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Abstract

Photorealistic rendering of dynamic humans is an im-

portant capability for telepresence systems, virtual shop-

ping, special effects in movies, and interactive experiences

such as games. Recently, neural rendering methods have

been developed to create high-fidelity models of humans

and objects. Some of these methods do not produce re-

sults with high-enough fidelity for driveable human models

(Neural Volumes) whereas others have extremely long ren-

dering times (NeRF). We propose a novel compositional 3D

representation that combines the best of previous methods

to produce both higher-resolution and faster results. Our

representation bridges the gap between discrete and con-

tinuous volumetric representations by combining a coarse

3D-structure-aware grid of animation codes with a contin-

uous learned scene function that maps every position and

its corresponding local animation code to a view-dependent

emitted radiance and local volume density. Differentiable

volume rendering is employed to compute photo-realistic

novel views of the human head and upper body as well

as to train our novel representation end-to-end using only

2D supervision. In addition, we show that the learned dy-

namic radiance field can be used to synthesize novel un-

seen expressions based on a global animation code. Our

approach achieves state-of-the-art results for synthesizing

novel views of dynamic human heads and the upper body.

See our project page1 for more results.

1. Introduction

Modeling, rendering, and animating dynamic human

heads at high fidelity, for example for virtual reality re-

mote communication applications, is a highly challenging

research problem because of the tremendous complexity of

the geometry of the human head and the appearance vari-

ations of human skin, hair, teeth, and eyes. Skin exhibits

subsurface scattering and shows fine-scale geometric pore-

level detail, while the human eyes and teeth are both translu-

1https://ziyanw1.github.io/hybrid nerf/

cent and reflective at the same time. High fidelity modeling

and rendering of human hair is challenging due to its thin

geometric structure and light scattering properties. Impor-

tantly, the face is not static, but changes dynamically with

expression and posture.

Recent work on neural rendering learns either discrete

or continuous neural scene representations to achieve view-

point and animation controllable rendering. Discrete neural

scene representations are based on meshes [32, 15, 19, 8,

31], point clouds [34, 1, 21], voxel grids [17, 29], or multi-

plane images [36, 22]. However, each of these represen-

tations has drawbacks: Meshes, even if dynamically tex-

tured [16], struggle to model thin and detailed structures,

such as hair. Point clouds, by design, do not provide con-

nectivity information and thus lead to undefined signals in

areas of sparse sampling, while making explicit occlusion

reasoning challenging. Multi-plane images yield photo-

realistic rendering results under constrained camera motion,

but produce ’stack of cards’-like artifacts [36] when the

camera moves freely. Volumetric representations [17] based

on discrete uniform voxel grids are capable of modeling thin

structures, e.g., hair, using semi-transparency. While these

approaches achieve impressive results, they are hard to scale

up due to their innate cubic memory complexity.

To circumvent the cubic memory complexity of these ap-

proaches, researchers have proposed continuous volumet-

ric scene representations based on fully-connected networks

that map world coordinates to a local feature representa-

tion. Scene Representation Networks (SRNs) [30] employ

sphere marching to extract the local feature vector for every

point on the surface, before mapping to pixel colors. This

approach is limited to modeling diffuse objects, making it

unsuitable for representing human heads at high fidelity.

Neural radiance fields [23] have shown impressive re-

sults for synthesizing novel views of static scenes at im-

pressive accuracy by mapping world coordinates to view-

dependent emitted radiance and local volume density. A

very recent extension [14] speeds up rendering by applying

a static Octree to cull free space. While they have shown

first results on a simple synthetic dynamic sequence, it is

unclear how to extend the approach to learn and render
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photo-realistic dynamic sequences of real humans. In ad-

dition, it is unclear how to handle expression interpolation

and the synthesis of novel unseen motions given the static

nature of the Octree acceleration structure.

