize images by copying and shifting local pat-

terns of the training image. This is effective for scenes

images, e.g., “mountain path”, containing fractal-like struc-

tures, like mountains, whose realism is not affected by this

type of synthesis. However, for non-repetitive structures,

such as objects like “brambling,” “ostrich” or “fox squir-

rel” (shown in Fig. 4), it generates non-realistic images.

In several cases, e.g., “European fire salamander” or “red-

breasted merganser”, the object is eliminated or “absorbed”

into the background. DGP fails on most of the object im-

ages, perhaps because inverting a generator is always more

difficult than a classifier, which causes searching a bad em-

bedding in the latent space.
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Figure 4: Image generation comparison of different methods (object images on left and scene images on right).

Figure 5: Results when we suppress the contribution of deeper

layer in (5). From left to right corresponding to “red-breasted mer-

ganser”, “brambling”, “ostrich” and “fox squirrel” in Fig. 4.

IMAGINE is not affected by these problems, because

the regularizer of (5) encourages the synthesis of images

with activation statistics close to those of the training im-

age throughout the network. This includes the activations

of deeper layers, which reflect the image content in terms

of higher level semantics, such as object shape and iden-

tity. This is illustrated by Fig. 5, where the regularizer of

(5) was restricted only to the three earliest network layers

of the four used in Fig. 4. Similarly to the SinGAN, the

objects disintegrate and are absorbed by the background.

When the SinGAN successfully reconstructs an object

or scene, e.g., “volcano”, “golf course”, it tends to recon-

struct near replicas of the training image. This is partly

due to its multi-scale structure, which enforces tight con-

straints on both global and local features. As a result, the

network has almost no ability to synthesize diverse images

whereas our approach can generate diverse images as it does

not has multi-scale constraint and adversarial loss is applied

to the final image. Beyond synthesizing realistic objects,

IMAGINE is also able to modify the object pose (“bustard”,

“starfish”), image location (“volcano”), object contour (“is-

land”), or even the image layout (“daisy”) as illustrated in

Table 1: Quantitative comparison of different methods on both ob-

ject and scene images. Results are based on images with resolution

of 224 and presented as mean(std).

Object Scene

method IS↑ FID↓ LPIPS↑ IS↑ FID↓ LPIPS↑
DeepInversion [42] 68.5(5.0) 65.9(2.7) 0.52(0.10) 12.3(0.5) 53.7(2.3) 0.56(0.10)

SinGAN [29] - - 0.24(0.11) - - 0.27(0.08)

DGP [28] 46.3(2.4) 46.0(1.5) 0.30(0.09) 12.7(0.6) 51.3(1.6) 0.27(0.10)

IMAGINE 117.1(6.2) 38.3(1.1) 0.46(0.09) 21.8(0.4) 47.3(0.9) 0.43(0.13)

Table 2: Comparison of user preference (%), meanstd, confidence interval

(conf. interval at 95% conf. level).

Object

DeepInversion/Ours SinGAN/Ours DGP/Ours

realism 1.0/99.02.0,1.4 29.5/70.510.3,6.0 26.0/74.08.3,6.1

diversity 26.5/73.517.5,6.7 17.5/82.56.8,5.3 28.5/71.57.1,6.3

Scene

DeepInversion/Ours SinGAN/Ours DGP/Ours

realism 2.0/98.02.5,2.0 35.5/64.510.3,6.0 34.0/66.07.0,6.6

diversity 18.0/82.08.7,5.3 19.5/80.510.1,6.0 23.5/76.510.5,5.9

Fig. 1.

The quantitative evaluation is conducted on three differ-

ent datasets, ImageNet [8], Places365 [46] and DTD [7].

Tab. 1 presents the comparison across different methods.

