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Abstract

Weakly supervised phrase grounding aims at learning

region-phrase correspondences using only image-sentence

pairs. A major challenge thus lies in the missing links be-

tween image regions and sentence phrases during training.

To address this challenge, we leverage a generic object de-

tector at training time, and propose a contrastive learning

framework that accounts for both region-phrase and image-

sentence matching. Our core innovation is the learning of

a region-phrase score function, based on which an image-

sentence score function is further constructed. Importantly,

our region-phrase score function is learned by distilling from

soft matching scores between the detected object names and

candidate phrases within an image-sentence pair, while the

image-sentence score function is supervised by ground-truth

image-sentence pairs. The design of such score functions

removes the need of object detection at test time, thereby

significantly reducing the inference cost. Without bells and

whistles, our approach achieves state-of-the-art results on

visual phrase grounding, surpassing previous methods that

require expensive object detectors at test time.

1. Introduction

Visual phrase grounding — finding regions associated

with phrases in a sentence description of the image, is an

important problem at the intersection of computer vision

and natural language processing. Most of the existing ap-

proaches [15, 39, 46] follow a fully supervised paradigm

that requires the labeling of bounding boxes for each phrase.

These fine-grained annotations are unfortunately expensive

to obtain and thus difficult to scale. Consequently, weakly

supervised grounding has recently received considerable at-

tention [42, 51, 50, 56, 6, 53, 54, 14, 45]. In this setting, only

images and their sentence descriptions are given at training

time. At inference time, given an image sentence pair, a

method is asked to link regions to sentence phrases.
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Figure 1: Our method uses object detector predictions to

guide the learning of region-phrase matching in training.

At the inference time, our method no longer requires object

detectors and directly predicts the box with the highest score.

A major challenge of weakly supervised grounding is

to distinguish among many “concurrent” visual concepts.

For example, the region of a dog and that of its head are

likely to co-occur in images associated with the phrase “a

running puppy.” Without knowing the ground-truth region-

phrase matching, learning to link the region of dog (but

not dog head) to its corresponding phrase becomes very

challenging. To address this challenge, recent methods [6,

14, 45, 18] leverage generic object detectors for training

and/or inference. A detector provides high quality object

regions, as well as their category labels that can be further

matched to candidate phrases, thereby bringing in external

knowledge about region-phrase matching and thus helping

to disambiguate those “concurrent” concepts. However, it

remains unclear about the best practices of using an external

object detector for weakly supervised grounding.

In this paper, we focus on developing a principled ap-

proach to distill knowledge from a generic object detector

for weakly supervised phrase grounding. To this end, we

present a simple method under the framework of contrastive

learning. Specifically, our model learns a score function

between region-phrase pairs, guided by two levels of simi-

larity constraints encoded using noise-contrastive estimation

(NCE) loss [19] during training. The first level of region-
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phrase similarity is distilled from object detection outputs.

This is done by aligning predicted region-phrase scores to

a set of soft targets, computed by matching object names

and candidate phrases. The second level of image-sentence

similarity is computed from a greedy matching between all

region-phrase pairs, and supervised by ground-truth image-

sentence pairs. During inference, our method compares each

image region to candidate phrases using the learned score

function, without the need of object detection. Our training

and inference stages are shown in Fig. 1.

To evaluate our method, we conduct extensive exper-

iments on Flickr30K Entities [39] and ReferItGame [26]

datasets. We compare our results to the latest methods of

weakly supervised phrase grounding. Our experiments show

that our method establishes new state-of-the-art results and

outperforms all previous methods, including those using

strong object detectors at test time [14, 46, 50] or using a

similar contrastive loss [18]. For example, on Flickr30K

Entities, without additional training data, our method outper-

forms the best reported results by a large margin. On Refer-

ItGame, our method significantly beats the best reported

results. Moreover, we systematically vary the components of

our model and demonstrate several best practices for weakly

supervised phrase grounding. We hope that our simple yet

strong method will shed light on new ideas and practices for

weakly supervised image-text grounding.

2. Related Work

We discuss relevant works on weakly supervised phrase

grounding, and provide a brief review of recent works on

contrastive learning and knowledge distillation — the two

main pillars of our method.

Visual Grounding of Phrases. Grounding of textual

phrases, also referred to as phrase localization, is an im-

portant problem in vision and language. Several datasets,

e.g., Flickr30K Entities [39], ReferItGame [26] and Visual

Genome [29], have been constructed to capture dense phrase-

region correspondences. Building on these datasets, many

recent approaches learn a similarity function between re-

gions and phrases by using the ground-truth region-phrase

pairs [46, 15, 49, 12, 38, 3, 48]. More recent works consid-

ered phrase grounding in videos [57]. This fully supervised

paradigm has shown impressive results, yet requires labor-

intensive annotations of bounding boxes for all phrases.

