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Abstract

Text recognition is a popular research subject with many

associated challenges. Despite the considerable progress

made in recent years, the text recognition task itself is still

constrained to solve the problem of reading cropped line

text images and serves as a subtask of optical character

recognition (OCR) systems. As a result, the final text recog-

nition result is limited by the performance of the text de-

tector. In this paper, we propose a simple, elegant and ef-

fective paradigm called Implicit Feature Alignment (IFA),

which can be easily integrated into current text recogniz-

ers, resulting in a novel inference mechanism called IFA-

inference. This enables an ordinary text recognizer to pro-

cess multi-line text such that text detection can be com-

pletely freed. Specifically, we integrate IFA into the two

most prevailing text recognition streams (attention-based

and CTC-based) and propose attention-guided dense pre-

diction (ADP) and Extended CTC (ExCTC). Furthermore,

the Wasserstein-based Hollow Aggregation Cross-Entropy

(WH-ACE) is proposed to suppress negative predictions

to assist in training ADP and ExCTC. We experimentally

demonstrate that IFA achieves state-of-the-art performance

on end-to-end document recognition tasks while maintain-

ing the fastest speed, and ADP and ExCTC complement

each other on the perspective of different application sce-

narios. Code will be available at https://github.com/Wang-

Tianwei/Implicit-feature-alignment.

1. Introduction

Text is extensively used in people’s daily life, delivering

rich and useful visual information. Reading text in images

is one of the most important tasks in the field of computer
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Yuanzhi Zhu’s internship at Alibaba Group. Lianwen Jin is the correspond-

ing author.
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Figure 1. The development of text recognizers.

vision.

Most OCR systems follow the pipeline that first uses a

text detector to detect the location of each text line and then

recognizes the detected line texts with a text recognizer. Un-

der this pipeline, the performance of the entire system is

determined by the cascading of each module, and the per-

formance degradation of each module leads to the deterio-

ration of the overall performance. Although many end-to-

end (E2E) OCR methods [4, 7, 15, 22, 26, 29, 31, 38] have

been proposed in recent years, they have still used such a

pipeline, and considerable efforts have been made to better

develop the bridge between text detectors and text recog-

nizers. Thus, the error accumulation problem has not been

solved. To remedy this issue, a direct way is shortening this
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pipeline by extending text recognizer from text-line to full-

page level. In this paper, we propose a simple, yet effective,

paradigm, called Implicit Feature Alignment (IFA), to re-

alize detection-free full-page text recognition with state-of-

the-art performance and significantly faster inference speed

as compared to previous models.

Alignment is the core issue in the design of a text rec-

ognizer. This means the way to teach the recognizer the

location of each character, as well as the category to which

it belongs. As shown in Fig. 1, the development of text

recognition methods has shown a trend of more general

recognition with fewer annotations. In the early research,

integrated segmentation-recognition methods [39,43,55,56]

construct the segmentation-recognition lattice based on se-

quential character segments of line text images, followed

by optimal path searching by integrating the recognition

scores, geometry information, and semantic context. These

methods require text annotations with a bounding box for

each character to train a line-level recognizer. With the

rapid development of deep learning technology, Connec-

tionist Temporal Classification (CTC) [8, 9] and the atten-

tion mechanism [2, 14, 34, 35] can realize training of text

recognizers with text annotations. More specifically, CTC

assumes that the character order in the label and that in

the image are monotonous, and thereby designs a series of

many-to-one rules to align the dense frame-wise output with

the label. The attention mechanism uses a parameterized at-

tention decoder to align and transcribe each character on the

image. However, both CTC and the attention mechanism

have their own limitations, which makes them impossible

to conduct full-page recognition. CTC can only align two

1-D sequences, ignoring the height information. Thus, it

cannot process multi-line images. Attention relies on a pa-

rameterized attention module, whose performance decays

as the sequence length increases [6, 41], not to mention the

full-page level.

The proposed IFA aims to overcome the aforementioned

limitations and convert a text recognizer trained on line

text images to recognize multi-line texts. IFA leverages the

learnable aligning ability of the deep learning model to au-

tomatically align and train positive pixels (i.e., pixels on a

feature map that contains character information), thereby

realizing conversion from a text recognizer to a text spotter.