As discussed, existing work on continuous neural 3D

scene representations mainly focuses on static scenes and

dynamic scene modeling and editing are not directly achiev-

able under the current frameworks. In this work, we pro-

pose a novel compositional 3D scene representation for

learning high-quality dynamic neural radiance fields that

addresses these challenges. To this end, we bridge the gap

between discrete and continuous volumetric representations

by combining a coarse 3D-structure-aware grid of anima-

tion codes with a continuous learned scene function. We

start by extracting a global animation code from a set of

input images using a convolutional encoder network. The

global code is then mapped to a 3D-structure-aware grid of

local animation codes as well as a coarse opacity field. A

novel importance sampling approach employs the regressed

coarse opacity to speed up rendering. To facilitate gener-

alization across motion and shape/appearance variation, in

addition to conditioning the dynamic radiance field on the

global animation code, we additionally condition it on a lo-

cal code which is sampled from the 3D-structure-aware grid

of animation codes. The final pixel color is computed by

volume rendering. In summary, the main contributions of

our work are

• A novel compositional 3D representation for learning

high-quality dynamic neural radiance fields of human

heads in motion based on a 3D-structure-aware grid of

local animation codes.

• An importance sampling strategy tailored to human

heads that reduces unnecessary computation in free

space and enables faster volumetric rendering.

• State-of-the-art results for synthesizing novel views

of dynamic human heads that outperform competing

methods in terms of quality.

2. Related Work

Recently, there have been many works that combine deep

neural networks with geometric representations to perform

rendering. In this section, we discuss different methods and

their trade-offs, categorized by their underlying geometric

representation.

Mesh-based Representations: Triangle meshes have been

used for decades in computer graphics since they provide an

explicit representation of a 2D surface embedded within a

3D space. A primary benefit of this representation is the

ability to use high-resolution 2D texture maps to model

high-frequency detail on flat surfaces. Recently, differen-

tiable rasterization [12, 15, 6, 8, 18, 19, 31] has made it

possible to jointly optimize mesh vertices and texture using

gradient descent based on a 2D photometric re-rendering

loss. Unfortunately, these methods often require a good ini-

tialization of the mesh vertices or strong regularization on

the 3D shape to enable convergence. Moreover, these meth-

ods require a template mesh with fixed topology which is

difficult to acquire.

Point Cloud-based Representations: Point clouds are an

explicit geometric representation that lacks connectivity be-

tween points, alleviating the requirement of a fixed topol-

ogy but losing the benefits of 2D texture maps for appear-

ance modeling. Recent works, like [21] and [1], propose

methods that generate photo-realistic renderings using an

image-to-image translation pipeline that takes as input a de-

ferred shading deep buffer consisting of depth, color, and

semantic labels. Similarly, in SynSin [34], per-pixel fea-

tures from a source image are lifted to 3D to form a point

cloud which is later projected to a target view to perform

novel view synthesis. Although point clouds are a light-

weight and flexible geometric scene representation, render-

ing novel views using point clouds results in holes due to

their inherent sparseness, and it typically requires image-

based rendering techniques for in-painting and refinement.

Multi-plane Image-based Representations: Another line

of work is using multi-plane images (MPIs) as the scene

representation. MPIs [36] are a method to store color and

alpha information at a discrete set of depth planes for novel

view synthesis, but they only support a restricted range of

motion. LLFF [22] seeks to enlarge the range of camera

motion by fusing a collection of MPIs [36]. Multi-sphere

images (MSIs) [2, 3] are an extension for the use case of

stereo 360◦ imagery in VR, where the camera is located

close to the center of a set of concentric spheres.

Voxel-based Representations: One big advantage of

voxel-based representations is that they do not require pre-

computation of scene geometry and that they are easy to op-

timize with gradient-based optimization techniques. Many

recent works [11, 33, 7, 35] have learned volumetric scene

representation based on dense uniform grids. Recently, such

volumetric representations have attracted a lot of attention

for novel view synthesis. DeepVoxels [29] learns a persis-

tent 3D feature volume for view synthesis with an image-

based neural renderer. Neural Volumes [17] proposes a dif-

ferentiable raymarching algorithm for optimizing a volume,

where each voxel contains an RGB and transparency values.

The main challenge for voxel-based techniques originates in

the cubic memory complexity of the often employed dense

uniform voxel grid, which makes it hard to scale these ap-

proaches to higher resolutions.