Weakly Supervised Phrase Grounding. Weakly super-

vised phrase grounding has thus received considerable atten-

tion recently [42, 50, 47, 6, 56, 14, 45, 17]. In this setting, a

method learns from only images and paired sentence descrip-

tions, without explicit region-to-phrase correspondence.

Recent works [6, 50, 51] show that weakly supervised

phrase localization can benefit from side information, such

as object segmentation or detection. For example, Chen et

al. [6] leveraged pre-trained deep models and proposed to

enforce visual and language consistency. Yeh et al. [50]

proposed to link words in text and detection classes using

co-occurrence statistics from paired captions. Moreover,

Xiao et al. [47] investigated the linguistic structure of the

sentences. They proposed a structure loss to model the com-

positionality of the phrases and their attention masks. Zhao

et al. [56] presented a model that jointly learns to propose

object regions and matches the regions to phrases. Fang

et al. [14] explored the weakly supervised grounding by

decomposing the problem into several modules and taking

additional information, like the color module, to improve the

performance. More recently, Wang et al. [45] made use of

off-the-shelf models to detect objects, scenes and colors in

images, and achieves the goal of grounding via measuring

semantic similarity between the categories of detected visual

elements and the sentence phrases. Gupta et al. [18] pro-

posed to use contrastive loss for weakly supervised phrase

grounding. Datta et al. [9] adopted image-sentence retrieval

to guide the phrase localization.

Our method shares the key idea behind these previous

works–we seek an explicit alignment between regions and

phrases given image-sentence pairs. Our method differs

from previous works by explicitly modeling the knowledge

distillation from external off-the-shelf object detectors into

a unified contrastive learning framework. The most rele-

vant work to us is InfoGround [18]. Both our method and

InfoGround [18] consider contrastive learning for weakly

supervised grounding. Different from [18], our work moves

beyond the contrastive loss and focuses on knowledge distil-

lation from an external object detector under a contrastive

learning framework. Our method is also different from

WPT [45] though we both need to use object detectors: our

approach learns the distillation in the training stage which

makes our model free of detectors in the testing stage, while

WPT requires using detectors during inference.

Contrastive Learning. There has been a recent trend of

exploring contrastive loss for representation learning. For

instance, Oord et al. [35] proposed Contrastive Predictive

Coding (CPC) that learns representations for sequential data.

Hjelm et al. [22] presented Deep InfoMax for unsupervised

representation learning by maximizing the mutual informa-

tion between the input and output of a deep network. More

recently, Chen et al. [7] proposed to learn visual represen-

tations by maximizing agreement between differently aug-

mented views of the same image via a contrastive loss. He

et al. [20] proposed Momentum Contrast (MoCo) for un-

supervised visual representation learning. Tian et al. [44]

extends the input to more than two views. These methods

are all based on a similar contrastive loss related to Noise

Contrastive Estimation (NCE) [19]. The NCE loss has also

been explored for phrase grounding by Gupta et al. [18]

(InfoGround). Our work is relevant to these works since

our mathematical framework is also built upon the general
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idea of infoNCE [35] and NCE [19]. However, our work

leverages a contrastive loss for knowledge distillation in the

context of cross-view weakly supervised grounding.

Knowledge Distillation. Knowledge distillation was pro-

posed and popularized by [5, 21, 2, 43, 52]. Several recent

works [17, 16, 32, 30, 44] explored knowledge distillation for

multi-modal learning. Knowledge distillation has also shown

its effectiveness in various vision-language tasks, such as

VQA [34, 11], grounded image captioning [59] and video

captioning [36, 55]. Different from previous approaches, we

consider knowledge distillation for region-phrase grounding

by matching the outputs of a region-phrase score function to

soft targets computed from object detection results.

3. Approach

Consider X = [X1, ..., Xi, ..., XN ] as the set of im-

ages and Y = [Y1, ..., Yj , ..., YM ] as the set of sentences.

Each image i consists of a set of regions with their features

Xi = [x1
i , ..., x

l
i, ..., x

n
i ]. Similarly, each sentence j includes

multiple phrase features Yj = [y1j , ..., y
k
j , ..., y

m
j ]. Thus,

i, j index images and sentences, and l, k index regions and

phrases. Oftentimes, we have multiple sentences describing

the same image and many more image regions than sentence

phrases. Moreover, with minor abuse of notations, we denote

p(Xi, Yj) as the probability of a valid image-sentence pair

(Xi, Yj), i.e., p(Xi, Yj) = 1 if and only if Yj can be used to

describe Xi. Similarly, we use p(xl
i, y

k
j ) as the probability

of a valid region-phrase pair (xl
i, y

k
j ).

