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Abstract

OCR-based image captioning aims to automatically de-

scribe images based on all the visual entities (both visual

objects and scene text) in images. Compared with conven-

tional image captioning, the reasoning of scene text is re-

quired for OCR-based image captioning since the gener-

ated descriptions often contain multiple OCR tokens. Ex-

isting methods attempt to achieve this goal via encoding

the OCR tokens with rich visual and semantic representa-

tions. However, strong correlations between OCR tokens

may not be established with such limited representations. In

this paper, we propose to enhance the connections between

OCR tokens from the viewpoint of exploiting the geometri-

cal relationship. We comprehensively consider the height,

width, distance, IoU and orientation relations between the

OCR tokens for constructing the geometrical relationship.

To integrate the learned relation as well as the visual and

semantic representations into a unified framework, a Long

Short-Term Memory plus Relation-aware pointer network

(LSTM-R) architecture is presented in this paper. Under the

guidance of the geometrical relationship between OCR to-

kens, our LSTM-R capitalizes on a newly-devised relation-

aware pointer network to select OCR tokens from the scene

text for OCR-based image captioning. Extensive experi-

ments demonstrate the effectiveness of our LSTM-R. More

remarkably, LSTM-R achieves state-of-the-art performance

on TextCaps, with the CIDEr-D score being increased from

98.0% to 109.3%.

1. Introduction

The task of OCR-based image captioning is to describe

images with sentences based on the visual entities (visual

objects and scene text) contained in images. Despite the

significant improvement made in conventional image cap-

tioning [35, 38, 30, 4, 41] and Optical Character Recogni-

*Corresponding author.
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(a) Without geo-rel:

A white van with the words 

yes more federal airlines, on it.

(b) With geo-rel:

A white van that says do pay 

more federal income taxes.
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Figure 1. Caption examples from the models with or without ge-

ometrical relationship (geo-rel for short) and comparison between

the conventional dynamic pointer network (e.g. [31]) and the pro-

posed relation-aware pointer network. h and s denote the output

state of the LSTM and the scores of the OCR tokens, respectively.

tion (OCR) [9, 12, 19, 23, 33] in recent years, OCR-based

image captioning still faces challenges and leaves much to

be desired. To incorporate scene text for generating image

descriptions, OCR-based image captioning needs to under-

stand the words, recognize the visual entities of different

modalities and reason among them.

Among the modalities contained in OCR-based image

captioning, the scene text, which is closely related to both

visual content and language descriptions, is of vital impor-

tance. As has been verified, the model would witness a dra-

matic decline in the generation performance [31] if the in-

formation from scene text was ignored. To achieve better

understanding and reasoning of the scene text in images,

existing research [31, 37] jointly encodes visual feature,

semantic feature and spatial feature of OCR tokens for a

richer representation. Although promising results are ob-

tained, the produced descriptions may still encounter prob-

lems about the OCR tokens. For example, existing meth-

ods (Figure 1(a)) may describe the upper-left image as “a

white van with the words yes more federal airlines on it”,

which reads the OCR tokens in an incorrect order. This in-
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dicates that the relations between the OCR tokens learned

by existing methods may be imprecise. One of the pos-

sible causes is that the visual feature and semantic feature

could not always reflect the correlations between the tokens.

This is because the spatially-adjacent OCR tokens may be

semantically-unrelated or visually-unrelated to each other.

In this case, the communication between the OCR tokens is

more likely to lie in the size relations and position relations,

which are collectively known as the geometrical relation-

ship. Unfortunately, existing methods [31, 37] are limited in

the exploration of geometrical relationship. M4C-Captioner

[31] directly uses the bounding box coordinates of OCR to-

kens as spatial feature. MMA-SR [37] tries to find the next

token for each OCR token according to the relative angles.

These practices can hardly provide strong geometrical rela-

tionships for OCR tokens.

In this paper, we propose to improve OCR-based image

captioning from the viewpoint of exploiting the geometrical

relationship between OCR tokens. To establish the geomet-

rical relationship, we consider the height/width difference,

the IoU value, the shortest distance and the relative angle

between OCR tokens. These elements constitute the intrin-

sic relevance between OCR tokens and would be beneficial

for describing the images containing scene text. To take

full advantage of the learned relation, we equip the caption-

ing model with a newly-devised relation-aware pointer net-

work, which selects OCR tokens under the guidance of the

learned geometrical relationship. By this means, the model

builds a more thorough understanding of the scene text and

the OCR-centered problems appeared in the generated sen-

tences are thus mitigated.

