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Abstract

Although recent inpainting approaches have demon-

strated significant improvement with deep neural networks,

they still suffer from artifacts such as blunt structures and

abrupt colors when filling in the missing regions. To ad-

dress these issues, we propose an external-internal inpaint-

ing scheme with a monochromic bottleneck that helps im-

age inpainting models remove these artifacts. In the exter-

nal learning stage, we reconstruct missing structures and

details in the monochromic space to reduce the learning di-

mension. In the internal learning stage, we propose a novel

internal color propagation method with progressive learn-

ing strategies for consistent color restoration. Extensive

experiments demonstrate that our proposed scheme helps

image inpainting models produce more structure-preserved

and visually compelling results.

1. Introduction

Image inpainting is a task that aims to complete the miss-

ing regions of an image with visually realistic and semanti-

cally consistent content. Image inpainting can benefit gen-

eral users in various practical applications, including un-

wanted object removal from an image, face defect removal,

and image editing. While we have witnessed significant

progress in image inpainting, inpainting models still suf-

fer from abrupt color artifacts, especially when the missing

regions are large. This work will analyze the weaknesses of

state-of-the-art inpainting approaches and present a novel

framework to improve existing inpainting methods.

State-of-the-art inpainting methods roughly fall into two

categories of patch matching by iteratively nearest-neighbor

search and deep learning models, with different pros and

cons. PatchMatch [3] is a learning-free method that only

utilizes internal statistics of a single image. As shown in

Fig. 1, it generates smooth patterns and colors that are con-

sistent with the non-missing region, but it fails to fill in

semantic-aware content. The deep learning based inpaint-

ing approaches can learn semantic-aware models by train-

ing on large-scale datasets. These approaches have ex-
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plored coarse-to-fine inpainting models in different fash-

ions. They may first generate edges [20, 17], structural

information [24], segmentation maps [29] or blurry im-

ages [37, 38, 36], and then use these intermediate outputs

as guidance for filling in details. However, their results still

suffer from color and texture artifacts. One of the most

common artifacts observed is color bleeding, as shown in

Fig. 1. These methods trained on a large-scale dataset tend

to introduce inconsistent colors that do not conform to the

color distribution of the test image. On the other hand, we

observe that color bleeding artifacts seldom appear in the

internal methods.

Based on the observations above, we propose a ro-

bust inpainting method by combining the best of both

worlds. We adopt a novel external-internal inpainting

scheme with a monochromic bottleneck: first complet-

ing the monochromic image via learning externally from

large-scale datasets and then colorizing the completed

monochrome by learning internally on the single test im-

age. Our proposed method is orthogonal to early inpainting

approaches and thus can be easily applied to improve pre-

vious learning-based inpainting models for a higher-quality

generation. In the external learning stage, by changing the

output of the reconstruction network from polychromatic

images to monochromic images, we reduce the dimension

of the optimization space from R
3 to R, leading to more

structure-preserving reconstruction (Section 4.3). Models

trained in this way also show stronger generalization abil-

ity on cross-dataset evaluation. In the colorization stage,

motivated by the recent advancement in deep internal learn-

ing, we propose a novel internal color propagation approach

guided by the completed monochromic bottleneck. How-

ever, similar monochromic values can map to different poly-

chromic outputs even in a single image. We, therefore,

adopt a progressive restoration strategy for combining both

local and global color statistics. Our external-internal learn-

ing scheme not only facilitates structure reconstruction but

also ensures color consistency. By focusing on the inter-

nal color distribution of a single image, we can eliminate

abrupt colors and produce a visually pleasing image (Sec-

tion 3.1.1).

We conduct extensive experiments to evaluate the perfor-
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Input PatchMatch [3] GMCNN [32] PartialConv [19] EdgeConnect [20] GatedConv [38] Ours

Figure 1. Image inpainting results by traditional and deep learning methods. Zoom in for details.

mance of our method on four public datasets Places2 [42],

Paris StreetView [21], CelebA-HQ [15] and DTD [6].

We apply our method to different baseline networks (Gat-

edConv [38], EdgeConnect [20], HiFill [36] and GM-

CNN [32]), and observe meaningful improvement in terms

of structure preservation and color harmonization. Further-

more, we perform model analysis and ablation studies to

verify our hypothesis and modifications. The main contri-

butions of our paper can be summarized as:

• To the best of our knowledge, we are the first to in-

troduce an external-internal learning method to deep

image inpainting. It learns semantic knowledge exter-

nally by training on large datasets while fully utilizes

internal statistics of the single test image.