IMAGINE substantially outperforms all other methods, in

terms of both IS [30] and FID [18]. LPIPS [44] is calcu-

lated between all the target and synthesized image pairs to

measure the patch-wised distance between them. Higher

value means synthesized image is more different and di-

verse from target image, and vice versa. DeepInversion ob-

tained the best scores of LPIPS but this is meaningless as

the differences between target and synthesized image pairs

are due to artifacts that compromise image realism. This is

evident from the low values of IS and high FID values. On

the other hand, the LPIPS metric confirms that IMAGINE
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produces a much more diverse set of synthesized images

than the SinGAN and DGP. As IS and FID have to be com-

puted based on a large number of samples and classes, it is

not affordable for SinGAN due to its large computational

time. Meanwhile, for target domains that only have one ex-

ample available, FID is not the best metric for measuring the

generation quality. Therefore, more convincing user studies

are conducted to evaluate how realistic and diverse our gen-

erated results are compared with different alternatives via

Amazon Mechanical Turk.

In user studies, turkers were asked to select the preferred

image from a pair synthesized by two algorithms, IMAG-

INE vs. a competitor listed in Tab. 2. For each compar-

ison, 50 turkers were recruited and each of them was as-

signed 20 same forced-choice tasks. Two answers have to

be given for each comparison with regard to two criteria:

realism (select the more realistic image); diversity (select

the image more different from the given target image). The

study results are shown in Tab. 2. A few conclusions can

be drawn from the table. First, the human preferences are

consistent with our qualitative observations and the quanti-

tative results of Tab. 1. For all comparisons, IMAGINE is

preferred to the competing method more than 50% of the

time. Second, under the realism criterion, the IMAGINE

has more advantage for objects compared to scenes which

has more repetitive-like images. Third, unlike the LPIPS

criterion, turkers found IMAGINE to outperform DeepIn-

version in terms of diversity. This is because humans con-

sider real diversity, disregarding diversity due to artifacts

that make images unrealistic.

4.2. Position Control

The combination of both a strong image prior, in the

form of a deep classifier pre-trained over a large set of se-

mantics, and a training image for image synthesis also of-

fers new possibilities for image synthesis. One example is

to leverage the attribution algorithms [37, 31, 2], which pro-

duce a saliency map highlighting the image regions respon-

sible for a class prediction. When the classifier is used for

image synthesis, the attribution map can influence the syn-

thesis itself. In particular, (1) can encourage images whose

attribution maps meet a specification for a object location.

This entails introducing in (9) an additional regularizer

Rloc(x̂;a
0, y∗) = ||m(f(x̂), y∗)− a

0||2, (10)

that encourages a user-specified saliency map a0 (in our

experiments a Gaussian blob at a certain image location),

where m(f(x), y) is the attribution map for the prediction

of the object class y in image x. We refer to (10) as the lo-

cation regularizer. In this way, rather than inferring the fo-

cus of attention of an existing image [31, 45], image guided

model inversion enables explicit control of this focus of at-

tention while generating the image.

Figure 6: Object position control. Four different target positions

(center) are used to supervise the position of objects, jellyfish (top-

center) or hummingbird (bottom-center) on the generated images.

Figure 7: Shape control: Our approach can transfer shape of a

clipart to the target image.

Many algorithms [31, 37, 45] can be used to compute

the attribution map m(f(x), y). Since most of these boil

down to back-propagating fy(x) to some intermediate net-

work layer and combining with the layer activations, the

attribution map can be easily computed as a side product

of the optimization that is already performed to synthesize

the image. This leads to an essentially cost-free mechanism

for controlling object position in the synthesized image. In

our experiments we have used the popular Grad-CAM [31]

procedure and a weight ν = 10 for (10) while adding it in

(9). Fig. 6 shows four images synthesized, for each of two

training images (“jellyfish” shown in top-center and “hum-

mingbird” in bottom-center of the Figure), with four differ-

ent target attribution maps a0 (shown in the center of the

Figure). Note how, by specifying the blob a0, the user can

control the position of either “jellyfish” or “hummingbird”

object in the synthesized image. The process is effective

even when the object is moved to the corner opposite to

where it appears in the training image.

4.3. Shape Control

Beyond position control, IMAGINE also enables ma-

nipulation of the semantics of the synthesized images as it

leverages an image prior trained to discriminate semantics

at various levels by using image representation at various

levels of abstraction. Since the high and low level seman-

tics of x̂ are controlled by the distribution matching of (5) at

the higher and lower network layers respectively, it is pos-

sible to use different target images for low and high level

semantics.