By consolidating the idea of incorporating the geomet-

rical relationship between OCR tokens, we present a Long

Short-Term Memory plus Relation-aware pointer network

(LSTM-R) architecture for OCR-based image captioning,

as depicted in Figure 2. Specifically, the pretrained Faster

R-CNN [29] and OCR systems [1, 9] are first adopted to

detect object regions and OCR regions from the image. Af-

ter that, the features of the objects and the OCR tokens are

extracted. In the meantime, the geometrical relationships

between OCR tokens are exploited and are encoded into

fixed-length vectors. Given the features and the learned re-

lation vectors, the image captioner selects a word from the

common vocabulary or the OCR tokens according to their

scores at each time step. Specifically, the relation-aware

pointer network is exploited to determine the scores for the

OCR tokens under the guidance of the learned relation vec-

tors. The entire model is optimized with the multi-label loss

in the teacher-forcing way. In contrast to [31], we adopt

different target labels as the supervision, since the OCR to-

ken appearing in captions may have multiple corresponding

OCR regions in the image. In addition, considering that

the words in captions are from different modalities (com-

mon vocabulary or OCR tokens), we design a word encod-

ing method to decide the type of each sentence word and

further encode the words according to their types which en-

courages the maximum use of the rich OCR representations

and thus facilitates the model training.

The main contributions can be summarized as follows:

• We propose to explore the geometrical relationship be-

tween OCR tokens which enables more thorough un-

derstanding of OCR tokens as well as the entire image.

• We devise a relation-aware pointer network to select

OCR tokens under the guidance of the geometrical re-

lationship, which also provides an elegant view of how

to integrate the learned relationship for OCR-based im-

age captioning.

• We conduct extensive experiments on the TextCaps

dataset and achieve the state-of-the-art performance.

2. Related work

Image Captioning. Image captioning witnesses great

progress in recent years [35, 38, 42, 30, 4, 40, 39, 28, 20, 36,

14, 41, 18, 10, 25]. Show and Tell [35] is one of the pioneer-

ing works which first adopts the encoder-decoder frame-

work. The encoder is implemented as CNN while RNN

is chosen to be the decoder. Xu et al. [38] further inten-

sify such a model by incorporating the attention mechanism,

which provides a better attention on different regions of the

feature maps in the image. The next breakthrough comes

from the use of the self-critical sequence training strategy

(SCST) proposed by Rennie et al. [30]. SCST adopts a bet-

ter reward signal normalization method instead of estimat-

ing the reward signal, and thus trains the model more stably.

Later on, Anderson et al. [4] improve the attention mech-

anism via upgrading it from the region-level to the object-

level and present a new bottom-up-top-down combined at-

tention. Most recently, the explorations are mainly along

with the directions of learning the relationship between ob-

jects [40], improving the attention mechanism [14, 28] and

adapting Transformer as the decoder [18, 10, 25]. Despite

significant improvements made for image captioning, the

models still fail to read from the image text and integrate

them into the generated sentences, making OCR-based im-

age captioning still a largely unexplored problem.

Optical Character Recognition (OCR). An OCR sys-

tem essentially contains two parts, i.e., text detection and

text recognition. The earlier methods [21, 15, 11] usually

consider text detection and text recognition as two indepen-

dent tasks. Recent research [12, 19, 23] make an effort to

integrate the detection and recognition models into a uni-

fied framework, which is gradually becoming mainstream.

In [19], Li et al. first introduce an end-to-end text spotting

framework via combining the text proposal network for text

detection with the subsequent attention-based LSTM for
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Figure 2. Framework of the proposed LSTM-R for OCR-based image captioning. In the feature embedding module, a set of object regions

and a set of OCR regions are first detected, based on which the object features and the OCR features are extracted. In the geometrical

relationship construction module, the relationships between OCR tokens are established. During the decoding stage, the LSTM decoder

takes the visual features and the previously generated words as input, and produces the decoder state. Based on the decoder state and the

learned geometrical relationship, the relation-aware pointer network determines the copying scores for the OCR tokens. A word is finally

predicted according to the scores of the common words and the OCR tokens.

text recognition. Liu et al. [23] further improve this model

by introducing a more practical text detector to cope with

more challenging cases. Given the OCR tokens yielded by

OCR systems, it is necessary to understand the semantic

meaning of the tokens and model the relationships between

OCR tokens and visual objects or other tokens during OCR-

based image captioning.