Our goal is to learn a score function that measures the

similarity between region features xl
i and phrase features

ykj . However, we only have access to ground-truth image-

sentence pairs p(Xi, Yj) without knowing the matching be-

tween regions and phrases p(xl
i, y

k
j ). To address this chal-

lenge of weakly supervised grounding, we leverage a generic

object detector D to label candidate image regions, then gen-

erate “pseudo” labels of region-phrase correspondence by

matching the region object labels to the sentence phrases.

Therefore, our key innovation is the design of a contrastive

loss that learns to distill from object detection outputs. A

main advantage of using knowledge distillation is that our

method no longer requires object detection at inference time

and thus is very efficient during inference.

Fig. 2 presents an overview of our method. We now

present the details of our method by first introducing the de-

sign of our score functions for image-text matching, followed

by our contrastive learning loss using knowledge distillation.

3.1. Score Functions for Image-Text Matching

Our model builds on a two-branch network [46] for image-

text matching at both region-phrase and image-sentence lev-

els. The key idea is learning a score function to match

region-phrase pairs. Based on the region-phrase matching

scores, we further construct an image-sentence similarity

score. Specifically, our network has two branches f and

g that take the inputs of region and phrase features xl
i and

ykj , respectively. Each branch is realized by a deep network

by stacking multiple fully connected layers with ReLU ac-

tivation in-between, followed by a L2 normalization at the

end. We define the similarity between a region-phrase pair

(xl
i, y

k
j ) as the cosine similarity between the transformed

features f(xl
i) and g(ykj ), given by

s(xl
i, y

k
j ) = f(xl

i)
T
g(yk

j ). (1)

We further aggregate the region-phrase matching scores

s(xl
i, y

k
j ) into a similarity score between a image-sentence

pair (Xi, Yj), defined as

S(Xi, Yj) =

mX

k=1

max
1≤l≤n

s(xl
i, y

k
j ). (2)

This image-sentence score S(Xi, Yj) is computed using

greedy matching. Concretely, for each phrase k in the sen-

tence j, we find its best matching region in an image. The

scores of best matching regions are further summed across all

phrases. Note that phrases and regions are not interchange-

able in this score function, i.e., S(Xi, Yj) 6= S(Yj , Xi),
because each phrase must be matched to at least one region,

while some regions, such as background regions, are not

matched to any phrase. Similar image-sentence scoring func-

tions were discussed in [25, 58] for image-sentence retrieval.

3.2. Distillation using Contrastive Learning

A major challenge of weakly supervised grounding is the

lack of ground-truth region-phrase pairs. Our key idea is to

make use of an object detector during training that can pro-

vide “pseudo” labels. Our model further distills from these

“pseudo” labels for learning region-phrase matching. Once

learned, we can directly use the region-phrase score function

without object detection. In what follows, we describe the

generation of pseudo labels, the contrastive loss used for

distillation, and the training and inference of our model.

Pseudo Labels for Region-Phrase Matching. An object

detector D predicts the probability of region xl
i having an ob-

ject label zli in the form of nouns (including “background”),

i.e., p(zli|x
l
i) = D(xl

i). zli can be further matched to the

phrase ykj , e.g., using similarity scores between object noun

and the head noun of the phrase. In particular, our implemen-

tation uses the WordNet [33] to define such similarity scores,

as discussed in section 4. Let p(ykj , z
l
i) be the matching

probability between ykj and zli. We propose to approximate

the unknown region-phrase matching ground-truth p(xl
i, y

k
j )

by soft “pseudo” label p̂(xl
i, y

k
j ), approximated by

p̂(xl
i, y

k
j ) ∝

X

z

p(yk
j , z

l
i)p(z

l
i|x

l
i)p(x

l
i). (3)

where we assume p(zli) is a constant value for every zli since

object classes are fixed and limited and therefore we omit
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Figure 2: Overview of our method in training. A contrastive learning framework is designed to account for both region-phrase

and image-sentence matching. The top part illustrates region-phrase matching learned by distilling from object detection

outputs, while the bottom part shows image-sentence matching supervised by ground-truth image-sentence pairs.

the p(zli) in the denominator of Eq.3. Note that this approxi-

mation holds when xl
i and ykj is conditionally independent

given zli — a rather strong assumption. Nonetheless, we

use p̂(xl
i, y

k
j ) as a “pseudo” soft target distribution for train-

ing our model. In practice, p̂(xl
i, y

k
j ) is approximated and

computed by detecting objects and matching their names to

candidate phrases.