We integrate IFA with CTC and the attention mechanism,

producing two new methods called attention-guided dense

prediction (ADP) and extended CTC (ExCTC). For ADP,

we theoretically analyze the optimization objective of the

attention mechanism at each step and find it equivalent to

ensuring the aligned pixels being correctly recognized. For

ExCTC, we add a pluggable squeeze module that learns to

align the positive pixels on each column to conduct feature

collapse. In addition to aligning positive pixels by ADP and

ExCTC, we modify Aggregation Cross-Entropy (ACE) [44]

and propose Wasserstein-based Hollow ACE (WH-ACE) to

suppress negative noise. Both ADP and ExCTC have a uni-

fied inference form called IFA-inference, which can pro-

cess single-line, multi-line, or even full-page text recogni-

tion tasks.

2. Related Work

2.1. Text Recognition

Based on the decoding strategy, there are two main cate-

gories of methods for text recognition. The first form can be

be collectively called dense prediction, where the classifi-

cation is performed in a per-pixel prediction manner; that is,

each pixel in the feature map is interpreted as a probability

distribution. The other is attention-based, where an atten-

tion decoder is adopted to automatically align the feature

with the corresponding ground-truth character in a sequen-

tial manner.

More specifically, dense prediction contains several im-

plementations. CTC [8, 9] outputs a dense probability dis-

tribution frame by frame for 1-D monotonic sequence, and

designs a series of rules to align the dense output with the

label. It essentially solves the problem of 1-D sequence

alignment without character-level annotation. Aggregation

cross entropy (ACE) [44] attempts to convert the problem

of sequence recognition to the alignment of two aggre-

gated probabilities. It involves a strong assumption; that

is, the characters with the same number of occurrences in

the label have equal distribution probability. Generally,

some segmentation-based methods [17, 36] are proposed

to handle irregular scene text recognition task, this type

can also be regarded as an implementation of dense pre-

diction. Attention-based methods have variants of forms

[2, 16, 25, 41, 46], but the fundamental idea of using an at-

tention map to align each character is unchanged. With a

learnable alignment module, attention-based methods are

more flexible when facing different application scenarios.

Without a heavily parameterized decoder, dense prediction

methods are usually significantly faster than attention-based

methods.

Despite the considerable progress made in curved text

rectificationn [17,20,24,35,45,50], data generation [10,13,

23,51,52], and decoder design [16,18,30,40,41,49,57], the

text recognition task itself remains constrained to solve the

problem of reading cropped line text images and serves as

a subtask of full-page text recognition (also known as text

spotting).

2.2. FullPage Recognition (Text Spotting)

End-to-end text spotting has evolved as a new trend in

the past few years. Most existing methods cascade text de-

tector and text recognizer through pooling-like operations.

Michal et al. [4] proposes deep text spotter, which adopts
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YOLOv2 as text detector and a CTC based recognizer. A bi-

linear sampler serves as the bridge between these two mod-

ules. Li et al. [15] proposes to cascade Faster-RCNN [32]

and attention decoder through RoIPooling to realize end-to-

end spotting. From then on, lots of novel methods are pro-

posed [22, 26, 31]. Most of these methods concentrate on

how to bridge text detectors and text recognizers in a better

manner and introduce methods such as RoISlide [7], RoI

masking [31], character region attention [1], and Bezier-

Align [22].

On document OCR tasks, Curtis et al. [42] propose to

find the start position of each line and then incrementally

follow and read line texts. Bluche [3] proposes the use of

a sequence decoder with weighted collapse to directly rec-

ognize multi-line images. Mohamed et al. [48] proposes to

implicitly unfold a multi-line image into a single line image

and use CTC to supervise the output.

Different from these methods, IFA attempts to enable an

ordinary text recognizer trained with only textline data to be

able to process page-level text recognition.