VQA and Image Captioning based on Scene Text. The

TextVQA task, requiring the model to answer visual ques-

tions based on the text appearing in images, has been newly

proposed in recent years [32, 7, 24, 6, 13]. The task was first

introduced in [32]. The authors extend Pythia [16] with an

extra OCR attention branch to predict answers over a pre-

defined vocabulary and OCR tokens presented in the im-

age. To obtain more semantic information, Hu et al. [13]

improve feature representation for OCR tokens and employ

multimodal transformer layers to jointly encode multiple

input modalities. Moreover, the answer is predicted by a

dynamic pointer network in a multi-step manner. Kant et

al. [17] further boost the performance by explicitly encod-

ing spatial relations between objects and OCR tokens. The

first attempt for OCR-based image captioning is done by

Sidorov et al. [31]. The proposed model shares the main

framework with M4C [13] and utilizes the multi-word an-

swer decoder as the caption decoder. The most related

work to our method is [37], which utilizes different atten-

tion mechanisms for different visual entities (objects and

scene text) and tries to find the next token for each OCR

token according to their relative angles.

Unlike [37] which mainly depends on the relative angle

relation (usually a scalar), we explore a more exhaustive ge-

ometrical relationship which comprehensively considers the

height, width, distance, IoU and relative angle relations be-

tween OCR tokens. In addition, we devise a relation-aware

pointer network to select OCR tokens under the guidance of

the learned relations.

3. Approach

In this work, we present a novel Long Short-Term Mem-

ory plus Relation-aware pointer network (LSTM-R) archi-

tecture for OCR-based image captioning. The overview of

the architecture is depicted in Figure 2.

3.1. Overview

Given an image I , the task of OCR-based image cap-

tioning is to automatically generate a sentence S based on

the visual entities (visual objects and scene text) in im-

ages. Technically, in the feature embedding module, a

set of object regions {xobj
m }m=1:M and a set of OCR to-

kens {xocr
n }n=1:N are first detected from the image. Ap-

pearance feature representations of the two modalities,

{xobj-a
m }m=1:M and {xocr-a

n }n=1:N , are then extracted ac-

cording to their bounding boxes. As OCR tokens con-

tain not only visual information but also semantic informa-

tion, FastText [8] feature {xft
n }n=1:N and Pyramidal His-

togram of Characters (PHOC) [2] feature {xph
n }n=1:N are

also extracted as additional supplements for the OCR to-

kens. Meanwhile, the geometrical relationship construction
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module takes OCR tokens as input and establishes the re-

lation vectors between the OCR tokens. Given the visual

features and the learned relation vectors, the image cap-

tioner generates descriptions word by word in the decoding

phrase. The captioner contains two main parts: a LSTM

decoder and a relation-aware pointer network. At each time

step, the LSTM jointly takes the average feature v̄, the em-

bedding of the word yt−1 and the attended feature vector

v̂t−1 generated in the last time step as input, and produces a

new hidden state ht. Based on ht, the scores of the common

words and the OCR tokens, scomt and socrt , are figured out

respectively and a word is finally selected from the com-

mon vocabulary or the OCR tokens. While the scores for

the words in the common vocabulary are produced by linear

projection, a relation-aware pointer network is uniquely de-

vised to compute the scores for the OCR tokens by incorpo-

rating the learned geometrical relationships which encour-

ages stronger correlations between the OCR tokens. More

details will be elaborated in the following sections.

3.2. Feature Embedding

To detect object regions and OCR regions in images,

we first employ pretrained Faster R-CNN [29] and exter-

nal OCR systems [1, 9] to produce bounding boxes for the

two modalities, respectively. After that, the appearance fea-

tures for the two modalities are both extracted from Faster

R-CNN with {xobj-a
m }m=1:M denoting the object features

and {xocr-a
n }n=1:N standing for the OCR features.

Embedding of objects. Before being fed into the cap-

tioner, the object features are embeded to the same size as

the LSTM hidden states via a linear projection:

xobj
m = σ(LN(W1L2N(xobj-a

m ))), (1)

where W1 ∈ R
Dh×Dv , L2N means l2 normalization, LN

represents layer normalization and σ is the activation func-

tion (here we use ReLU, the same below).

