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Abstract

Learning-based 3D shape segmentation is usually for-

mulated as a semantic labeling problem, assuming that all

parts of training shapes are annotated with a given set of

tags. This assumption, however, is impractical for learn-

ing fine-grained segmentation. Although most off-the-shelf

CAD models are, by construction, composed of fine-grained

parts, they usually miss semantic tags and labeling those

fine-grained parts is extremely tedious. We approach the

problem with deep clustering, where the key idea is to learn

part priors from a shape dataset with fine-grained segmen-

tation but no part labels. Given point sampled 3D shapes,

we model the clustering priors of points with a similarity

matrix and achieve part segmentation through minimizing

a novel low rank loss. To handle highly densely sampled

point sets, we adopt a divide-and-conquer strategy. We par-

tition the large point set into a number of blocks. Each block

is segmented using a deep-clustering-based part prior net-

work trained in a category-agnostic manner. We then train

a graph convolution network to merge the segments of all

blocks to form the final segmentation result. Our method

is evaluated with a challenging benchmark of fine-grained

segmentation, showing state-of-the-art performance.

1. Introduction

3D shape segmentation is a fundamental problem in 3D

vision. While most existing works focus on semantic seg-

mentation of 3D shapes into major parts (e.g., seat, back

and leg of a chair), many application scenarios, on the

other hand, demand fine-grained shape segmentation. A

definition of fine-grained parts was given in [22]. In that

work, fine-grained parts are defined in contrast with seman-

tic parts. While semantic parts are major, functional ones

(e.g., the back, seat and leg parts of a chair), fine-grained

parts mainly refer to modeling components which are, al-

beit geometrically insignificant, conceptually meaningful in
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Figure 1: Two examples of fine-grained segmentation. For

each example, the left is the input point cloud and the right

is the fine-grained segmentation result.

the sense of assembly-based 3D modeling. Therefore, fine-

grained segmentation induces an intricate structural analy-

sis of 3D objects, which facilitates part-based shape synthe-

sis and modeling [13, 25] and meticulous robotic manipu-

lation [1, 6]. Consequently, the problem receives increas-

ing research attention lately [28, 23], along with dedicated

datasets [14].

Previous learning-based approaches to fine-grained 3D

shape segmentation usually formulate it as a semantic la-

beling problem. This requires a large training dataset of

3D shapes with fine-grained part segmentation and tags.

When working with most online shape repositories such as

ShapeNet [3], fine-grained part segmentation comes for free

since most off-the-shelf CAD models are, by construction,

composed of fine-grained parts. These fine-grained parts,

however, have no, or noisy semantic tags. Annotating fine-

grained parts with semantic tags is extremely tedious due

to the tiny part size and large part count (range from tens

to hundreds; see [23] for statistics). Moreover, many fine-

grained parts may not even have a well-defined tag. Due

to these reasons, the existing fine-grained part datasets [14]

does leave many parts unlabeled.

In this paper, we introduce a deep clustering based ap-

proach to fine-grained part segmentation, thus avoiding the

requirement of part labels. The key idea is to learn geomet-

ric part priors describing what constitutes a fine-grained

part, based on a shape dataset with fine-grained segmen-

tation but no part labels. Working with point sampled

3D shapes, our method models the clustering priors of 3D

points with a similarity matrix of point features capturing
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Figure 2: Tiny parts demand high sampling rate for accurate

fine-grained segmentation.

for any two points how likely they belong to the same part.

This similarity matrix possesses low rank property with the

rank equal to the number of fine-grained parts of the shape.

Therefore, fine-grained part segmentation can be achieved

by minimizing a novel low rank loss over the similarity ma-

trix.