Implicit Geometry Representations: Implicit geometry

representations have drawn a lot of attention from the re-

search community due to their low storage requirements

and the ability to provide high-quality reconstructions with
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good generalization. This trend started with geometric re-

construction approaches that first employed learned func-

tions to represent signed distance fields (SDFs) [25, 10, 4]

or occupancy fields [20, 9, 26]. DeepSDF [25] and Occ-

Net [20] are among the earliest works that try to learn an

implicit function of a scene with an MLP and are fueled

by large scale 3D shape datasets, such as ShapeNet [5].

DeepSDF densely samples points around the surface to

create direct supervision for learning the continuous SDF,

while OccNet learns a continuous occupancy field. Con-

vOccNet [26] manages to improve OccNet’s ability to fit

large scale scenes by introducing a convolutional encoder-

decoder. ConvOccNet is limited to static scenes and geom-

etry modeling, i.e., it can not handle the dynamic photo-

realistic sequences that are addressed by our approach.

Continuous Scene Representations: Inspired by their im-

plicit geometry counterparts, continuous scene represen-

tations for modeling colored scenes have been proposed.

Scene Representation Networks (SRNs) [30] propose an

approach to model colored objects by training a contin-

uous feature function against a set of multi-view images.

DVR [24] derived an analytical solution for the depth gra-

dient to learn an occupancy and texture field from RGB im-

ages with implicit differentiation. NeRF [23] learns a 5D

neural radiance field using differentiable raymarching by

computing an integral along each ray. Although promis-

ing, their results are limited to a single static scene and

the approach is hard to generalize to multiple scenes or a

scene with dynamic objects. Another limiting factor is that

these representations are extremely costly to render, since

every step along the ray requires an expensive evaluation of

the complete fully-connected network. GRAF [28] intro-

duces a generative model for radiance fields which extends

NeRF’s ability to model multiple static objects. However,

their approach is limited to very simple scenes at low res-

olution. The approach has not been demonstrated to scale

to the dynamic high-quality real-world animations we are

interested in. A very recent work, NSVF [14], manages

to solve the second limitation with an Octree acceleration

structure. Although they provide initial results on a sin-

gle synthetic dynamic sequence, the static Octree structure

is optimized frame-by-frame rather than regressed, which

makes it not straightforward to directly deploy their method

on novel photo-realistic dynamic sequences of real humans.

It is unclear how to efficiently handle expression interpola-

tion and motion synthesis given the static Octree.

3. Method

In this section, we introduce our novel compositional

representation that combines the modeling power of high-

capacity voxel-based representations and the ability of con-

tinuous scene representations to capture subtle fine-level de-

tail. In Fig. 1 we provide an overview of our approach.

The core of the method is a hybrid encoder-decoder ar-

chitecture, directly supervised with multi-view video se-

quences. For a given frame, the encoder takes a sparse

set of views, and outputs a global animation code, which

describes dynamic scene information specific to the frame.

The global animation code is used to condition the 3D con-

volutional decoder, which outputs a coarse 3D structure-

aware voxel field. In particular, each voxel stores coarse-

level opacity, color and localized animation codes, which

represent local dynamical properties of the corresponding

spatial region of the scene. The resulting voxel field is

further used to create a coarse volumetric rendering of the

scene, which may lack fine-level detail, but provides a reli-

able initial estimate of the scene’s geometry, which is cru-

cial to enable efficient continuous scene modeling. To ac-

count for the lack of detail, we rely on a continuous scene

function, represented as an MLP, to model fine-level radi-

ance. The coarse-level geometry estimate is used to define

spatial regions where the function is evaluated, and the lo-

cal animation codes as spatially-varying conditioning signal

to the MLP. To better model view-dependent effects, both

coarse- and fine-level representations are partly conditioned

on the camera viewpoint. The outputs of the continuous

scene function are then used to create the final, refined volu-

metric rendering of the scene. In what follows, we describe

each of the components in detail.