Embedding of OCR tokens. As OCR tokens con-

tain not only visual clues but also text information, fol-

lowing [13], we also extract FastText [8] feature xft
n ,

Pyramidal Histogram of Characters (PHOC) [2] feature

xph
n as additional supplements. Coordinates of bounding

boxes are also taken into account in the form of xbb
n =

[xn,1:4/w, yn,1:4/h], where xn,1:4 and yn,1:4 are four x-

coordinates and four y-coordinates of xocr
n , w and h are the

width and height of the image, respectively. The final OCR

embedding is thus obtained as follows:

xocr
n =σ(LN(W2x

main
n )) + σ(LN(W3x

bb
n )) and

(2)

xmain
n = [L2N(xocr-a

n );L2N(xft
n );L2N(xph

n )], (3)

where W2 and W3 are linear projections, [·; ·] denotes the

concatenation operation.

Given the embeddings of objects and OCR tokens, the

entire region set could be denoted as {xi}i=1:M+N , where

xi is the feature embedding of an object or an OCR token.

3.3. Geometrical Relationship Construction

Recently, the spatial relationship of objects is found to

be effective for multi-modal tasks such as visual ground-

ing [27] and image captioning [40]. Inspired by this, we

propose to upgrade the spatial relationship to the stronger

geometrical relationship, which also holds size and position

information for reproducing the relations between the OCR

tokens appearing in images. Between every two OCR to-

kens xocr
i and xocr

j , we establish a pair of geometrical rela-

tionships rocrij and rocrji considering the following elements:

1) the height and width relation, 2) the distance relation, 3)

the IoU relation, and 4) the relative angle relation.

Height and width relation is denoted as a vector with

six values: [wi, hi, wj , hj , wd, hd], where wi, wj , hi, hj

are normalized widths and heights of xocr
i and xocr

j , wd =
|wi − wj | and hd = |hi − hj | are the width difference and

height difference between xocr
i and xocr

j , respectively.

Distance relation is computed as the shortest distance

dij between the bounding boxes of xocr
i and xocr

j .

IoU relation contains three values: [iouij , ioaij , ioaji],
where iouij denotes the IoU between xocr

i and xocr
j , ioaij

and ioaji are obtained via dividing the area of the intersec-

tion by the area of xocr
i and xocr

j , respectively.

Relative angle relation is defined as a value aij which

reflects the relative angle between two tokens. To compute

the angle, we first draw a line to connect the center points

of xocr
i and xocr

j . Then the angle between the line and the

positive direction of x-axis is obtained. According to the

angle, we divide the angle relation into eight classes with

each class spanning 45◦. Specifically, the angles between

22.5◦ ∼ 67.5◦ are belong to the first class, between 67.5◦ ∼
112.5◦ are the second class, and so on. Thus the value of

aij is a number between 1 and 8.

Relation embedding. Given the above, the geometrical

relationship rij between xocr
i and xocr

j can be denoted as

[wi, hi, wj , hj , wd, hd, dij , iouij , ioaij , ioaji, aij ]. Follow-

ing Section 3.2, rij is further projected to rocrij via:

rocrij = σ(LN(W4rij)), (4)

where W4 ∈ R
Dh×Dr . rocrji is obtained in a similar way.

3.4. OCR­based Image Captioner

The OCR-based Image Captioner is composed of a

LSTM, an attention module and a pointer network which

is strengthened by the learned geometrical relationship. At

each time step, we feed the combination of the visual fea-

ture and the previously predicted word into the LSTM and

obtain the hidden state ht:
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ht = LSTM(ht−1, [v̄; v̂t−1;yt−1]), (5)

where v̄ = 1

M+N

∑M+N

i xi and xi is an object feature or

an OCR feature. v̂t−1 is the attended visual feature obtained

from the last time step and it is initialized as v̄. yt−1 is the

embedding of the word which is also generated in the last

time step. If yt−1 is a common word, yt−1 is derived from

the common word embedding. If it is copied from OCR

tokens, yt−1 will be the feature embedding of the copied

OCR token. Given the new hidden state ht, the attended

vector v̂t which will be fed back into LSTM at the next

time step is then figured out as

v̂t =

M+N∑

i=1

αt,ixi and αt = softmax(wT
tanh(W h

ht+W
v
X)),

(6)

where w, W h and W v are learned parameters.

At the end of the time step, a word is selected from the

common vocabulary {vk}k=1:K or from the OCR tokens

{xocr
n }n=1:N according to their scores based on the hidden

state ht. The scores are obtained by a linear projection and

a relation-aware pointer network as described below.

Common word scores. The scores of the common

words are directly figured out from the hidden state ht

through a linear layer: scomt = f(ht).
OCR scores by relation-aware pointer network. As

the OCR tokens are various in different images and have no

explicit order, we design a relation-aware pointer network

to compute scores for the tokens. First, according to the

input word yt−1, the relation features rocrn are fetched from

the learned geometrical relationship Rocr as:

rocrn =

{

rocrpn yt−1 ∈ {xocr
n } and yt−1 = xocr

p ,
zero yt−1 ∈ {vk}.