Distilling Knowledge from Pseudo Labels. We propose to

distill from the pseudo label p̂(xl
i, y

k
j ) by aligning the region-

phrase matching scores s(xl
i, y

k
j ) to the soft pseudo label

p̂(xl
i, y

k
j ). Specifically, given a matching image-sentence

pair (Xi, Yj), we propose the following distillation loss func-

tion for region-phrase matching

LRP (Xi, Yj) = −

X

yk
j
∈Yj

X

xl
i
∈Rl

i

p̂(xl
i, y

k
j ) log ĥ(x

l
i, y

k
j ), (4)

where ĥ(xl
i, y

k
j ) is given by

ĥ(xl
i, y

k
j ) =

exp(s(xl
i,y

k
j )/τ)

exp(s(xl
i
,yk

j
)/τ)+

P

xl0

i
2Rl

i
\{xl

i
}
exp(s(xl0

i
,yk

j
)/τ)

.

Here τ is the temperature scale factor (0.5 in all our experi-

ments). Rl
i controls how we select xl0

i . A simple choice for

xl0

i is to use all regions in Xi except xl
i. In this case, our loss

can be interpreted as the cross entropy loss, where the nor-

malized output of the score function s(xl
i, y

k
j ) is trained to

mimic the pseudo label p̂(xl
i, y

k
j ) given by object detection

outputs. This is the same idea as knowledge distillation [21],

where the soft target from a teacher detection model is used

as a learning objective.

Contrastive Loss for Image Sentence Matching. Mov-

ing beyond region-phrase matching, we enforce additional

constraints for image-sentence matching scores S(Xi, Yj),
where the ground truth pairs p(Xi, Yj) is readily available.

To this end, we make use of the noise contrastive estimation

loss [19] to contrast samples from data distribution (matched

pairs) and noise distribution (non-matched pairs). The NCE

loss for image-sentence matching is thus given by

LIS(Xi, Yj) = −EN (Xi)∈X [p(Xi, Yj) log h(Xi, Yj)] , (5)

where h(Xi, Yj) is defined as

h(Xi, Yj) =
exp(S(Xi,Yj)/τ)

exp(S(Xi,Yj)/τ)+
P

i02N(Xi)
exp(S(Xi0 ,Yj)/τ)

.

Again, τ is the temperature scale factor (0.5). p(Xi, Yj) is

reduced to binary values during training, i.e., p(Xi, Yj) = 1
if and only if (Xi, Yj) is a ground-truth image-sentence pair.

N (Xi) includes a set of negative samples, i.e., those images

not matched to the current sentence Yj , sampled from the set

of images X . In practice, we always sample a fixed number

of negative pairs from the current mini-batch.

Loss Function. We note that both Eq. 4 and Eq. 5 share

a similar form and can be both considered as a variant of

contrastive loss. Concretely, the two loss functions seek to

align the normalized scores in the form of NCE to a target

distribution. The difference is how the target distribution

is defined and how the samples are selected for normaliza-

tion. For region-phrase matching, the target distribution is

given by pseudo labels from object detection and local im-

age regions are used for normalization. For image-sentence

matching, the target distribution is defined by ground-truth

image-sentence pairs and non-matched image-sentence pairs

are sampled for normalization.

By combining the distillation loss LRP (Xi, Yj) for

region-phrase matching and the NCE loss LIS(Xi, Yj) for
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image-sentence matching, our final loss function is given by

L(Xi, Yj) = LIS(Xi, Yj) + λLRP (Xi, Yj), (6)

where λ is the coefficient balancing the two loss terms. Dur-

ing training, we gradually increase the coefficient λ, such

that our model learns to optimize image-sentence matching

during the early stage of training, and to focus on region-

phrase matching during the late stage of training.

Inference without Object Detection. During inference,

given an input image-sentence pair, we apply the learned

region-phrase score function s(xl
i, y

k
j ) between every region-

phrase pair. The image region with the highest score to

each phrase is then selected as the grounding results, i.e.,

argmaxxl
i
s(xl

i, y
k
j ). We must point out that unlike previ-

ous methods [45, 18] the inference of our model does not

require running object detection, therefore our method is

very efficient at test time.

4. Experiments and Results

We now present our experiments and results. We first

discuss our datasets, experiment setup and implementation

details, followed by a comparison of our results to latest

methods and an ablation study of our model.