3. Methodology

IFA-inference can be modeled as Y = C(F(x)), where

a CNN based feature extractor F encodes the input image x

with label s = {s1, s2, · · · , sT } into feature map F :

F = F(x),F ∈ R
C×H×W , (1)

where C , H and W denote the output channels, height and

width of the feature map, respectively. Then, the classifier

C with trainable parameter Wc classifies each pixel in the

feature map as:

Y = C(F ),Y ∈ R
K×H×W , (2)

where K denotes the total number of character classes plus

a blank symbol.

3.1. Attentionguided Dense Prediction (ADP)

Generally, an attention decoder (represented as A) out-

puts text sequentially. In this section, we theoretically ana-

lyze the optimization objective of the attention mechanism

at each step and explain the derivation procedure of the IFA

inference.

3.1.1 A general form of the attention mechanism.

Assuming that the attention map at decoding step t is αt,

which is yielded by softmax function

αt,h,w = softmax(et,h,w). (3)

Here, et,h,w is a score map generated by score function (for

details please refer to [2, 25]). Then, we can calculate the

Cross 

Entropy 

Loss

Attention 

Score
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Figure 2. ADP. (a) ADP training. (b) conventional attention infer-

ence. (c) IFA-inference derived from ADP.

context vector ct by applying the attention map over F with

the Hadamard product

ct =
∑

H,W

αt,h,wFh,w. (4)

Now, ct is classified by C as

yt = C(ct) = Wcct. (5)

Finally, the loss at time t can be calculated as

Lt = −log(softmax(yt)st). (6)

This maximizes the probability of generating character st
at this step. Fig. 2 (a) illustrates the training stage of ADP,

where the attention decoder at each step highlights the cor-

responding positive pixels.

3.1.2 IFA in the attention mechanism.

In Eq. 6, the optimization objective at step t is to maximize

softmax(yt)st . According to Eqs. 4 and 5, we have:

yt = Wcct = Wc

∑

H,W

αt,h,wFh,w =
∑

H,W

αt,h,wWcFh,w.

(7)

As shown in Eq. 3, the attention map is nearly one-hot be-

cause of the softmax function. Thus, we have

yt =
∑

H,W

αt,h,wWcFh,w ≈ αt,h′,w′WcFh′,w′ ≈WcFh′,w′ ,

(8)
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where h′, w′ = argmax(αt,h,w), representing the atten-

tion center at step t. Therefore, the optimization objec-

tive at step t can be approximately considered to maximize

softmax(WcFh′,w′)st ; that is, ensuring that the aligned

pixels are correctly recognized.

Figs. 2 (b) and (c) describe the conversion from conven-

tional attention inference to IFA-inference by removing the

attention decoder. As C has been trained to recognize posi-

tive pixels, after removing the attention module, the aligned

positive pixels can still be recognized.

3.2. Extended CTC (ExCTC)

Unlike the attention mechanism which aligns each char-

acter during training, the CTC algorithm aligns two se-

quences. To allow CTC training, we use a column squeeze

module to squeeze the 2-D feature map into 1-D feature se-

quence. This module highlights the key pixels of each col-

umn by conducting an attention operation in each column.

3.2.1 Integrate IFA into CTC: Column squeeze.

The column squeeze module S is used to squeeze 2-D fea-

ture map F ∈ R
C×H×W into 1-D feature sequence F ′ ∈

R
C×1×W along the vertical direction using a column atten-

tion map. S consists of two stacked convolutional layers

with batch normalization and ReLU function. Similar mod-

ules have been used in [3] and [12]. The vertical attention

map α is calculated as

e = S(F ), (9)

αh,w =
exp(eh,w)

∑H

h′=1 exp(eh′,w)
. (10)

Then, F ′ is calculated as

F ′

w =

H
∑

h=1

αh,wFh,w. (11)

The following steps and training strategies are similar to

those of any other conventional CTC-based methods. First,

the probability distribution y′ is generated by applying C to

F ′:

y′ = C(F ′). (12)

Given CTC path π, its probability can be calculated as

P (π|y′) =
W
∏

w=1

y
′w
πt
. (13)

The conditional probability of the target sequence is the

summation of the probabilities of all possible paths

P (s|y′) =
∑

π:B(π)=s

P (π|y′), (14)

CTC Loss
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Figure 3. ExCTC. (a) ExCTC training. (b) ExCTC conventional

inference. (c) IFA-inference derived from ExCTC.

where B denotes the mapping function [8]. The loss func-

tion is negative log-likelihood of the target sequence:

LCTC = −log(P (s|y′)). (15)

Similar to ADP, ExCTC ensures that the aligned key pix-

els of each column are correctly recognized. As C has been

trained to have the ability to recognize positive pixels on

each column, after removing S, the aligned positive pixels

can still be recognized. Fig. 3 (b) and (c) describe the con-

version from conventional CTC inference to IFA-inference

by removing the column squeeze module.