Fig. 7 illustrates this idea, with an application that com-

plements the target image x0 with a synthetic image, e.g.

a hand-drawn or clipart image xc. The latter specifies a

desired semantic property for the synthetic images, namely

an object shape different from that depicted in the target
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Figure 8: Style control: our approach can transfer style of an im-

age to target image.

x0. This exploits the fact that clipart images tend to have

less texture but strong silhouette information, and are thus

a good representation for shape. Given a clipart image xc,

the feature distribution matching regularizer of (5) in (9) is

modified to

Rdm(x̂;xc,Φc) +Rdm(x̂;x0,Φr). (11)

By including deeper and shallower layers in Φc and Φr re-

spectively, it is possible to guide IMAGINE to synthesize

images that combine the low-level semantics of the target

and the high-level semantics (shape) of the clipart image.

In all these examples, we use a ResNet-50 model and set

Φc = {conv4 6} and Φr = {conv1 1, conv2 3, conv3 4}.

4.4. Style Control

Inspired by the fact that style patterns usually can be en-

coded by the low-level layers of a classifier, similar to se-

mantic control, IMAGINE also enables the style control by

leveraging a style image to manipulate the image style of a

target image [11, 20, 39]. Given a style image x0, this is

achieved by replacing the distribution matching regularizer

of (5) in (9) with

Rdm(x̂;x0,Φs), (12)

where Φs = {conv1 1, conv2 3, conv3 4}. It should be

noted that here the discriminator in (6) is fed a style image

x0 not the real target. The optimization of x̂ starts with

the target image to be stylized. The target image here is

not included in the regularizer because [9] found that it is

redundant when starting from the target. The synthesized

images are shown in Fig. 8.

4.5. Counterfactual visual explanations

For a query image (xq), counterfactual explanations are

to answer the question with the form of “why the prediction

is class A but not class B” [15, 40]. For example, in Fig. 9

when the prediction of a classifier to the top-center image

is “cardinal”, if people ask why not a “summer tanager”

(called counterfactual class), the system should feedback a

response with the form of “if some regions are replaced with

other regions, the image would be summer tanager”. Exist-

ing literature solve this problem by exhaustively searching

query image (      )

Figure 9: Counterfactual explanations of two examples. Upper:

the query image is “Cardinal” and counterfactual class is “Sum-

mer Tanager”; lower: the query image is “Sooty Albatross” and

counterfactual class is “Laysan Albatross”.

a pair of class-discriminant regions on the query image and

an image x0 of the counterfactual class [15]. However, it is

time-consuming. [40] adopts an optimization-free method

by jointly analyzing different attribution maps to localize

two regions but no region replacement is introduced and

changes are not done in the image space, which makes the

explanation hard to understand. IMAGINE can solve this

problem by semantically translating the counterfactual re-

gion from x0 to xq by complementing below regularizer to

(9)

Rcou(x̂;x
0,xq) = ||rq ⊙ (xq − x̂)||1

+Rdm((1− r
q)⊙ x̂; (1− r

0)⊙ x
0,Φq)

(13)

where ⊙ denotes element-wise multiplications and Φq =
{conv1 1, conv2 3, conv3 4 conv4 6}. rq and r0 are the

discriminant regions with the form of 0-1 mask, produced

by [40], rounded by green circles in Fig. 9, which are also

side products of the classifier. The values out of the regions

are 1. Our explanation is illustrated in Fig. 9 with two coun-

terfactual explanations results. These results are based on a

ResNet-50 pre-trained on CUB200 [41]. So finally, taking

the upper case as an example, for the center-top image, if

someone asks “why this not a summer tanager?”, our ex-

planations would be “if it is a summer tanager, the circled

regions should look like the right image.”

5. Conclusion

In this work, we have proposed the IMAGINE for im-

age synthesis from one single training image. Instead of

training a GAN model, IMAGINE has synthesized images

by matching various levels of semantic features of a pre-

trained classifier.
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