Datasets. Our experiments are conducted on two major

visual grounding datasets: Flickr30K Entities [39] and the

ReferItGame dataset [26]. Flickr30K Entities [39] includes

around 30K images. Each image is associated with five

sentences. We follow the same train/val/test splits from [39].

ReferItGame [26] includes 20K images and 120K phrases.

For ReferItGame, we follow the standard split of [42].

Experiment Setup. We follow the setting of weakly super-

vised grounding, and do not use the region-phrase annota-

tions of both datasets during training. For evaluation, we

follow the standard protocol used in [6, 42, 45, 18], we re-

port accuracy as the evaluation metric. Accuracy is defined

as the fraction of query phrases whose predicted bounding

box overlaps ground-truth box with IoU>0.5. For meth-

ods that select the predicted bounding box from a set of

region proposals, the reported accuracy metric is equivalent

to Recall@1, as used in [18].

4.1. Implementation Details

We first describe our implementation details, including

the features and object detectors, the network architecture

and training scheme, and details of object-phrase matching.

Features and Object Detectors. To establish a fair com-

parison with previous work using region features extracted

from different backbones, we benchmark our methods by

varying the backbone networks. We follow the same set-

tings in [6, 45] to extract activations from the last layer

before the classification head in Faster R-CNN [41] with

VGG16 and ResNet-101 backbones pre-trained on PASCAL

VOC (PV) [13] or MS COCO (CC)1 [31]. To compare with

WPT [45] using object detectors trained on Open Images

Dataset [28], we also extract classifier logits from Faster

R-CNN with Inception-ResNet-V2 (IRV2) backbone pre-

trained on the Open Images Dataset (OI)2. To compare with

the InfoGround from [18], we also experiment with their

released features3 on Flickr30K and follow their protocols

to use the same VisualGenome (VG) pre-trained Faster R-

CNN model4 to extract features on ReferItGame. Unlike

[6, 42, 56] using a large amount of bounding box proposals,

typically 100 per image, InfoGround only extracts 30 pro-

posals per image for the grounding model to select from. We

compare the two settings separately in the result tables.

We denote these feature choices as “VGG16”, “Res101”,

“IRV2” respectively plus the object data set when reporting

our results. For example, “IRV2 OI” means that the back-

bone is Inception-ResNet-V2 (IRV2) pre-trained on the Open

Images (OI) Dataset.

Network Architecture. For visual representation, we nor-

malized the region features to zero-mean and unit-variance

using stats from training samples. This normalization helps

our model to converge faster. We attached two fully con-

nected layers on top of the region features to get 512-D

region embeddings. For phrase representation, we tokenized

each query phrase into words and encoded using LSTM [23]

with the Glove embeddings [37]. The embedding vocabulary

contains the most frequent 13K tokens from the Flickr30K

Entities training split. The same vocabulary is used for Refer-

ItGame. The LSTM has two layers, with both embedding

and hidden dimension as 300. Max pooling is applied over

the hidden states of all tokens, followed by two fully con-

nected layers to get 512-D phrase embeddings.

Training Details. We trained our model using Adam[27]

with a learning rate of 0.0001. We used a mini-batch size of

32 image-sentence pairs (31 negative images per sentence for

the contrastive loss). Unlike [14], we did not fine-tune our

vision backbone during training for efficiency. Similarly, the

GloVe embeddings [37] are also fixed during training. We ob-

served that the model converges quickly within a few epochs

on both datasets. For the λ in Eq. 6, we gradually increased

the value using a staircase function λ = min(bstep/ac, b),
where a, b are selected based on the validation set. We ob-

served that a=200, b=1 for VG features and a=200, b=3 for

others work the best.

Object-Phrase Matching. We use the WordNet [33] to de-

fine the similarity scores between phrases and region object

labels. Specifically, we identify the head noun of each phrase

using the off-the-shelf POS tagger provided by NLTK [4],

1https://github.com/endernewton/tf-faster-rcnn
2https : / / github . com / tensorflow / models / blob /

master/research/object_detection/g3doc/detection_

model_zoo.md
3https://github.com/BigRedT/info-ground
4https://github.com/BigRedT/bottom-up-features
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Method Backbone DetectorK Require DetectorK in Inference ACC (%)

GroundeR [42] VGG16 PV - - 28.94

MATN [56] VGG16 PV - - 33.10

UTG [50]
- VGG16 PV Yes 35.90
- YOLOv2 CC Yes 36.93

KAC [6]
VGG16 PV VGG16 PV Yes 36.14
VGG16 PV VGG16 CC Yes 38.71

MTG [14]
Res101 CC+Res50 CC - - 48.66

+Res50 CL

WPT [45]