3.3. Wassersteinbased Hollow ACE (WHACE)

Both ADP and ExCTC simply align and train the posi-

tive pixels of F , ignoring the suppression of negative pre-

dictions. As shown in Fig. 4, although ADP and ExCTC

correctly predict positive pixels, such as “A”, “f” and “r”,

they also include additional negative predictions such as “l”,

“v” and “u”. We define those classes included in the label

as “in-label classes” and those not included as “out-label

classes”. In this section, we propose WH-ACE to suppress

the out-label negative predictions while keeping the positive

predictions unaffected.

ACE [44] is proposed to address the sequence recogni-

tion problem by comparing the predicted and target distri-

butions. The original version of ACE makes a strong as-

sumption that characters with the same frequency of occur-

rences have the same predicted probability. This ignores the

scale problem and, thus, necessitates an additional character

number counting module to help in training.
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Figure 4. Wasserstein-based Hollow ACE (WH-ACE). The noise

suppression task is converted into a distribution optimization task.

Based on the dense prediction Y = C(F(x)), we

denote the aggregated prediction probability as y =
∑

H,W Y = {y1, y2, ..., yK} and the target distribution as

N = {N1,N2, ...,NK}.

3.3.1 Hollow parameter

Without character-level annotation, the concrete target dis-

tribution is unavailable. This is because we do not know the

location of each character and the number of pixels that it

should contain. Concrete priori knowledge is only available

for the in-label class. Its probability is greater than zero,

and for the out-label class, the probability should be zero.

This observation can be formulated as:

{

Nk > 0, if k ∈ s

Nk = 0, if k /∈ s
. (16)

As we only have the concrete distribution of the out-label

classes, we propose a hollow parameter to correct the dis-

tribution:

hk =

{

0, if k ∈ s

1, if k /∈ s
. (17)

With the hollow parameter, the hollowed distributions can

be computed as:

y = {h1y1, h2y2, ..., hKyK}, (18)

N = {h1N1, h2N2, ..., hKNK}. (19)

Through further analysis we can find that:

N k =

{

hkNk = 0×Nk = 0, if k ∈ s

hkNk = hk × 0 = 0, if k /∈ s
. (20)

Hence, the hollowed target distribution N = 0.

3.3.2 Wasserstein distance for optimization

It can be observed that y and N have no overlap as all pixels

in N are zero. In [44], the authors propose the use of cross

entropy loss to compare these two probability distributions.

However, cross entropy can not optimize two non-overlap

distribution, which make it not suitable in this situation.

Here we propose the use of the 1-Wasserstein distance

(denote as W1) to compare y and N , the loss function of

WH-ACE is written as:

LWH−ACE =
1

K
W1(y,N )

=
1

K

K
∑

k=1

|yk −N k| =
1

K

K
∑

k=1

|hkyk − hkNk|

=
1

K

K
∑

k=1

|hkyk| =
1

K
h · y. (21)

The physical interpretation of WH-ACE is moving out-label

probabilities into in-label classes.

3.4. Training and Inference

Combining ADP with WH-ACE, the loss function of

ADP training is

LADP =

T
∑

t=1

Lt + LWH−ACE . (22)

Combining ExCTC with WH-ACE, the loss function of Ex-

CTC training is

LExCTC = LCTC + LWH−ACE . (23)

IFA-inference applies C and F to the input image, i.e.,

Y = C(F(x)). After merging the eight-neighborhoods of

argmax(Y ), we can get the recognition result Y ′. Y ′ is a

set of (x, y, c), where x, y, c represent the horizontal co-

ordinate, vertical coordinate and category of the character,

respectively. To translate the recognition results into text se-

quences, we design a simple rule-based postprocessing i.e.,

Algorithm. 1, which follows the priori that documents can

be read from left to right and from top to bottom. λx and λy

are hyper-parameters, and are set as 20 and 2 in this work.