• We design a progressive internal color restoration net-

work that achieves outstanding colorization perfor-

mance in our case.

• We generalize our proposed method to several deep

inpainting models and observe clear improvement in

terms of visual quality and model generalization abil-

ity on multiple datasets.

2. Related Work

2.1. Image Inpainting

Traditional learning-free image inpainting methods can

be roughly divided into two categories: diffusion-based and

patch-based methods. Diffusion-based methods [1, 8, 2, 9]

propagate neighboring information using techniques such

as isophote direction field. These methods perform well on

texture data or images with narrow holes while they will

fail when the masked region is large or contains meaning-

ful structures. Patch-based methods such as PatchMatch [3]

fill in the missing region by searching the patches outside

the hole with a fast nearest neighbor algorithm. However,

the pattern in the missing region cannot always be found in

the image, and also repetitive patterns tend to appear in the

reconstructed image. These methods utilize only the inter-

nal information that achieves color consistency but fails in

filling in semantic-aware contents.

The recent development of deep learning has greatly im-

proved the performance of image inpainting, especially in

image categories like faces and complex natural scenes. The

inpainting model benefits from learning and understanding

semantic meanings from large-scale datasets [7]. Pathak

et al. [21] first proposed context encoders that utilized an

encoder-decoder network to extract features and reconstruct

the outputs. Iizuka et al. [14] used both global and local

discriminator, and Yu et al. [37] proposed the contextual at-

tention for retrieving remote features and achieving global

coherency. Liu et al. [19] applied the partial convolution,

and Yu et al. [38] proposed the gated convolution to over-

come the weakness of the vanilla convolution. Yi et al. [36]

proposed the contextual residual aggregation module, and

Zeng et al. [39] adopted a guided upsampling network for

high-resolution image inpainting.

Most recent methods first predict coarse structure such

as edges [20, 17], foreground contours [34], structure

shape [24] and semantic maps [29], and then provide ad-

ditional prior for guiding the completion of images. These

methods show that conducting inpainting in a spatially

coarse-to-fine way will benefit the training process. Our

method also adopts a similar idea while completing images

not only spatially but also in a channel-wise coarse-to-fine

way via external-internal learning.
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Figure 2. Overview of our external-internal inpainting method. It externally learns to reconstruct structures in the monochromic space via

training on large datasets, while implicitly propagates colors within the single test image via internal learning. The colorization loss Ln is

only calculated on the unmasked regions.

2.2. Guided Colorization

User-guided colorization methods focus on local input,

such as user strokes or color points. The color is prop-

agated using low-level similarity metrics based on lumi-

nance [16, 13], textures [22], and intrinsic distance [35].

In addition to local hints, Li et al. [18] utilized color theme

and Chang et al. [5] used color palette for expressing global

color control. Zhang et al. [41] also combined low-level

cues along with high-level semantic similarities. Example-

based approaches transferred color from a single or multi-

ple reference images to the target image. These approaches,

no matter using which techniques (color transfer [11, 23]

or image analogies [12]), all focused on finding the correct

correspondence between the reference and target images. In

our internal colorizarion, we use the monochromic output

from the first stage as a conditional input and thus propagate

the internal color information from the non-missing region

to the missing region. Different from the user-guidance and

example-guidance, the guidance in our case is not only ex-

traordinarily dense but also has accurate one-to-one corre-

spondences, which can provide sufficient information both

locally and globally. We show in the paper that existing

guided colorization methods cannot fully utilize the reliable

color information in the non-missing regions.

2.3. Deep Internal Learning

Training a deep convolutional neural network on only

a single image has shown effectiveness in various image

generation tasks such as super-resolution, texture synthe-

sis, and so on [28, 4, 43, 27, 25]. Ulyanov et al. [31] were

the first to utilize deep model as a prior to train image in-

painting. They trained a deep model on the non-missing

region of a single image from random Gaussian noise and

try to propagate similar content information to the missing

regions. However, their model fails to generate realistic de-

tails in the inpainted area. Shocher et al. [27] introduced

the InternalGAN for conditional image generation. How-

ever, since our ground truth image is only partially available

(the non-missing part), it is difficult to apply the adversarial

training. Considering our case, we carefully design a pro-

gressive deep network for internal image colorization.