Fine-grained parts are usually very tiny compared to the

full shape (see Figure 2 (a)). A moderate sampling rate of

3D shapes can hardly capture the geometry of tiny parts ac-

curately, which can result in suboptimal segmentation (see

Figure 2 (b)). Therefore, fine-grained segmentation needs

to work with densely sampled shapes. Existing deep learn-

ing models for 3D point clouds, such as PointNet [15], usu-

ally find difficulty in handling very large point clouds. To

this end, we adopt a divide-and-conquer strategy. We first

partition the large point set into a number of blocks. Each

block is segmented using a deep-clustering-based part prior

network, called PriorNet, which is trained in a category-

agnostic manner. Benefiting from the block-wise training

strategy, the required training shapes are greatly reduced.

We then train MergeNet, a graph convolution network, to

merge the segments of all blocks to form the final segmen-

tation.

The main contributions of our paper include:

• a deep-clustering-based formulation for fine-grained

segmentation of 3D shapes which learns geometric

part priors without relying on part annotations,

• a novel low-rank loss designed for learning fine-

grained part priors, and

• a novel graph convolution network based module

trained to merge segments in different blocks.

2. Related Work

Point cloud segmentation. Point cloud segmentation has

gained significant research progress in recent year, bene-

fiting from the advances in machine learning techniques

[19, 16, 9, 21]. Early studies [17, 18, 10, 5] most utilize

hand-crafted features towards specific tasks. These features

often encode statistical properties of points and are designed

to be invariant transformations, which can be categorized as

local features [2, 20] and global features [18, 10, 7, 5]. For

a specific task, it is not trivial to find the optimal feature

combination.

Recently many deep learning architectures have been de-

veloped for point cloud data [19, 16, 9]. These methods

demonstrate remarkable performance in part segmentation

of object and scene segmentation. All these models, how-

ever, find difficult in handling large point cloud. In gen-

eral, the point sets is down-sampled at first, which is used

as the input as the input of the neural network. However,

after down-sampling, many fine-grained parts are lost. To

our knowledge, very few works have studied fine-grained

segmentation of point clouds. Mo et al. [14] collected a

large-scale dataset with manually annotated fine-grained se-

mantic parts. They also proposed some baseline methods

for fine-grained segmentation of 3D point cloud. Luo et

al. [12] introduced a data-driven iterative perceptual group-

ing pipeline for the task of zero-shot 3D shape part discov-

ery. Yu et al. [28] proposed a top-down recursive decom-

position network for fine-grained segmentation of 3D point

cloud. However, their methods require well-defined fine-

grained part semantic lables.

Low rank representation and loss. Low rank represen-

tation is a robust and efficient tool for processing high-

dimensional data. This is because low rank representation

has an excellent performance in discovering global struc-

tures of data. The low-rank representation can reveal the re-

lationships of the samples: the within-cluster affinities are

dense while the between-cluster affinities are all zeros [11].

Low rank representation has been widely used in many ap-

plications of image processing including image denoising

[24], face recognition [4], and classification [29] in recent

years.

Recently, Yi et al. [27] introduced a low rank loss based

on deep learning for estimating detailed scene illumina-

tion using human faces in a single image. The strategy

based on the observation that the diffuse chromaticity over

a face should be consistent among images, regardless of il-

lumination changes, because a person’s facial surface fea-

tures should remain the same. The diffuse chromaticity

of multiple aligned images of the same face should form

a low rank matrix (ideally rank one), so they define the low

rank loss based on the second singular value. Similarly,

Zhu et al. [31] proposed a low-rank loss for 3D shape co-

segmentation. The low-rank loss in AdaCoSeg measures

the geometric similarity of the same semantic part across

different shapes. The network is trained to minimize the

rank; no actual low-rank decomposition is conducted. Our

low-rank loss is fundamentally different from the one used
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Figure 3: Pipeline overview.

in [27, 31]. our network exploits the low-rank and sym-

metric property of similarity matrix for point clustering, it

learns to perform symmetric low-rank decomposition which

directly leads to point cloud segmentation. To the best of

our knowledge, our work is the first that defines a loss based

on low-rank decomposition in training a point cloud seg-

mentation network.

Graph Neural Networks (GNNs). Over past a few years,

a series of graph neural networks and subsequent vari-

ants achieved promising results in various applications [30].