(w2v-max union)

- IRV2 CC Yes 37.57
- IRV2 CC+IRV2 OI Yes 48.20
- IRV2 CC+IRV2 OI Yes 50.49

+WRN18 PL

InfoGround [18] (Trained on Flickr30K) Res101 VG - - 47.88
(Trained on COCO) Res101 VG - - 51.67

NCE+Distillation (Ours)
VGG16 PV VGG16 CC No 40.38
Res101 CC IRV2 OI No 50.96
Res101 VG IRV2 OI No 53.10

Table 1: Results on Flickr30K Entities. We report phrase localization accuracy and list the settings of different methods.

“Backbone” denotes the visual backbone used to extract region features. DetectorK denotes the detector that provides external

knowledge. “-” denotes the method does not use backbone or DetectorK . Dataset notations: PV=PASCAL VOC, CC=COCO,

OI=Open Images, CL=Color Name, PL=Place365, and VG=Visual Genome.

which uses the Penn Treebank tag set. If the head noun

matches one of the detector class labels, the phrase is mapped

to the class. Otherwise, we look up the head noun in the

WordNet [33] to find its corresponding synset, the synset’s

lemmas, and hypernyms. If any of these exists in the detector

classes, the phrase is mapped to the class. For phrases with

multiple synsets, the most frequent one is used. The Word-

Net synset helps to match phrases such as “spectators” to

“person” and “sweater” to “clothing”. With the 545 classes

in Open Images Dataset [28], the WordNet-based matching

algorithm covers 18k out of 70k unique phrases in Flickr30k

Entities and 7k out of 27k in ReferItGame training set.

We empirically observe that using WordNet is more reli-

able than word embeddings for noun matching. Similarity

in the word embedding space is not necessarily aligned with

the visual similarity of the entities described. A similar ob-

servation was made in [14] where the word2vec embeddings

are not discriminative for gender related visual concepts.

4.2. Comparison to Other Methods

We further compare our results to the latest methods of

weakly supervised phrase grounding on both Flickr30K En-

tities and ReferItGame datasets.

Baselines We consider a number of baselines. Our main

competitors are those methods using object detectors, in-

cluding KAC [6], UTG [50], and WPT [45]. Among these

methods, KAC and UTG used detectors during both train-

ing and inference. WPT applied detectors during inference.

While these baselines have very different sets of detectors

and backbones, we try to match their settings in our experi-

ments. Our baselines also include previous methods that do

not use object detectors, such as GroundeR [42], MATN [56],

MTG [14], and InfoGround [18] for completeness.

Results on Flickr30K Entities. Our results on Flickr30K

Entities are summarized in Table 1. Table 1 compares both

the settings of different methods and their phrase localiza-

tion accuracy. When using detectors pre-trained on COCO

(YOLOv2 CC, VGG16 CC, IRV2 CC), our method outper-

forms previous works (+3.5% / +1.7% / +2.81% for UTG /

KAC / WPT, respectively). In comparison to MTG which

uses COCO pre-trained backbones, our results are better

(+2.6%) with only a single VGG16 backbone in inference

(vs. three ResNet backbones in MTG).

When using a stronger backbone (Res101 CC) and a bet-

ter detector pre-trained on a larger scale dataset (IRV2 OI),

our results are further improved by 10.6% on Flickr30K En-

tities. Our final results thus outperform the latest method

of WPT under a similar training setting. Moreover, in con-

trast to WPT, our method does not require running the three

cumbersome object detectors during inference, thus is more

applicable for real world deployment.

Lastly, to compare fairly with [18], using the same Vi-

sualGenome pre-trained backbone (Res101 VG) and un-

der the same proposals setting (30 per image) with [18],

our NCE+Distill model significantly outperforms the lat-

est method of InfoGround by 5.22% when trained on the

Flickr30K Entities dataset. Moreover, with the help of distil-

lation, our results also outperform their best results by 1.4%,

which is trained on COCO Caption dataset [8] using a strong

language model (BERT [10]).