The implementation of IFA is rather simple that it can be

realized by adding WH-ACE on attention-based methods or

on CTC-based methods with column squeeze module.
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Algorithm 1 Postprocessing

Require:

Recognition result Y ′

Ensure:

Text sequence O
Y ′ ← sort(Y ′) sorted in ascending order of x
C ′ ← ∅, O ← ∅, I ← Lengthof{Y ′}
while Y ′! = ∅ do

C ← {c0}, xp ← x0, yp ← y0
for i ∈ [1, 2, ..., I] do

if xi − xp < λx, abs(yi − yp) < λy then

xp ← xi, yp ← yi, C ← C ∪ {ci}, Y
′ ← Y ′ −

(xi, yi, ci)
end if

end for

C ′ ← C ′ ∪ {(y0, C)}, I ← Lengthof{Y ′}
end while

C ′ ← sort(C ′) sorted in ascending order of y
for i ∈ [1, 2, ..., Lengthof{C ′}] do

O ← O ∪ Ci

end for

4. Experiments

4.1. Datasets and Implementation Details

4.1.1 Datasets

IAM [28] dataset is based on handwritten English text

copied from the LOB corpus. It contains 747 documents

(6,482 lines) in the training set, 116 documents (976 lines)

in the validation set and 336 documents (2,915 lines) in the

testing set.

CASIA-HWDB [19] is a large-scale Chinese hand-

written database. In this study, we use two offline

datasets: CASIA-HWDB 1.0-1.2 and CASIA-HWDB 2.0-

2.2. CASIA-HWDB 1.0-1.2 contains 3,895,135 isolated

character samples. CASIA-HWDB 2.0-2.2 contains 5,091

pages.

ICDAR-2013 [47] includes a page-level dataset. There

are 300 pages in ICDAR-2013. This dataset is used to eval-

uate the models trained on CASIA-HWDB.

Touching-Block is an in-house Chinese educational

handwritten dataset with 1,358 images (4,810 lines). This

dataset encounters serious touching problem, where char-

acters are densely and closely arranged, as shown in Fig. 7.

Experimental models on this dataset are trained on CASIA-

HWDB as well as another in-house training set with about

100k lines.

OffRaSHME [37] is a handwritten mathematical recog-

nition datasets with 19,749 training images. This dataset is

the largest public mathematical recognition dataset reported

to date.

4.1.2 Implementation Details

On the IAM and ICDAR-2013 dataset, the height of the

training image is normalized to 80 pix and the width is

calculated with the original aspect ratio (up to 1200 pix).

During inference on IAM testing set and CASIA dataset,

the multi-line image is scaled 0.5× and then input into the

model. On OffRaSHME dataset, the height of the training

image is normalized to 128 pix and the width is calculated

with the original aspect ratio (up to 768 pix). We adopt

ResNet-18 [11] as backbone in all experiments. In IAM, the

evaluation criteria is the character error rate (CER%), corre-

sponding to the edit distance between the recognition result

and ground-truth, normalized by the length of ground-truth.

In ICDAR-2013 and Touching-block, the evaluation crite-

ria is correct rate (CR) and accuracy rate (AR) specified by

ICDAR2013 competition [47].

4.2. Effectiveness Validation of WHACE

In this subsection, we verify the noise-suppression abil-

ity of WH-ACE, which is used to complement ADP and

ExCTC for negative sample suppression.

Here, we compare conventional inference and IFA-

inference of ADP and ExCTC. It can be observed from Ta-

ble. 1 that the performance of conventional inference is al-

most the same with or without WH-ACE, while the perfor-

mance of IFA-inference has an evident improvement when

training with WH-ACE. This experimental result is consis-

tent with our expectation, because we expect WH-ACE to

suppress the negative noises without affecting the training

Table 1. Ablation study of the use of WH-ACE. The measure of

performance is the CER(%).