Landrieu et al. [8] propose a graph convolutional network-

based framework to tackle the semantic segmentation of

large-scale point clouds. This work is partly related to

us, however, there are some important differences: 1), like

other semantic segmentation frameworks, this approach [8]

is classification-based and difficult to extend to our task. 2),

our method learns part priors directly from a dataset through

minimizing a novel low rank loss, not based on hand-crafted

features. 3), our method assigns nodes based on clustering.

We have no a softmax layer as the output layer for classifi-

cation.

3. Our Approach

Figure 3 gives an overview of our method pipeline.

Given a 3D shape represented by densely sampled point

cloud, we first perform a volumetric partition to split the

point cloud into a number of blocks. Each block is seg-

mented with the PriorNet (Section 3.1). The segments of

all blocks are then merged with MergeNet to form the final

segmentation (Section 3.2).

3.1. Part Prior Network (PriorNet)

Given a 3D shape, the PriorNet is learned to delineate

its meaningful parts (Figure 4). When the input is a partial

shape (e.g., a partition block of the full shape), the Prior-

Net would segment it into patches which is either an inde-

pendent part or a part of it. Ideally, PriorNet should avoid

under-segmentation (i.e. grouping points belonging to two

different parts) as much as possible. PriorNet is trained to

minimize a multi-task loss function defined for each block:

L = Lsim + Llow-rank.

Volumetric partition and block re-sampling. Since it is

difficult to directly use existing neural networks to process

large point clouds, we perform a volumetric partition over

the point clouds into blocks and then feed each block to the

PriorNet. In our implementation, the volume resolution is

7 × 7 × 7. After partitioning, empty blocks are removed.

Since the number of points in each block varies a lot, to

facilitate training, we re-sample the point set in each block

into D = 512 points, using farthest point sampling (FPS).

PriorNet architecture. In PriorNet, we use Point-

Net++ [16] as the backbone network to extract features for

each point, using the default hyper-parameters in the orig-

inal work. Based on the point features, we define for each

block a similarity matrix to describe for any two points

in the block how probable they belong to the same part.

This similarity matrix possesses low rank property with the

rank equal to the number of fine-grained parts in that block.

Therefore, part segmentation can be obtained by minimiz-

ing the rank of the matrix.

Similarity loss. For the purpose of point cloud segmenta-

tion, we aim to learn point features so that any two points

belonging to the same part are as similar as possible, while

those in different parts are as dissimilar as possible. To this

end, we defined a similarity matrix S ∈ Nd × Nd for the

points in a black, where Nd is the number of points per

block. To estimate S, we design a similarity loss:

Lsim =

Nd
∑

i

Nd
∑

j

li,j , (1)

where

li,j =

{

‖F (pi)− F (pj)‖2, I(i, j) = 1
max{0,K − ‖F (pi)− F (pj)‖2}, I(i, j) = 0

in which I(i, j) indicates whether pi and pj belong to the

same part in the ground-truth. F is point feature extracted
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Figure 4: Network architecture of the PriorNet. After volumetric partitioning, each block is fed into the backbone network

(PointNet++ [16]) to extract point-wise features. Two loss functions, similarity loss and low-rank loss, are devised to predict

the segmentation result for the block.

Figure 5: Statistics on segment count in a block over all the

models in our dataset.

by PointNet++ [16]. K controls the minimum dissimilar-

ity between points in different parts; we use K = 100 by

default. We will show with experiment that our method is

insensitive about the selection of K.

Remarks on the low-rank property of the similarity ma-

trix. The “similarity” here measures how probable two

given points belong to the same part. Ideally, the similar-

ity matrix S is defined as an N × N matrix (N is point

count) with each entry si,j = I(i, j) being an indicator of

whether point pi and pj belong to the same part. It is obvi-

ous that the relation “pi and pj belong to the same part” is

an equivalence relation. This means that the corresponding

relation graph has the following structure: the number of its

connected components equals the number of parts, and each

such connected component is a clique. Clearly, the similar-

ity matrix S is the adjacency matrix of the relation graph.