3. Method

In this section, we first analyze the drawbacks of state-

of-the-art image inpainting methods and the motivation of

our external-internal learning scheme. We then present the

details of the two stages: external monochromic reconstruc-

tion trained on large-scale datasets for generating semanti-

cally correct content, and internal color restoration on a sin-

gle image for propagating the color from non-missing parts

to missing regions. The overview architecture is shown in

Fig. 2. The proposed method does not conflict with existing

inpainting approaches but instead completes a more coarse-

to-fine procedure.

3.1. Motivation

3.1.1 Color Bleeding Removal

Early image inpainting networks trained on large datasets

usually suffer from the “color bleeding” artifacts. As

shown in Fig. 3, colors in the inpainted area of previous

approaches [38, 20] show abrupt discrepancy from non-

missing regions. For example, the green and pink color in

the first image, and the purple color in the second image

are very different from the color distribution of non-missing

parts. This distribution gap indicates the possibility of im-

proving inpainting quality by eliminating outliner colors in

the missing region. Hence, we are motivated to further im-

prove the color consistency by learning only from the inter-

nal color distribution of the non-missing parts.

To show the visual quality gain brought by the internal

colorization, we apply our method to re-colorize the results

of previous inpainting approaches. As in Fig. 3, by strength-

ening the impact of internal color statistics in the single im-

age, the abrupt colors can be eliminated.
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Input GatedConv [38] Ours (re-colorized) Input EdgeConnect [20] Ours (re-colorized)

Figure 3. Re-colorized results of applying our internal colorization method to GatedConv (left) and EdgeConnect (right). Colors of original

results are defective and inconsist, while our re-colorized results are visually harmonized.

Input Zhang et al. [41] Levin et al. [16] Gastal et al. [10] Ours

Figure 4. Visual comparison with different guided colorization methods on the inpainted monochromic bottleneck (top) and natural (w/o

inpainting) monochrome (bottom). Zoom in for details.

3.1.2 External-internal Learning

However, learning only from internal statistics is inappro-

priate since external information is significant for content-

aware image inpainting. A feasible solution is to set an in-

termediate bottleneck as a bridge between the external and

internal learning. In traditional image reconstruction tasks,

many researchers utilize monochromes to learn structures

and then directly add color information back [30, 26]. In-

spired from these works, we choose monochrome images

as the intermediate output. This leads to another advantage

that by reducing the output dimension from R
3 to R

1, the

complexity of training is alleviated. We expect that mod-

els trained with monochromic bottlenecks can reconstruct

higher-fidelity structures than original ones.

3.2. External Monochromic Reconstruction

Our method can be easily applied to improve the recon-

struction quality of learning-based image inpainting mod-

els. Specifically, we concatenate the monochromic input

to the original RGB input channel-wisely, and also modify

the output from polychromic to monochromic images. We

experiment with representative inpainting baselines as our

reconstruction network:

• GMCNN [32]: a generative multi-column model,

which synthesizes different image components in a

parallel manner.

• HiFill [36]: a coarse-to-fine network for high-

resolution images with light-weight gated convolution.

• EdgeConnect [20]: a two-stage adversarial method,

which hallucinates missing edges first as guidance for

image completion.

• GatedConv [38]: a coarse-to-fine network based on

gated convolution, which achieves state-of-the-art in-

painting performance with free-form masks.

In our implementation, we convert an RGB image to a

monochromic image by 0.30R+ 0.59G+ 0.11B. For sim-

plicity, we denote our models with different reconstruction

networks as Ours (“backbone”).

3.3. Internal Color Restoration

3.3.1 Guided Colorization

In this stage, the input of the colorization network is the

completed monochromic bottleneck from the first stage,

while the goal is to restore colors consistent with the poly-

chromic distribution of non-missing regions. We first tested

with several guided colorization methods including:
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• Zhang et al. [41]. A deep-learning based guided col-

orization method that learns semantic similarities from

large datasets.

• Levin et al. [16]. A quadratic optimization method

that restores colors according to similar intensities.

• Gastal et al. [10]. A learning-free image processing

method that is based on the edge-preserving filtering .

However, as shown in Fig. 4, the external-learning

method [41] tends to magnify the inaccuracy in the

monochrome and introduces color bleeding artifacts (e.g.

red in the first example). On the contrary, utilizing color

hints internally from the same image tends to avoid being

confused by external color distributions. Previous learning-

free methods [16, 10] produce generally color-consistent re-

sults but fail in propagation when the mask region is large.