Methods WH-ACE Conventional IFA-inference

ADP
11.85 27.65

X 11.78 10.28

ExCTC
6.48 15.83

X 6.42 6.26

(a) ADP without WH-ACE

(c) ExCTC without WH-ACE

(b) ADP with WH-ACE

(d) ExCTC with WH-ACE

Figure 5. Visualization of the use of WH-ACE.
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of positive pixels.

A few visualization results are shown in Fig. 5. With-

out WH-ACE, some strokes on the corners of characters are

easily recognized as similar characters; for example, the up-

per part of “p” is recognized as “o” in Fig. 5 (a).

4.3. Convert Text Recognizer to Text Spotter

In this subsection, we will quantitatively analyze the pro-

cess of converting single-line recognizer to multi-line rec-

ognizer by IFA.

The conversion can be divided into two stages, the first

stage is the conversion from conventional inference to IFA-

inference on single lines, and the second stage is the conver-

sion of IFA-inference from single-line to multi-line images.

To facilitate the analyze, we define two gaps, g1 and g2,

corresponding to the performance degradation of these two

stages, which are visually shown in Fig. 6.

The results are given in Table. 2. For ExCTC, g1 is

close to 0, which implies that the conversion brought by

Table 2. Performance comparison from single-line to multi-line

text recognition. The measure of performance is the CER(%).

‘IFA-line’ and ‘IFA-fullpage’ denotes IFA-inference works on line

text and full-page text.

Methods Conventional IFA-line IFA-fullpage g1 g2

ExCTC 6.42 6.26 6.16 0.16 0.10

ADP 11.78 10.28 9.97 1.50 0.31
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Figure 6. The conversion from line text recognition to multi-line

recognition. (a) conventional-inference of ADP on single-line.

(b) conventional-inference of ExCTC on single-line. (c) IFA-

inference on single-line. (d) IFA-inference on multi-line.

IFA involves no performance degradation. For ADP, g1 is

larger than 1%, implying that the inference form after con-

version is even better than that of the original attention de-

coder. This is because attention decoder often encounters

alignment problem on long sequence [6], and the conver-

sion replaces the attention decoder with a more robust one-

step classification operation on each pixels. For both Ex-

CTC and ADP, g2 is also close to 0, which implies that IFA

can effectively process both single-line and multi-line texts.

In summary, IFA-inference enables a conventional

text recognizer to process multi-line texts, serving as a

detection-free text spotter.

4.4. IFA vs Previous Methods: Advantages

In this subsection, we will compare IFA with the tra-

ditional Detection-Recognition (Det-Recog) OCR systems

on Latin (IAM) and non-Latin (ICDAR-2013 and touching-

block) datasets, and we demonstrate that IFA is faster and

more robust. On the IAM dataset, we conduct a compar-

ison with other published results. On the ICDAR-2013

and touching-block datasets, we reproduce several popu-

lar methods and compare the performances of ExCTC with

them.

For Latin text recognition, as shown in Table. 3, ExCTC

surpass all Det-Recog methods and achieves competitive

performance with the current state-of-the-art OrigamiNet.

For non-Latin text recognition, as shown in Table. 4, Ex-

CTC achieves state-of-the-art performance with the fastest

speed. It surpasses the traditional Det-Recog method, meth-

ods designed for scene text spotting (MaskText Spotter [26]

and FOTS [21]) and methods designed for document full-

page OCR (SFR [42] and OrigamiNet [48]). It has a speed

of 11.4 times higher than Det-Recog methods, 19.1 times

faster than MaskText Spotter [26] and 1.1 times faster than

FOTS [21]. On the touching-block dataset, IFA appears

to be much better than Det-Recog (AR 84.96% vs AR

77.75%). This is because IFA directly ignore the detec-

tion process which is error-prone in this serious touching

dataset. Although OrigamiNet [48] performs well in Latin

text recognition, its performance degrades significantly in

Table 3. Comparison with other state-of-the-art methods on IAM

dataset. We adopt the ResNet version of OrigamiNet [48] for fair

comparison.