(7)

If yt−1 ∈ {vk}k=1:K , yt−1 is a common word and it has

no geometrical relation with OCR tokens. In this case, the

relation feature is replaced with the zero vector. Otherwise,

rocrn will be the corresponding geometrical relationship be-

tween yt−1 (i.e. xocr
p ) and xocr

n .

Given the above relation feature rocrn and the OCR rep-

resentation xocr
n from Section 3.2, the augmented feature

vocr
n of xocr

n is given by:

vocr
n = [xocr

n ; rocrn ] (8)

We then compute the copying scores for the OCR tokens

via a bilinear pooling operation based on the decoder state

ht and the augmented OCR features Vocr as:

socrt,n = (W hsht + bhs)T (W ocrvocr
n + bocr), (9)

where W hs ∈ R
Dh×Dh , W ocr ∈ R

Dh×2Dh , and

bhs, bocr ∈ R
Dh .

Detected OCR tokens: 

er, ew, root, beer, root, beer.

GT sentence: 

Bottles of root beer on the store shelf.

Training process:

When	𝑡 = 3, target word = root,

GT vector for training:
𝑉	 = 	 [0,0,1,0,0,0]	

or [0,0,0,0,1,0]		(existing methods)

					𝑉	 = 	 [0,0,1, 0,1,0]			(ours)

Figure 3. Example of the multi-label training process.

Combining the two scores, the probability of all the can-

didate words is figured out as p(yt) = Sigmoid ([scomt ;
socrt ]) and the word with the maximum probability will be

selected at time step t.

3.5. Training and Inference

Word encoding method. We adopt the widely-used

teacher-forcing strategy to train the model, i.e. LSTM takes

words from ground truth sentences as input. In the conven-

tional image captioning, only a few words are captured from

scene text in images. Thus methods for conventional image

captioning often build a vocabulary which contains most of

the caption words and learn embedding for the words in the

vocabulary. However, the problem is somewhat different in

OCR-based image captioning, since words may come from

both the common vocabulary and the OCR tokens. Unfor-

tunately, such information of word type is not included in

the annotated captions. Existing research [31] randomly as-

signs the word as a common word or an OCR token if the

word can be found in both modalities. This may cause nega-

tive effects on the model training. As the frequency of most

OCR tokens is quite low in the captions [31], their word em-

bedding in common vocabulary is extremely hard to learn,

which is known as the long-tail phenomena.

To mitigate the problem, we propose to determine the

type of the words in advance and encode each word accord-

ing to its type. In this case, a word can only be regarded as

a common word or an OCR token. Through studying the

annotated captions, we find out that the OCR tokens in the

sentences are more likely to begin with capital letters, indi-

cating that it is copied from the scene text. Based on this

observation, we mark the words that appear in the detected

scene text or begin with capital letters (except the beginning

of the sentences) as OCR tokens, and the rest are considered

as common words. Such an encoding method encourages

the maximum use of the rich OCR representations and thus

can facilitate the model training.

Training under multi-label sigmoid loss. Consider-

ing that an image may contain multiple OCR tokens that

share same semantic meaning, we propose to optimize the

model by minimizing the multi-label sigmoid loss. The

training process is depicted in Figure 3. Suppose the de-

tected OCR tokens in the image are “er, ew, root, beer,

root, beer” and the ground truth sentence is “Bottles of root
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Table 1. Performance (%) of our LSTM-R and other baseline methods on the TextCaps validation set.

# Method BLEU-4 METEOR ROUGE-L SPICE CIDEr-D

1 Up-Down [4] 20.1 17.8 42.9 11.7 41.9

2 AoA [14] 20.4 18.9 42.9 13.2 42.7

3 M4C-Captioner w/o OCRs [31] 15.9 18.0 39.6 12.1 35.1

4 M4C-Captioner [31] 23.3 22.0 46.2 15.6 89.6

5 MMA-SR [37] 24.6 23.0 47.3 16.2 98.0

6 LSTM-R 27.9 23.7 49.1 16.6 109.3

Table 2. Performance (%) of the proposed LSTM-R and other baseline methods from the online TextCaps test server.