We analyze the special features of our cases that are differ-

ent from most of previous colorization settings as follows:

• Unlike traditional sparse guidance such as color stroke

and color palette, the guidance in our case is multi-

ple accurate one-to-one mappings from monochrome

to RGB. Since non-missing regions usually consist of

an ample amount of pixels, the correspondence is ex-

tremely dense and covers most of patterns.

• Structures in the inpainted missing region Ihole and the

non-missing region Inhole are often highly correlated.

Inspired by recent work [31], rather than exploring sim-

ilarity explicitly by feature matching, we propose to utilize

a deep neural network f to implicitly propagate color in-

formation. Specifically, we internally learn the color map-

ping function f in the non-missing regions Inhole and di-

rectly apply it to the missing regions Ihole for colorization.

However, similar monochromic inputs can map to different

polychromic values even in a single image. We, therefore,

design a progressive colorization network to combine the

local and global color context.

3.3.2 Progressive Color Restoration

Our model consists of a conditional generator pyra-

mid {G0, G1, ..., GN}. We construct the corresponding

grayscale image pyramid{Ig
0
, I

g
1
, ..., I

g
N}, color image pyra-

mid {Ic
0
, Ic

1
, ..., IcN} and mask pyramid {M0,M1, ...,MN}

for internal learning. The colorization process begins at the

coarsest scale and goes sequentially to the finest scale. In

the coarsest scale, the model takes only the downsampled

grayscale image:

Î0 = G0(I
g
0
). (1)

In the finer scale, the generator takes both the grayscale im-

age and the upsampled color output from the lower level:

În = Gn(I
g
n ⊕ În−1 ↑), n = 1, ..., N (2)

where ⊕ indicates concatenation in channel dimension and

↑ indicates bilinear upsampling. We adopt a ResNet-like ar-

chitecture with box downsampling and bilinear upsampling

for all generators. Since all the generators have the same

receptive field, the model gradually captures global to local

information as we process from coarse to fine.

As the ground-truth pixels are only available in the non-

missing region, we thus adopt a masked reconstruction loss

for each generator, formulated as:

Ln = ||(În − Icn)⊙ (1−Mn)||1, (3)

where ⊙ indicates the Hadamard product. We use max-

pooling for downsampling when building the mask pyra-

mid to ensure that pixels from missing regions will not be

included.

4. Experiments

4.1. Datasets

We evaluate our method on four public datasets:

Places2 Standard [42] contains more than 18 million

natural images from 365 scene categories. We conduct ex-

periment on all the categories, and use the original split for

training. All images are resized to 512× 640 when testing.

Paris StreetView [21] contains 15,000 outdoor building

images. We use the original split for training. All images

are resized to 256× 256 when testing.

CelebA-HQ [15] contains 30,000 face images. We ran-

domly select 3,000 images for testing, and others for train-

ing. All images are resized to 256× 256 when testing.

DTD [6] contains 5,640 texture images.We randomly se-

lect 840 images for testing, and others for training. All im-

ages are resized to 512× 512 when testing.

Masks We generate dense irregular masks by the algo-

rithm proposed in [38]. In real-use cases, users usually be-

have like using an eraser or brush to mask out undesired

regions for inpainting. This algorithm simulates this behav-

ior by randomly drawing lines and rotating angles, which

are fair and suitable for our evaluation.

4.2. Evaluation

Quantitative Comparison As mentioned in previous

work [37], there are no suitable objective metrics for in-

painting tasks due to the ambiguity of ground truth. Never-

theless, we still report evaluation results in terms of PSNR,

SSIM [33], and a learned perceptual metric LPIPS [40]. As

shown in Table 1, for different backbone networks, the pro-

posed external-internal scheme consistently improves the

quantitative performance on diverse datasets.

Qualitative Comparison As shown in Fig. 5, previous

methods can produce semantically-reasonable content with
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Places2 Paris Streetview CelebA-HQ DTD

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

GMCNN [32] 22.18 0.849 0.146 25.10 0.856 0.104 26.89 0.931 0.035 27.58 0.932 0.071

Ours (GMCNN) 22.65 0.858 0.133 25.67 0.859 0.097 27.03 0.933 0.030 28.30 0.945 0.057

EdgeConnect [20] 23.61 0.874 0.125 26.05 0.863 0.088 27.24 0.944 0.027 28.35 0.955 0.055

Ours (EdgeConnect) 23.90 0.876 0.117 26.36 0.865 0.084 27.33 0.947 0.026 28.97 0.963 0.038