To further illustrate the benefits of our model, we com-

pare the computation complexity at inference time in terms

of floating point operations (FLOPs). For each model, the

estimation is a combination of the backbone and the object

detector, since the rest part of the model, including the lan-

guage feature extractor, is computationally insignificant (0.3

GFLOPs for our NCE+Distill model). For Faster R-CNN

based detectors, we use the numbers reported in [24], under
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Method Backbone DetectorK Require DetectorK in Inference ACC (%)

GroundeR [42] VGG16 PV - - 10.70

MATN [56] VGG16 PV - - 13.61

UTG [50] - VGG16 CC+YOLOv2 CC Yes 20.91

KAC [6]
VGG16 PV VGG16 PV Yes 13.38
VGG16 PV VGG16 CC Yes 15.83

WPT [45]

(w2v-max union)

- IRV2 CC Yes 15.40
- IRV2 CC+IRV2 OI Yes 26.48

+WRN18 PL+CL

NCE+Distillation

(Ours)

VGG16 PV VGG16 CC No 24.52
Res101 CC IRV2 OI No 27.59
Res101 VG IRV2 OI No 38.39

Table 2: Results on ReferItGame. We report phrase localization accuracy and settings of different methods. “Backbone”

denotes the visual backbone used to extract region features. DetectorK denotes the detector that provides external knowledge.

“-” denotes the method does not use backbone or DetectorK . Dataset notations: PV=PASCAL VOC, CC=COCO, OI=Open

Images, CL=Color Name, and PL=Place365.

Method DetectorK GFLOPs Backbone GFLOPs Total GFLOPs

DetectorK=YOLOv2 CC
UTG 60 - 60

DetectorK=Faster R-CNN VGG16 CC
KAC 180 180 (VGG16 PV) 360
NCE+Distill 0 (Not needed) 180 (VGG16 PV) 180

DetectorK=Faster R-CNN IRV2 OI
WPT 1600+ (+IRV2 CC,WRN18 PL) - 1600+
NCE+Distill 0 (Not needed) 500 (Res101 CC) 500

Table 3: Estimated number of FLOPs in inference.

the high-resolution input (600⇥600) and 300 proposals set-

ting. For YOLOv2, we use the number reported in [40]. The

comparison focuses on methods that incorporate external

knowledge, namely UTG, KAC, WPT, and ours. As shown

in Table 3, our proposed NCE+Distill method reduces the

computational complexity by 50% and 70%, while being

a bit more expensive than UTG due to the detector meta-

architecture difference (Faster R-CNN vs. YOLOv2).

Results on ReferItGame We summarize the results on

ReferItGame under different settings in Table 2. When using

COCO pre-trained detectors, our method significantly out-

performs UTG, KAC, and WPT by 3.6%, 8.7%, and 9.12%

respectively. When using a stronger backbone (Res101 CC)

and a better detector pre-trained on a larger scale dataset

(IRV2 OI), our results are improved by 3.1%, outperforming

the best results from WPT using four cumbersome knowl-

edge detectors in inference by 1.1%.

Finally, using the VisualGenome pre-trained backbone

(Res101 VG), our results can be further improved by 10.8%.

This gain is significantly larger than the one on Flickr30K

Entities. We conjecture that the VisualGenome pre-trained

backbone provides more discriminative features in certain

categories that appear more frequently in the ReferItGame

than Flickr30K Entities. To verify this hypothesis, we com-

pare the most frequent phrases from Flickr30K Entities and

ReferItGame. In Flickr30K Entities, top phrases are mostly

people related: man, woman, boy, girl, person, people, dog,

two men, street, young boy, child, whereas top phrases in

ReferItGame are mostly scene related: sky, water, people,

ground, person, trees, building, face, road, grass, clouds.

Many scene related objects are not in the COCO label set,

but are available in the VisualGenome categories.

4.3. Ablation Study

To fully understand our model, we conduct ablation stud-

ies on both Flickr30K Entities and ReferItGame datasets.

Specifically, we consider four different variants of our model:

(1) our model with only image-sentence score function (Eq.

2) supervised by a max margin loss following [25, 56], de-

noted as “Max Margin”, i.e. modeling positive and negative

image-sentence pairs distances via max margin loss. The

full loss function is defined in the Eq.7 below. (2) our model

with only image-sentence score function (Eq. 2) supervised

by the NCE loss (Eq. 5), denoted as “NCE”; (3) our model

with only region-phrase score function (Eq. 1) supervised

by the distillation loss (Eq. 4), denoted as “Distill”; and (4)

our full model with both region-phrase and image-sentence

score functions supervised by our joint loss (Eq. 6), denoted

as “NCE+Distill”.

We present our ablation results on the four model varia-

tions in Table 4.

Contrastive vs. Ranking loss. We first define the max mar-

gin loss following notations in the image-sentence level con-

trastive loss (Eq. 5) as

LIS(Xi, Yj) = EN (Xi)∈X [h(Xi, Yj)] (7)

h(Xi, Yj) =
P

i02N (Xi)
max{0,m� S(Xi, Yj) + S(X 0

i, Yj)},

where m is the margin. In our experiment, we fix m = 0.05.