# Method BLEU-4 METEOR ROUGE-L SPICE CIDEr-D

1 Up-Down [4] 14.9 15.2 39.9 8.8 33.8

2 AoA [14] 15.9 16.6 40.4 10.5 34.6

3 M4C-Captioner [31] 18.9 19.8 43.2 12.8 81.0

4 MMA-SR [37] 19.8 20.6 44.0 13.2 88.0

5 LSTM-R 22.9 21.3 46.1 13.8 100.8

6 M4C-Captioner w/GT OCRs (on a subset) [31] 21.3 21.1 45.0 13.5 97.2

7 Human [31] 24.4 26.1 47.0 18.8 125.5

beer on the store shelf”. During training, when time step

t = 3, the model is expected to generate the word “root”,

which is read from the OCR tokens in the image. In ex-

isting methods [37, 31], the target labels of OCR tokens

are randomly assigned as [0, 0, 1, 0, 0, 0] or [0, 0, 0, 0, 1, 0],
which indicates that only one OCR token in the image has

the meaning of “root”. In contrast, we set the target labels as

[0, 0, 1, 0, 1, 0], which allows an OCR word in the sentence

to correspond to different OCR tokens that appear in the im-

age. Comparing with the uncertain supervision of existing

methods, our solution enables more stable training process

of the model and thus leads to better performance.

Inference. During Inference, the model does not have

input ground truth words. The captioner recursively takes

the embeddings of the previously generated word as input

to promote the generation process.

4. Experiments

4.1. Dataset and Setting

Dataset and metrics. We conduct experiments to verify

the effectiveness of the proposed LSTM-R on the TextCaps

[31] dataset which is designed for OCR-based image cap-

tioning. Each image in the dataset has five human-annotated

captions. Follow [31], we use 21, 953 out of 28, 408 images

to train the models, leave the rest 3, 166 and 3, 289 for val-

idation and testing, respectively. We evaluate LSTM-R and

other compared methods via the officially released coco-

caption code1, which considers the most widely used met-

rics (BLEU-4 [26], METEOR [5], CIDEr-D [34], ROUGE-

L[22] and SPICE [3]) for image captioning.

Implementation details. Instead of directly using the

1https://github.com/tylin/coco-caption

caption tokens provided in [31], we first clean the captions

in the training set by removing the special symbols unless

the symbols appear in the detected image text (dubbed as

Caption Clean below). To build the common vocabulary, all

the words are converted into lowercase and only those who

appear more than 10 times are preserved. The unique OCR

vocabulary for each image is directly built from the detected

image text. A special 〈UNK〉 token and an 〈OCRUNK〉 to-

ken are inserted into the common vocabulary and the OCR

vocabulary, respectively. Types of the caption words are de-

termined according to the proposed word encoding method.

Given the word type, each caption token is matched with a

word in the common or OCR vocabulary. If some words

cannot find matches, they will be converted into 〈UNK〉 or

〈OCRUNK〉. The number of the detected object regions

is set to 100 and each object region is represented as a

2048-d appearance feature. To detect OCR regions, both

the Rosetta OCR system [9] and the Google OCR system

[1] are adopted. The numbers of the detected OCR regions

are various in different images and we use 80 OCR tokens

at most. Apart from the 2048-d appearance feature and the

bounding box coordinates, each OCR token also has a 300-

d FastText feature and a 604-d PHOC feature. The hidden

size of LSTM is set to 1000 and the maximum sentence

length is 20. The mini-batch size is set to 50 in our exper-

iments. The learning rate is initialized as 2 × 10−4 and is

decreased every 3 epochs with the annealing factor 0.8. We

train the model for about 30 epochs and choose the model

with the highest CIDEr-D score to conduct online evalua-

tion on the TextCaps test set.

Compared methods. (1) Up-Down and (2)AoA are two

popular methods for image captioning. Top-Down incor-

porates the bottom-up and top-down attention into a uni-

fied framework. AoA devises an Attention-on-Attention
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Table 3. Ablation of each design (i.e. using Rosetta OCR system, adopting Google OCR system, cleaning the captions, adopting the word

encoding method, optimizing with multi-label loss and incorporating geometrical relationship) in LSTM-R on the TextCaps validation set.