HiFill [36] 24.35 0.867 0.107 26.24 0.866 0.092 27.20 0.936 0.028 29.14 0.950 0.046

Ours (HiFill) 24.52 0.881 0.102 26.47 0.866 0.088 27.31 0.940 0.026 29.38 0.953 0.039

GatedConv [38] 23.94 0.871 0.112 26.32 0.861 0.090 27.36 0.938 0.028 28.54 0.947 0.052

Ours (GatedConv) 24.58 0.880 0.098 26.75 0.868 0.082 27.51 0.945 0.025 29.31 0.961 0.032

Table 1. Quantitative comparisons on different datasets. The best results are boldfaced.

Input HiFill [36] Ours (HiFill) EdgeConnect [20] Ours (EdgeConnect) GatedConv [38] Ours (GatedConv)

Figure 5. Visual comparisons of different methods. Masked regions are visualized in red. Our method reconstructs coherent structures with

fewer color artifacts. Zoom in for details.

small holes but still show blunt details and abrupt colors. As

the hole becomes large, they tend to be unstable. In contrast,

we observe that for each baseline network, our method pro-

duces compelling results with sharper structures and more

consistent colors. This indicates that the proposed approach

is not limited to one specific inpainting architecture but can

be easily generalized to improve existing inpainting models.

User Study In addition to numerical metrics, we also per-

form a human perceptual study over the most challenging

dataset Places2 on the Amazon Mechanical Turk. Partici-

pants are shown a random pair of images (ours and base-

line) at once and are asked to select a more realistic image

from the two in terms of both color consistency and struc-

ture preservation. All images are given at the same resolu-

tion in a shuffled order without time limitation. As shown in

Fig. 6, models trained with the proposed scheme outperform

the corresponding baselines perceptually by a large margin.

4.3. Analysis on Monochromic Bottlenecks

4.3.1 Cross-dataset Analysis

Inpainting models trained on natural datasets usually show

huge performance drop on images from other domains (e.g.,

textures) due to the distribution gaps. Although some fre-

quent patterns (e.g., lines) in texture images are also ubiq-

uitous in natural scenes, the distributions in polychromic

space are still very different since some color patterns sel-

dom appear in natural datasets. While in the monochromic
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Figure 6. User study results. The reported value indicates the pref-

erence rate of Ours (‘baseline’) against the corresponding baseline.

Train Test Baseline Ours Train Test Baseline Ours

Places2 DTD 21.85 23.16 DTD Places2 21.76 22.10

Places2 Pairs 26.24 26.57 DTD Paris 24.62 24.85

Places2 CelebA-HQ 27.35 27.38 DTD CelebA-HQ 26.83 26.86

Table 2. Quantitative results of cross-dataset evaluation.

space, this kind of gap is greatly narrowed. We conduct a

cross-dataset evaluation to show the generalization ability

gain brought by the monochromic bottleneck. As shown in

Fig. 7, previous approaches show obvious structure distor-

tion and color discrepancy in missing regions due to the dis-

tribution gap, while our model generates sharper lines and

more consistent colors with seamless boundary. By learning

to reconstruct structures in the monochromic space, the gap

between different types of datasets is narrowed. We also

find that if the domain gap between two datasets is huge

(e.g., CelebA-HQ and others), our model fails to increase

the cross-dataset test performance. Otherwise, there is con-

sistent improvement in Table 2.

4.3.2 Effectiveness of Dimension Reduction

As observed in the above experiments, structures and

shapes completed by our method are sharper than previous

methods. Intuitively, it is easier to learn the reconstruction

on monochrome than polychrome because the RGB opti-

mization space R
3 is much larger than the monochromic

space of R. To better show the quality gain of reconstruc-

tion brought by this dimension reduction, we conduct fur-

ther analysis on DTD. Since this dataset contains thousands

of simple texture images such as line, circle, checkerboard

with extremely diverse colors, it is a felicitous example to

demonstrate the quality of structure reconstruction.

As shown in Fig. 8, the original baseline model produces

curved and blunt details in straight lines. The original model

also fails to produce consistent color and seamless bound-

ary when filling in regions with diverse colors. However,

the model trained on monochromic space is able to cap-

ture the essence of structures and complete correct shapes.

It indicates that ignoring color distraction can alleviate the

learning complexity and facilitates structure reconstruction.