3.1. Encoder­Decoder

The goal of the encoder is to produce a compact repre-

sentation that captures global dynamical properties of the

scene, which then serves as a conditioning signal for the de-

coder. Our encoder is a 2D convolutional network which

takes a sparse set of views and outputs parameters of a

diagonal Gaussian distribution µ,σ ∈ R
256. In practice,

the encoder is conditioned on three different camera views,

concatenated along the channel axis. Given the distribution

N (µ,σ), we use the reparameterization trick to produce the

global animation code z ∈ R
256 in a differentiable way, and

pass it to the decoder. We found that using a variational for-

mulation [13] is critical for making our model animatable.

Given the global animation code z, the goal of the de-

coder is to produce a coarse-level representation of the

scene. In particular, the coarse level is modeled by a vol-

umetric field

Vp =
(
c̃p, σ̃p, fp, f

v
p

)
, (1)

where c̃p ∈ R
3 is a coarse-level color value, σ̃p ∈ R is

differential opacity, fp ∈ R
32 is the view-independent lo-

cal animation code, fv
p

∈ R
32 is the view-dependent lo-

cal animation code, and p ∈ R
3 is the spatial location. In

our framework, V is produced by a volumetric decoder as

an explicit coarse discrete grid G ∈ R
D×D×D×F , where

D = 64 is the spatial dimension of the grid, and F = 68 is
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Figure 1. Method overview. Given a multi-view video as input, we learn a dynamic radiance field parametrized by a global animation code.

To render a particular frame, the global code is first mapped to a coarse voxelized field of local animation codes using a 3D convolutional

decoder. This grid of animation codes provides local conditioning at each 3D position for the fine-level radiance function, represented as

an MLP. Differentiable ray marching is used to render images and provide supervision, and can be sped up significantly by using a ray

sampling strategy that uses the coarse grid to determine relevant spatial regions.

the dimensionality of the field. Samples Vp at continuous

locations p ∈ R
3 are produced with trilinear interpolation

over the voxels.

In practice, the decoder is represented by two indepen-

dent 3D convolutional neural network branches. The first

branch is conditioned only on the global code z, and pre-

dicts view-independent values, the differential occupancy

σ̃p and the view-independent local animation codes fp. The

second branch predicts view-dependent color values c̃p and

local animation codes fv
p

, and is conditioned on both the

global code z and the viewpoint v ∈ R
3, which is computed

as a normalized difference between the camera location and

the center of the scene.

3.2. Volumetric Rendering

Given the discrete voxel field, we apply differentiable

ray-marching to obtain coarse volumetric rendering [23].

Namely, for each ray r ∈ R
3 shot from the camera cen-

ter o ∈ R
3, we sample N query points pi = (o + di · r)

along r, where di is the depth sampled uniformly between

the depth at a near plane dmin and a far plane dmax. Esti-

mates of expected coarse opacity Ãr and color Ĩ ′
r

are then

computed as

Ãr =

N∑

i=1

Tiαi , Ĩ ′
r
=

N∑

i=1

Tiαic̃pi
, (2)

where Ti = exp(−
∑i−1

j=1 σ̃pj
δj), αi = (1−exp(−σ̃pi

δi)),
and δi = ‖di+1 − di‖ is the distance between two neigh-

bouring depth samples. In practice, values c̃pi
, σ̃pi

are sam-

pled from the voxel grid with trilinear interpolation.

The final coarse-level rendering is computed by com-

positing the accumulated color Ĩ ′
r

and the background color

with a weighted sum

Ĩr = Ĩ ′
r
+ (1− Ãr)I

bg
r

. (3)

The resulting coarse rendering roughly captures the appear-

ance of the scene, but lacks fine-level detail. A seemingly

straightforward way to improve the level of detail would be

to increase the spatial resolution of the voxel grid. Unfor-

tunately, this approach quickly becomes impractical due to

the cubic memory complexity of these representations.

3.3. Continuous Scene Function

In order to improve fine-level modeling capabilities

while avoiding heavy memory costs associated with high-

res voxel representations, we introduce a continuous scene

function f(·), parameterized as an MLP. The key intuition

is that voxel-based approaches represent scenes explicitly

and uniformly across space, thus often wasting resources

on irrelevant areas. On the other hand, continuous repre-

sentations are implicit, and allow for more flexibility, as the

scene function can be evaluated at arbitrary locations. When

combined with a sampling strategy that focuses only on rel-

evant spatial locations, this flexibility can bring significant

efficiency improvements.