We observe that NCE loss substantially outperforms the

standard max margin loss by +6.2%/+3.7% on Flickr30K

Entities and ReferItGame, respectively. These results sug-

gest the effectiveness of contrastive learning, as also demon-

strated in the concurrent work [18].

Effects of Knowledge Distillation. Our full model combin-

ing both region-phrase and image-sentence matching brings

further improvements over both the NCE only model and

the Distill only model. We conjecture that NCE and Distill
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“sunglasses” “funny face” “shorts”

“striped shirt” vs. “blue shirt” “white jersey” vs. “red jersey”“white dog” vs. “black dog”

“fish”

Figure 3: Visualization of region-phrase matching. First row: results of the NCE only (left) and the NCE+Distill (green) on

phrases mapped to Open Images Dataset classes. Second row: results of the Distill only (left) and NCE+Distill (green) on

phrases mapped to the same class but with different attributes. For each pixel, we compute a matching score by averaging

scores from all proposals covering the pixel. Red colors indicate high matching scores. Our knowledge distillation helps to

better identify the extent of objects, while contrastive learning helps to distinguish finer attributes.

Method Flickr30K ACC (%) ReferItGame ACC (%)

Max Margin 42.11 22.94
NCE 48.35 26.63
Distill 45.05 17.25
NCE+Distill 50.96 27.59

Table 4: Ablation our proposed methods on Flickr30K and

ReferItGame. All models use Res101 CC as backbone and

models with distillation use IRV2 OI as DetectorK .

provide complementary information for phrase grounding.

Specifically, Distill helps learn the extent of objects bet-

ter, distinguishing parts frequently co-occurred in the same

image, such as “person” and “face”. NCE helps to learn

finer-grained attributes, such as “striped shirt” and “blue

shirt”, as well as concepts not covered by detector classes.

To understand where the accuracy improvement of the

distillation method comes from, we compute per phrase

accuracy on frequent phrases that are mapped to one of

the classes in the Open Images Dataset. The results can

be found in the supplementary materials. We also perform

qualitative analysis with side-by-side heatmaps of region-

phrase matching scores on such mapped phrases, shown in

Figure 3. Our full model (NCE+Distill) can better localize

objects corresponding to the query phrase.

Generalization to Different Backbones. We vary the ob-

ject detectors used by our model and present the results in

Table 5. As the knowledge gap between visual backbone

and external detector becomes smaller, e.g., the visual back-

bones are trained on tasks that involve finer-grained object

and attribute annotations, the effects of distillation become

less predominant. Nevertheless, our method can consistently

improve performance for all detectors.

5. Conclusion, Limitation and Future Work

In this paper, we presented a novel contrastive learning

framework for weakly supervised visual phrase grounding.

The key idea of our method is to learn a score function

Backbone Detectork NCE ACC (%) NCE+Distill ACC (%)

Flickr30k
VGG16 PV VGG16 CC 35.96 40.38 (+4.42)
Res101 CC IRV2 OI 48.35 50.96 (+2.61)
Res101 VG IRV2 OI 51.31 53.10 (+1.79)

ReferItGame
VGG16 PV VGG16 CC 23.56 24.52 (+0.96)
Res101 CC IRV2 OI 26.63 27.59 (+0.96)
Res101 VG IRV2 OI 36.65 38.39 (+1.74)

Table 5: Results of our proposed distillation methods on

Flickr30K and ReferItGame using various backbones and

detectors providing external knowledge. “Backbone” de-

notes the visual backbone used to extract region features.

DetectorK denotes the detector that provides external knowl-

edge. Dataset notations: PV=PASCAL VOC, CC=COCO,

OI=Open Images, and VG=Visual Genome.

measuring the similarity between region-phrase pairs, dis-

tilled from object detection outputs and further supervised

by image-sentence pairs. Once learned, this score function

can be used for visual grounding without the need of ob-

ject detectors at test time. While conceptually simple, our

method demonstrated strong results on major benchmarks,

surpassing state-of-the-art methods that use expensive object

detectors. Our work offers a principled approach to leverage

object information, as well as an efficient method for weakly

supervised grounding.

Limitation and Future Work. A main limitation of our

work is the need of a generic object detector to cover most

of the object classes during training. While object detection

is currently more mature than visual grounding, learning

open-set object detectors from large scale web data and

further bridging the gap between object detection and visual

grounding is a promising direction. Moving forward, we

also plan to extend our method to solve other multi-modal

grounding tasks, including video grounding [1].
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