Input [38] Ours Input [38] Ours

Figure 7. Results of cross-dataset evaluation. We apply the models

trained on Places2 to the unseen DTD images.

Input GatedConv Ours GatedConv Ours

Figure 8. Visual comparisons of reconstruction quality on DTD.

We show grayscale images converted from the results of Gated-

Conv in the second column for better comparison.

4.4. Analysis on Internal Color Restoration

4.4.1 Ablation Study on Mask Ratios

One key factor that may affect the performance of our in-

ternal colorization method is the number of known pixel

correspondences. In Fig. 9, we increase the mask ratio of

Ihole from 22.5% to 73.4% and restore the color of a natu-

ral monochrome with our approach. Even in the most chal-

lenging case where 73.4% pixels are missing, the model still

colorizes Ihole in a harmonized style with Inhole without

noticeable artifacts. Since in image inpainting, Ihole usu-

ally accounts for less than 70% of the entire image, and the

proposed internal scheme is feasible in most cases.

4.4.2 Ablation Study on Progressive Restoration

We conduct ablation study to figure out how the progres-

sive restoration strategy contributes to the internal coloriza-

tion. Fig. 10 shows that without the progressive scheme,

our model focuses only on local color mappings and gener-

ates obvious artifacts and hard boundaries.

4.4.3 Comparison with Other Colorization Methods

As we discussed above, the inpainted monochromes are

possibly different from the ground truth due to the ambi-
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ground-truth 22.5% 48.9% 73.4%

Figure 9. Feasibility of our internal colorization method. We in-

crease the mask ratio of Ihole from 22.5% to 73.4% and colorize

the natural monochrome with our method.

Input Ours (base) Ours (full)

Figure 10. Ablation study of the progressive restoration strat-

egy. We colorize the inpainted monochromic bottleneck with our

method. Ours (base) is our model without the progressive design.

Mask type Zhang et al. Gastal et al. Levin et al. Ours (base) Ours (full)

Rectangular 36.12 29.35 36.68 37.04 38.45

Irregular 38.77 39.26 39.24 39.21 39.50

Table 3. Results (PSNR) of different guided colorization meth-

ods on natural monochromes with different types of masks. Ours

(base) is our model without the progressive design.

guity of the inpainting task. It is inappropriate to evaluate

the colorization method by comparing colorized inpainted-

monochrome with the imperfect ground truth. To avoid the

influence of monochrome discrepancy and evaluate the col-

orization separately, we apply random rectangular and ir-

regular masks to de-colorize ground-truth images from the

most challenging dataset Places2. In this way, we simulate

the behavior of inpainting masks while having the perfect

ground-truth color images for metric calculation. The pro-

posed method achieves a stable performance in Table 3.

4.5. Extensions

In Fig. 11, we show some applications of the proposed

method. We demonstrate one user-guided inpainting exam-

ple, where users can control the color of generated content

by giving few color hints interactively. We utilize one extra

color point as guidance to inpaint eyes with different colors.

4.6. Failure Cases

Fig. 12 shows failure cases of the proposed inpainting

method. In the first example, our method fails to reconstruct

a partially-masked bus when the mask is extremely large.

Input Ours Input Ours

Input Ours ( user-guided diverse outputs )

Figure 11. Examples of image editing, extrapolation, and user-

guided inpainting. Users can control the style of inpainted content

with our approach by giving extra color hints.

In
p

u
t

O
u

rs

Figure 12. Failure cases. We show failure cases of both recon-

struction and colorization.

Similar to previous inpainting approaches, our method has

difficulty in completing largely-masked foreground objects,

since the structures of these categories are highly complex

and diverse. In the second example, our model incorrectly

colorizes the mouth due to the lack of colorization hints. In

this case, we can consider giving one extra color point as

guidance to facilitate the color restoration.

5. Conclusion

In this paper, we propose a general external-internal

learning inpainting scheme with monochromic bottlenecks.

It first reconstructs the monochrome utilizing semantic

knowledge learned externally from large datasets, and then

recovers colors internally from a single test image. Our

method can produce more coherent structures and more

visually harmonized colors compared with previous ap-

proaches. Extensive experiments show that our method

can lead to stable improvement qualitatively and quantita-

tively on several backbone models. The major limitation of

our method is the inference speed. Since an extra stage is

needed for colorization, our method is slower than state-

of-the-art approaches. In the future, we plan to acceler-

ate the colorization procedure further and extend the pro-

posed scheme to other low-level vision tasks such as super-

resolution.
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