One crucial difference of our method with respect to the

existing continuous neural rendering approaches [28, 23], is

that in addition to conditioning on the location, view direc-

tion and the global scene information, our scene function is

also conditioned on spatially-varying local animation codes.

As we demonstrate in our experiments in Sec. 4, this in-

creases the effective capacity of our model, and allows our

model to capture significantly more detail and better gen-

eralize across different motion and shape/appearance varia-

tions. We also show that this property is especially impor-

tant for modeling dynamic scenes, as they require signif-

icantly more modeling capacity and the naive MLP-based

approaches typically fail.

More formally, the scene function f(·) takes as inputs

coordinates of a sampled query point p, view vector v, and
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the corresponding local animation codes fp, f
v
p

, and pro-

duces the fine-level color cp ∈ R
3 and the differential prob-

ability of opacity σp ∈ R

cp, σp = f(φ(p), φ(v), fp, f
v
p
) .

Feature vectors fp, f
v
p

are obtained from the the coarse voxel

grid via trilinear interpolation, and position p and view v

vectors are passed through a positional encoding φ(·), in

order to better capture high-frequency information [23].

Fine-level rendering Ir and Ar can then be computed by

evaluating f(·) at a number of sampled query points along

each ray and applying Eq. (2)-(3). In the next section, we

discuss our novel sampling scheme that significantly speeds

up the rendering process.

3.4. Efficient Sampling

Using spatially-varying conditioning allows us to in-

crease effective capacity of our continuous scene represen-

tation and leads to better generalization. However, pro-

ducing a high-quality rendering still requires evaluating the

scene function at a large number of query locations, which

can be computationally expensive [23], and ultimately suf-

fers from similar limitations as the voxel fields. Luckily,

we can exploit the fact that our coarse voxel field already

contains information about the scene’s geometry. To this

end, we introduce a simple and efficient sampling scheme,

which uses the coarse opacity values to produce a strong

initial prior on the underlying geometry. In particular, for

each ray r, we first compute a coarse depth d̃r as

d̃r =
1

Ãr

N∑

i=1

Tiαi · di ,

where di are the same uniform samples as in Eq. (2). Then,

we obtain our new fine-level location samples from a uni-

form distribution:

d ∼ U
[
d̃r −∆d, d̃r +∆d

]
,

centered at the depth estimate d̃r, where ∆d =
(dmax−dmin)

k
, i.e. k = 10 times smaller range than at the

coarse level. In Sec. 4 we demonstrate that this strategy in

practice leads to comparable rendering quality, while being

more computationally efficient.

3.5. Training Objective

Our model is end-to-end differentiable, which allows us

to jointly train our encoder, decoder and the scene MLP, by

minimizing the following loss:

L = Lr + L̃r + λfLβ + λcL̃β + λKLLKL .

Here Lr is the error between the rendered and ground truth

images for the fine-level rendering:

Lr =
∑

r∈R

||Ir − Igt
r
||22 ,

where R is a set of rays sampled in a batch. The coarse-level

rendering loss L̃r is computed similarly. Lβ and L̃β are

the priors on the fine-level and coarse-level image opacities

respectively [17]:

Lβ =
∑

r∈R

(logAr + log(1−Ar)) ,

which pushes both the coarse and fine opacities to be

sharper, and encodes the prior belief that most of the rays

should hit either the object or the background. Finally,

the Kullback-Leibler divergence loss LKL encourages our

global latent space to be smooth [13], which improves the

animation and interpolation capabilities of our model.

4. Experiments

We first compare with two state-of-the-art methods for

novel view synthesis, namely NV [17] and NeRF [23] on

four dynamic sequences of a human head making different

facial expressions or talking. We then perform an ablation

study to test how different feature representations affect the

ability to capture longer sequences, as well as the effects of

applying different resampling strategies on speed and im-

age quality. We also evaluate generalization capabilities of

our model on novel sequence generation and animation, by

interpolating in latent space and by driving the model with

various input modalities, including keypoints and images.