Methods Year CER

Bluche [3] 2016 7.9

SFR [42] 2018 6.4

E2E HTR [5] 2019 15.6

OrigamiNet [48] 2020 6.1

ADP 2020 9.97

ExCTC 2020 6.16
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Table 4. Comparison with other state-of-the-art methods on IC-

DAR dataset. The ‘Det + Recog’ is the combination of two inde-

pendently trained models which are Faster RCNN [32] equipped

with RRPN [27] for line text detection and a recognizer [33] for

line text recognition. Speed is tested with NVIDIA GTX 1080ti.

Methods AR CR Speed(fps)

Det + Recog 89.65 90.39 2.79

Mask Textspotter [26] 50.60 58.29 1.61

FOTS [21] 67.32 67.82 27.03

SFR [42] 82.91 83.55 0.61

OrigamiNet [48] 5.99 5.99 3.19

ExCTC 89.97 90.56 31.76

Figure 7. Visualization of Det-Recog and ExCTC on touching-

block dataset. (a) Visualization of Det-Recog pipeline, red boxes

denote detection results. (b) Visualization of ExCTC, red line links

the characters that belong to the same line text via Algorithm. 1.

non-Latin text recognition, whereas ExCTC maintains high

performance in both Latin and non-Latin text recognition.

Some visualization results on touching-block dataset are

shown in Fig. 7.

4.5. ADP vs ExCTC: application scenarios

The above experiments results show that ExCTC has bet-

ter performance than ADP on document full-page recog-

nition task. There are two reasons for this phenomenon.

First, CTC-based methods have been proved to be more re-

liable than attention-based methods on sentence recognition

tasks [6]. And their derivative methods inherited this prop-

erty. Second, ADP cannot separate adjacent characters of

the same class very well, but ExCTC can avoid this error by

inserting a blank symbol. This error may occur when facing

words like “well”, “apple”. However, attention is more flex-

ible than CTC when facing complex 2-D text; for example,

mathematical expressions.

On OffRaSHME dataset, we use the longest 4,000 sam-

ples for validation and the rest for training. It may be noted

that we do not aim to fully recognize these expressions, but

to verify the wide range of applications of ADP. Thus, we

only consider the character recognition rate.

It can be observed in Table 5 that ADP has a better char-

acter recognition rate than these attention-based methods.

Table 5. Performance comparison on OffRaSHME dataset.

Methods Precision Recall F-measure

WAP [54] 89.49 78.79 83.80

WAP + TD [53] 93.43 77.48 84.74

ExCTC 29.96 10.21 15.23

ADP 94.00 85.08 89.32

It surpasses the state-of-the-art WAP-TD [53] by 4%. This

is because ADP leverages the flexible alignment property

of the attention mechanism while abandoning the complex

and uncontrollable step-by-step decoding process, which is

error-prone on long sequences.

In summary, ADP and ExCTC both have their own ap-

plication scenarios. ADP can handle more complex recog-

nition problems, while ExCTC is more effective for regular

document recognition. They have their own advantages and

complement each other in different application scenarios.

5. Discussion

Compared with previous studies, in this study, IFA first

unifies the form of text recognition and text spotting. IFA-

inference can work on single-line and multi-line images, re-

sulting in a much simpler OCR system.

Although IFA can directly conduct detection-free text

spotting, the current version still requires rule-based post-

processing to generate text from dense predictions, which

has low generality. In the future, we will explore a bet-

ter linking strategy to replace the current rule-based post-

processing and extend the method to scene-text spotting

tasks.

6. Conclusion

In this paper, we proposes a simple, yet effective,

paradigm called IFA to convert a text recognizer into a

detection-free text spotter. IFA leverages the learnable

alignment property of neural network and can be easily in-

tegrated into current mainstream text recognizers. Specif-

ically, we integrate IFA with the attention mechanism and

CTC, resulting in two new methods: ADP and ExCTC, re-

spectively. In addition, we propose WH-ACE to suppress

the negative noise. Through comprehensive experiments,

we find that IFA maintains state-of-the-art performance on

several document recognition tasks with a significantly sim-

pler pipeline, and both ADP and ExCTC have their own

merits in different application scenarios.
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