If we rearrange the rows and columns of S according to the

parts, then S is a block-diagonal matrix in which each block

consists of only ones, and zeros appear everywhere outside

the blocks. Each block corresponds to one part. This block-

diagonal matrix is obviously low-rank.

In reality, however, S may not be a clean low rank ma-

trix. It can be “contaminated” due to noisy relations, be-

coming a probabilistic relation matrix with increased matrix

rank. Therefore, we design a low-rank loss that optimizes to

recover the ideal similarity matrix and extract fine-grained

segmentation result via minimizing the low-rank loss.

Low-rank approximation of similarity matrix. Ideally,

the similarity matrix S is a low rank matrix. Let us denote

S = [S1;S2; . . . ;SN ], where Si represents i-th row of S. If

pi and pj belong to the same part, we have Si = Sj . As-

suming that all linearly independent row vectors of S are

{Sr1 , Sr2 , . . . , Srm}, it is easy to verify that these row vec-

tors are pair-wise orthogonal. By using the elementary row

transformation, S can be represented by the maximal linear

independent set of its row vectors:















S1 = a1,1Sr1 + a1,2Sr2 + . . .+ a1,mSrm

S2 = a2,1Sr1 + a2,2Sr2 + . . .+ a2,mSrm

· · ·
SN = aN,1Sr1 + aN,2Sr2 + . . .+ aN,mSrm

(2)

Then we can rewrite (2) as

S = [a1,1, a2,1, ..., aN,1]
T
Sr1 + . . . (3)

+[a1,m, a2,m, ..., aN,m]
T
Srm .

If pi and pr1 belong to the same part, we know Si = Sr1 .

According to (2), we have ai,r1 = I(pi, pr1). Meanwhile,

for each row vector Sr1 = [S1,r1 , S2,r1 , ..., SN,r1 ], we have

Si,r1 = I(pi, pr1), where Si,r1 represents the i-th element

of Sr1 . Let us denote Ar1 = [a1,1, a2,1, ..., aN,1], it holds

that Ar1 = Sr1 , and similarly, Ar2 = Sr2 . . . , Arm = Srm .

Substituting them into (3), we obtain
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S = AT
r1
Sr1 +AT

r2
Sr2 + ...+AT

rm
Srm

= ST
r1
Sr1 + ST

r2
Sr2 + ...+ ST

rm
Srm (4)

= [ST
r1
, ST

r2
, ..., ST

rm
]N×R[S

T
r1
, ST

r2
, ..., ST

rm
]
T

N×R

= MN×RM
T
N×R

which is a low rank decomposition of S, with R being the

rank of S.

Low-rank approximation module. Since S is symmet-

ric, we only need to estimate MN×R. To this end, we design

a low-rank approximation module (Figure 4). In particular,

we first use a three-layer MLP, with feature dimensions 512,

256, and 128, to transform the input similarity matrix fea-

tures. Since each point belongs to only one part, we then

apply a softmax layer to assign each point feature a label in

(1, . . . , R). The output matrix is the predicted MN×R with

each column representing a part instance.

Low-rank loss. Based on the symmetric and low-rank

properties of the similarity matrix, we design a low rank

loss:

Llow-rank = ||MN×RM
T
N×R − Sgt||22, (5)

where MN×R is the predicted low rank matrix of the neu-

ral network. Sgt is the ground-truth similarity matrix con-

structed using the training shapes.

Note that for each block, one cannot directly predict

MN×R because the actual rank R is different from block

to block. According to statistics, we find that 98% of the

blocks has a segment count less than 5. Therefore, we set

the maximum rank to 5 in our experiments.

In the training phase, assuming that the segment count is

r in each block, we can extract the top r columns from the

predicted low rank matrix MN×R, obtaining MN×r. Since

each point belongs to only one part, we normalize the rows

of MN×r.