4.1. Datasets

We use a multi-camera system with around 100 synchro-

nized color cameras that produces 2048 × 1334 resolution

images at 30 Hz. The cameras are distributed approxi-

mately spherically at a distance of one meter, and focused

at the center of the capture system to provide as many view-

points as possible. Camera intrinsics and extrinsics are cal-

ibrated in an offline process. Images are downsampled to

1024 × 667 for training and testing. Each capture contains

n = 3 sentences and around k = 350 frames in total for

each camera view. We trained on m = 93 cameras and

tested on q = 33 frames from another p = 7 cameras.

4.2. Baselines

We compare our methods with two baselines that we de-

scribe in the following.

NV [17]: Neural Volumes performs novel view synthesis

of a dynamic object-centric scene by doing raymarching on

a warped voxel grid of RGB and differential opacity that

is regressed from three images using an encoder-decoder

network. As the volume is conditioned on temporal input of

RGB images, NV is capable of rendering dynamic scenes.
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The volume is of size 1283 and the warp field is 323. The

global animation code is a feature vector of 256 entries.

NeRF [23]: NeRF learns a continuous function of scene

radiance, including RGB and opacity, with a fully con-

nected neural network conditioned on scene coordinates and

viewing direction. Positional encoding is applied to the 3D

coordinates to better capture high frequency information,

and raymarching is performed to render novel views. Note

that the original NeRF approach is not directly applicable to

dynamic sequences. Thus, we extend the conditioning sig-

nal to NeRF with a global animation code generated from

the encoder in NV. The global animation code is generated

from the encoder in NV and it is also of size 256.

4.3. Novel View Synthesis

We show quantitative and qualitative results of novel

view synthesis on four dynamic sequences of human heads.

Quantitative Results: We report quantitative evaluation re-

sults in Tab. 1. Metrics used here are MSE, PSNR, and

SSIM. We average those metrics across different test views

and time steps, among each of the sequences. To compen-

sate for sensory difference between each camera, we apply

the same color calibration network as in NV [17] for our

methods as well as all baselines. To compute the parame-

ters of the color calibration networks, we first fit the color

calibration model on an additional sentence with all camera

views and fix the parameters for all subsequent steps. The

first three sequences (Seq1-Seq3) are captures showing the

participant talking, while the last one (Seq4) is a capture of

a range of motions showing challenging expressions. As we

can see, our method outperforms all other baselines on the

four dynamic sequences in terms of all metrics.

Qualitative Results: We show visual comparisons between

different models trained on long video sequences in Fig. 2.

We can see that NV and NeRF trained on a sequence tend to

yield relatively blurry results, while our approach produces

sharper images and can reconstruct finer details in terms of

both texture and geometry on areas like hair, eyes, and teeth.

Our method can achieve better rendering results on video

sequence compared to previous methods in terms of photo-

realism.

4.4. Ablation Studies

Longer Sequences: As one of the major differences be-

tween our method and the adapted NeRF is the different

feature representation as input for the fine-level neural im-

plicit function, we also tested how this impacts the general-

ization and fitting power of the approaches. To achieve that,

we train our method as well as the temporal conditioned

NeRF on sequences with variable length (1, 40, 120, 240,

360 frames) and report their reconstruction performance on

a set of views at certain time frames. For all training sets,

the first frame is shared and is taken as the test frame. For

Figure 2. Qualitative comparison of rendered images. Our

method recovers more fine-scale details than NV and NeRF, par-

ticularly in high-frequency regions like the eyes and hair. Results

are rendered at 1024× 667 with insets for better visualization.

comparisons, we evaluate three different resolutions (16,

32, 64) for the coarse-level voxel feature in our method to

better understand how the voxel resolution could affect the

generalization capabilities and expressiveness of our model.