#
Rosetta

OCR

Google

OCR

Caption

Clean

Word

Encoding

Multi-label

Loss

Geo

Rel
BLEU-4 METEOR ROUGE-L CIDEr-D

base
√

24.8 22.1 46.8 91.2

1
√ √

25.4 22.5 47.4 94.4

2
√ √ √

26.0 22.9 48.0 99.0

3
√ √ √

25.8 22.8 47.7 99.7

4
√ √ √ √

27.1 23.4 48.4 105.8

5
√ √ √ √ √

27.1 23.5 48.5 106.8

6
√ √ √ √ √

27.4 23.5 48.9 107.4

7
√ √ √ √ √ √

27.9 23.7 49.1 109.3

module which can be plugged into both the encoder and

the decoder. (3) M4C-Captioner shares the main frame-

work with M4C [13], which is one of the state-of-the-art

approaches for TextVQA. M4C-Captioner fuses informa-

tion of different modalities by Transformer and computes

scores for OCR tokens with a dynamic pointer network.

M4C-Captioner w/o OCRs is trained without OCR tokens.

M4C-Captioner w/GT OCRs provides results on a subset

by using ground-truth OCR tokens. Up-Down, AoA and

M4C-Captioner w/o OCRs do not have OCR tokens as in-

put and the results are from [31]. (4) MMA-SR uses dif-

ferent attention modules for different modalities for a more

thorough understanding of the image content. (5) Human

means the sentences used for evaluation are provided by hu-

man. (6) LSTM-R is the proposed method in this paper.

4.2. Main Results

Offline Evaluation on the TextCaps Validation Set.

Experimental results of the proposed LSTM-R and other

compared methods on the TextCaps validation set are sum-

marized in Table 1. LSTM-R achieves state-of-the-art per-

formance among all the evaluation metrics. Unsurpris-

ingly, the results of the methods (Up-Down, AoA and

M4C-Captioner w/o OCRs) without OCR tokens as input

are found to be much lower than the approaches (M4C-

Captioner, MMA-SR and LSTM-R) with OCR tokens. The

CIDEr-D scores of Up-Down, AoA and M4C-Captioner

w/o OCRs are just around 40%, which are smaller than half

the scores of the methods with OCR tokens. The impor-

tance of the incorporation of OCR tokens for OCR-based

image captioning is thus verified. By taking the repre-

sentations of OCR tokens as input, M4C-Captioner boosts

the performance by a large margin, with the results being

boosted up to 23.3%, 22.0% and 89.6% in BLEU-4, ME-

TEOR and CIDEr-D, respectively. MMA-SR further im-

proves the CIDEr-D score from 89.6% to 98.0% via lever-

aging the angle-based spatial relationship between OCR to-

kens. This basically confirms that the spatial relationship

is a good complement to the visual and semantic feature of

OCR tokens. By exploring the geometrical relationship be-

tween OCR tokens and incorporating such information with

the relation-aware pointer network, the proposed frame-

work is superior to all the other compared methods, includ-

ing the best existing approach MMA-SR. Compared with

MMA-SR, LSTM-R gains absolute rises of 3.3%, 0.7%,

11.3% on BLEU-4, METEOR and CIDEr-D, respectively.

The improvement demonstrates the advantage of capturing

geometrical relationship between OCR tokens which en-

courages thorough understanding of scene texts in images.

Online Evaluation on the TextCaps test set. We also

submit the captions generated by our LSTM-R for TextCaps

test set to the online test server 2. The results in Table 2

present a similar pattern as in Table 1. The methods which

are equipped with OCR tokens possess absolute advantage.

The proposed LSTM-R outperforms MMA-SR and M4C-

Captioner by 3.1% and 4.0% on BLEU-4, 0.7% and 1.5%

on METEOR, 12.8% and 19.8% on CIDEr-D, respectively.

This confirms the effectiveness of our framework again.

Significantly, LSTM-R even exhibits better performance

than M4C-Captioner w/GT OCR, whose captions are par-

tially generated from ground truth OCR tokens. Although

the results gained on the subset of TextCaps could not pre-

cisely reflect the concrete numbers, the gap between M4C-

Captioner w/GT OCR and LSTM-R has been narrowed.

The seventh line presents the results of human annotated

sentences, which can be considered as the upper bound of

the task. Although great improvement has been made by

LSTM-R, the model still leaves much to be desired when

being compared with human annotations.

Ablation Study. To elaborate the influence of each de-

sign in our method, we conduct ablation study by training

the model without different parts. The results of the down-

graded versions on the validation set of TextCaps are sum-

marized in Table 3. Overall, the model is positively affected

by each of the components. Cleaning captions (line 1 vs.

base) increases CIDEr-D by 3.2%. One possible reason is

that the noisy symbols in captions are so abundant that the

training of the model is affected. Line 2-4 analyse the effect

of leveraging different OCR systems. Specifically, using ei-

2https://eval.ai/web/challenges/challenge-page/573/leaderboard

1312



W/O Geo-Rel: A sign that says great 

hall model model on it.