Figure 4 shows the plot of MSE and SSIM vs. the length of

the training sequence of different models. A direct visual

comparison between models trained on a different number

of frames is shown in Figure 3. As can be seen, the perfor-

mance of NeRF with a global animation code drops signif-

icantly when the total number of training frames increases,

while our method maintains a higher rendering quality due

to a more expressive local voxel animation code, which en-

forces the fine-level implicit function to learn local rather

than global representations and capture high frequency de-

tails more accurately. In addition, the 3D convolutional de-

coder imposes 3D inductive bias and improves the capacity

of the whole model with the help of a 3D voxel feature ten-
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Sequence1 Sequence2 Sequence3 Sequence4

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

NV 46.19 31.56 0.8851 52.11 31.24 0.8499 83.07 29.24 0.7742 40.47 32.30 0.9086

NeRF 43.34 31.88 0.8923 46.89 31.79 0.8531 90.45 28.87 0.7727 35.52 32.95 0.9129

Ours 34.01 33.09 0.9064 42.65 32.24 0.8617 79.29 29.61 0.7826 27.62 34.12 0.9246
Table 1. Image prediction error. We compare NV, NeRF, and our method on 4 sequences, and report average error computed over a set

of approximately 200 images of 7 views for each sequence. Our method outperforms all other baselines on all metrics.

NeRF

Ours

Vox16

Ours

Vox32

Ground truth1 frame 40 frames 120 frames 240 frames 360 frames

Ours

Vox64

Figure 3. Effect of sequence length on quality. Conditioning the

radiance field on local instead of global animation codes greatly

expands model capacity, allowing our model to recover much

sharper images even when trained on longer video sequences.

Figure 4. Effect of sequence length on reconstruction. MSE

and SSIM on the first frame v.s. length of the training sequence.

sor that has more spatial awareness compared to a global

code. We also see that rendering quality improves and the

model achieves better generalization when the coarse-level

voxel feature resolution is relatively large. If the resolution

is smaller, the performance drops as each local code has to

describe a larger region of space, see Fig. 3.

Sampling Strategy and Runtime Comparison: We fur-

ther trained our method and NeRF on a single sentence ap-

plying different sampling schemes: the hierarchical sam-

pling (HS) in [23] and our simple sampling (SS). For our

method, we use a coarse level voxel resolution of 643. Both

sampling methods (HS and SS) have 128 points sampled

along each ray for coarse level rendering. We show results

in Tab. 2. As we can see our simple sampling preserves ren-

dering quality while enjoying a large increase in runtime ef-

ficiency. For rendering an image with resolution 1024×667,

NV takes roughly 0.9s and NeRF is taking >25s whereas

our methods takes 3.6s. The improved runtime efficiency

MSE PSNR SSIM Runtime

NeRF+HS 36.33 32.90 0.8898 >25s

NeRF+SS 38.80 32.75 0.8886 19.69s

Ours+HS 27.23 34.24 0.9090 14.30s

Ours+SS 30.35 34.13 0.9113 3.6s
Table 2. Ablation on different sampling schemes. We show im-

age reconstruction results as well as runtime for both NeRF and

ours with different sampling strategies.

MSE PSNR SSIM

keypoints encoder w/o ft 58.52 30.78 0.8891

image encoder w/o ft 55.86 31.07 0.8903

keypoints encoder w/ ft 35.12 32.90 0.9024

image encoder w/ ft 34.86 33.27 0.9053

full model ft 32.47 33.84 0.9121
Table 3. Novel content synthesis. We show results on novel con-

tent generation and novel sequence fitting. We tested two different

encoder models that use data from two modalities: sparse 2D key-

points and images. We use a coarse voxel resolution of 643.

stems from the coarse level rendering as our method has

to only query the MLP at a small number of positions for

refinement. However, our method may fail if the coarse

level geometry is too far from the ground truth since we

only sample locally. Fine detail, e.g., wrinkles, might not

be recovered as geometry, but can still be modeled using

view-dependent appearance.

4.5. Animation

We demonstrate a large variety of applications that is en-

abled by our approach.

Latent Space Sampling and Interpolation Given the

encoder-decoder architecture, we can generate smooth tran-

sitions between two expressions by interpolating in latent

space and create free-view animations. In Fig. 5(b), we

show direct interpolation results between two frames with

different expressions. The frames in the red and blue bound-

ing box are two key frames and all other frames inbetween

are interpolated results. We also show rendering results by

randomly sampling in the latent space in Fig. 5(c).