W/ Geo-Rel : A poster that says great 

hall ceiling model on it.

Human: Great Hall Ceiling Model sign 

that is for people to view and see.

W/O Geo-Rel: A billboard that says 

what's a video sharing.

W/ Geo-Rel : A billboard that says what's

a hipchat on it.

Human: Large billboard that says "What's

a Hipchat" on it.

W/O Geo-Rel: A yellow sign that says 

left left ahead ahead.

W/ Geo-Rel : A yellow sign that says 

left lane closed ahead.

Human: A sign that says Left Lane 

Closed Ahead on a highway.

W/O Geo-Rel: A sign that says ixtlan del 

rio on it.

W/ Geo-Rel : A sign that says ixtlan del 

rio guadalajara cd de Mexico.

Human: Highway billboard showing 

distance to Ixtlan Del Rio, Guadalajara, 

and Cd. De Mexico.

W/O Geo-Rel: A stack of books with the 

title the habit from greatness.

W/ Geo-Rel : A book titled the 8th habit 

from greatness.

Human: Stephen Covey's The 8th Habit is 

sitting on a keyboard.

W/O Geo-Rel: A poster of mad singa-

pore that says mad about singapore.

W/ Geo-Rel : Mad about singapore is 

an exhibition of singapore Instagram-

mers community.

Human: Mad about Singapore an 

exhibition of singapore instagram flyer.

W/O Geo-Rel: A blue sign that says 

alle geht vom volke aus.

W/ Geo-Rel : A sign that says alle 

macht geht vom volke aus.

Human: The message Alle Macht geht

vom Volke aus, is posted on a blue sign.

W/O Geo-Rel: A red sign that says 

ensure you wear your emergency set.

W/ Geo-Rel : A red sign that says ensure 

you always wear your escape set.

Human: Red sign hanging which says

"Ensure you always wear your 

emergency escape set".

Figure 4. Exemplar captions generated by LSTM-R w/o geometrical relationship (W/O Geo-Rel), LSTM-R (W/ Geo-Rel) and from human

annotations. The words in same colors indicate the exact semantic matches of OCR tokens between the generated captions and the human-

provided captions. (Best viewed in color)

ther of the OCR systems behaves similarly while using both

of them exhibits much better results, leading to about 6.0%

increase in CIDEr-D. We preliminarily thought that the ex-

isting OCR systems are good enough for our task. How-

ever, after digging into the OCR tokens obtained from the

OCR systems, it turns out that both systems miss or mis-

take some OCR regions and better OCR systems are still

needed. As expected, adopting the word encoding method

(line 2 vs. line 1) performs well for the model, which certifi-

cates the advantage of determining the type of the caption

words. Moreover, the benefit of optimizing the model with

the proposed multi-label loss is confirmed in line 6 (vs. line

4). By exploring the geometrical relationships and incor-

porating all the above designs, line 7 further enhances the

model and witnesses the most significant performance.

Qualitative Results. Figure 4 showcases some exem-

plar captions generated by LSTM-R w/o geometrical re-

lationship, LSTM-R and human. Generally, our LSTM-R

presents smoother sentences with more accurate OCR to-

kens. Take the first image as an example. Compared with

the method without geometrical relationship which omits

the “about” in “mad singapore” at the first time and includes

repeat tokens in the sentence, LSTM-R describes the OCR

tokens in the correct order and covers most of the tokens

that appear in the human-annotated caption. In the last im-

age, LSTM-R w/o geometrical relationship only talks about

the “ixtlan del rio” whereas LSTM-R details most of the

OCR tokens contained in the image. This mainly bene-

fits from the incorporation of the geometrical relationship,

which emphasizes the connections between OCR tokens

and enhances the capability of the generation model.

5. Conclusions

In this paper, we present a novel Long Short-Term Mem-

ory plus Relation-aware pointer network (LSTM-R) archi-

tecture which explores the geometrical relationship between

OCR tokens for OCR-based image captioning. To incor-

porate the learned relation into the framework, we devise a

relation-based pointer network which copies words from the

OCR tokens under the guidance of the geometrical relation-

ship. To facilitate the training of the model, we also design

a word encoding method and propose to optimize the model

with multi-label loss. Experimental results on TextCaps cer-

tify the effectiveness of all the components. More remark-

ably, our LSTM-R exhibits superior performance over the

benchmarks and achieves state-of-the-art performances on

the TextCaps dataset.
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