Landmark Driven Animation: Because the decoder only

depends on a single global code to generate the dynamic

field, the original image encoder can be switched to an en-

coder that takes inputs from other modalities as long as

correspondence between input and outputs can be estab-

lished. To demonstrate controllable animation, we use 2d

landmarks as a substitute of the image input and train a sim-
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Figure 5. Novel sequence generation. New animations can be created by dynamically changing the global animation code, for example

by (a) using keypoints to drive the animation, (b) interpolating the code at key frames, (c) sampling from the latent distribution, or (d)

directly fitting the codes to match a novel sequence. Please refer to supplemental material for more visual results.

plified PointNet [27]-like encoder that regresses the global

code from the set of 2d landmarks. To train such an encoder,

we minimize the ℓ2 distance between the global code zkps
from keypoints and its corresponding global code zimg from

the image on the training set. Fig. 5(a) shows some render-

ing results that are driven by a keypoint encoder. To test

generalization to a novel sentence that is not included in the

training data, we deployed the keypoint encoder and the pre-

trained decoder on a novel sequence. Results on test views

are reported in Tab. 3. We can see, that with a keypoint

encoder using only a regression loss in the latent space,

the avatar can be driven with reasonable performance, even

though keypoints provide less information than images.

Novel Sequence Fitting: To demonstrate our model’s abil-

ity to generalize to a novel sequence, we show results of

animations driven by novel video sequences. For novel se-

quence generation from a given input modality, two com-

ponents need to generalize: (1) the encoder, which pro-

duces animation codes given novel image inputs, and (2)

the decoder, which renders novel animation codes into im-

ages. We first study the generalization ability of the decoder

in isolation. To do this, we fine-tune the encoder on the

novel sequence, fixing the parameters of the decoder and

only back-propagating gradients to the encoder’s parame-

ters. Fig. 5(d) shows rendering results. To test the ability

of generalization to novel input driving sequences, we test

the complete encoder-decoder model on a novel sequence,

without any fine-tuning. Results are shown in Tab. 3. As

we can see, an image-based encoder trained with a photo-

metric loss shows better performance on novel content than

a key-point encoder trained with a regression loss on the la-

tent space. Innately, image input is a more informative than

sparse key-points. Training with a photometric loss rather

than a regression loss enables the encoder to output latent

codes that are more compatible with the decoder. We also

fine-tuned just the image encoder with a photometric loss

and we find that the rendering results achieve comparable

quality on novel content. We also fine-tuned the full model

(encoder and decoder) and we find the gap is small in com-

parison to the model that only has its encoder fine-tuned.

5. Limitations

While we achieve state-of-the-art results, our approach

is still subject to a few limitations which can be addressed

in follow-up work: (1) Our method heavily relies on the

quality of the coarse-level voxel field. In cases when the

voxel representation has significant errors, the following

fine-level model is likely not to recover. (2) Since we rely

on the voxel field for our coarse-level representation, our

method is primarily applicable to object-centric scenes. Po-

tentially, by substituting the voxelized representation with

a coarse depth map, it could also be applied to arbitrary

scenes. (3) Although our compositional approach improves

the scalability of both voxel-based and continuous represen-

tations, our approach is still limited in terms of sampling

resolution. Even though the learnt function enables us to

go beyond voxel resolution, image quality is still limited by

the sampling resolution along the ray. One way to tackle

this problem could be to regress the position of a group of

voxels, which could serve as a more efficient proxy.

6. Conclusion

In this paper, we proposed a method for rendering and

driving photo-realistic avatars of humans captured with a

multi-view camera system. Our representation bridges the

gap between discrete and continuous volumetric represen-

tations by combining a coarse 3D-structure-aware grid of

animation codes with a continuous learned scene function

that enables high-resolution detail without the need for a

dense voxel grid. We show that our approach produces

higher-quality results than previous methods, especially as

the length of the sequence increases, and is significantly

faster than classical neural radiance fields. Our approach

also enables driving the model, which we demonstrate via

interpolation in the latent space, randomly sampling the la-

tent space, and facial motion control via a set of sparse key-

points. We believe that our approach is a stepping stone

towards higher-quality telepresence systems.
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