In the testing phase, we make a prediction of the similar-

ity matrix Spred and the low rank matrix MN×R. To deter-

mine the segment count for each block, we first take the top

r columns (r = {1, 2, . . . , 5}) to calculate the reconstructed

similarity matrix MN×rM
T
N×r (MN×r is row normalized),

then select the r which attains the minimum error between

the reconstructed and the predicted similarity matrix. The

error is calculated as follows:

MN×r = min
1≤r≤5

||MN×rM
T
N×r − Spred||22. (6)

Training data preparation. To train the PriorNet, we

draw training blocks from 816 training shapes. Thanks

to the block-wise training strategy, the required training

shapes are greatly reduced. Since both of the two train-

ing loss are related to the number of segments in blocks,

we opt to balance training data for each segment count. In

particular, we randomly select 4K training blocks for each

segment count as training samples, and the total number is

20K for all training blocks with segment count ranging from

1 to 5. In Figure 7, we show a few examples of block seg-

mentation result. PriorNet is quite effective in capturing the

potential fine-grained parts in a block, even for those with

complicated structures. Note that PriorNet is learned in a

category-agnostic manner using blocks from all categories.

3.2. Segment Merging Network (MergeNet)

Given the block segmentation results, the next step is

to merge all the segments to form meaningful fine-grained

parts for the whole shape. To do so, we design a Graph Neu-

ral Network (GNN) which learns feature representation cap-

turing not only local segment geometry but also global con-

text. A Graph Convolutional Network is a dynamic model

in which the hidden representation of all nodes evolves over

time. It can extract high-level node representation via mes-

sage passing and produces a node-level output.

Segment graph construction. We first construct a graph

G = (V, E) whose nodes are the set of all segments and

edges represent the adjacency relation between segments.

For each node, we compute its axis-aligned bounding box

(AABB). Two nodes are neighboring if their AABB’s in-

tersect. For each node v ∈ V , we denote the input feature

vector by xv and its hidden representation describing the

nodes state at network layer l by hl
v . Let us use Nv to de-

note the set of neighboring nodes of v. See Figure 6 for the

visualization of a segment graph.

Graph propagation model. For each segment, we have

extracted point-wise features with PriorNet in the previous

stage. The features are fused together with max-pooling,

serving as the initial hidden feature vector xv of segment

v to encode its local geometric information. To make re-

liable decision in segment merging, contextual information

is required, which can be obtained by the means of graph

convolutions.

Each layer of the graph neural network can be written as

a non-linear function:

alv =
1

Nv

∑

u∈Nv

MLP (hl
u),

hl+1
v = MLP ([hl

v, a
l
v]),

(7)

where alv denotes the aggregation of the messages that node

v receives from its neighbors Nv , for layer l. MLP rep-

resents multi-layer perceptron. When updating the hidden
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Figure 6: Network architecture of the MergeNet. Given the segmentation results of all blocks, we construct a segment graph

whose nodes are segments and edges represent the adjacency relation between segments. MergeNet is a graph convolution

network trained over segment graphs, aiming to merge the segments of all blocks to form the final fine-grained segmentation.

Figure 7: Some samples of block segmentation result.

state, we first concatenate the hidden state hl
v and the mes-

sage alv , then we feed the concatenation to an MLP. We use

three layers of message passing in all our experiments.

Training loss. Similar to PriorNet, we also define a seg-

ment similarity matrix to encode whether two segments be-

long to the same fine-grained part. For a similar reason, this

similarity matrix also possesses low rank property. For Mer-

geNet, the parameters for the two loss functions (similarity

and low rank) are the same as those for PriorNet except that

the maximum rank is set to 100.

4. Results and Evaluations

Implementation details. Our network is implemented

with Tensorflow. All training and testing shapes are densely

sampled into 100K points to ensure that each tiny fine-

grained parts are sufficiently sampled. The resolution of the

volumetric partition is 7 × 7 × 7. We use PointNet++ [16]

as the backbone network for feature extraction with the de-

fault hyperparameters in the original paper. The batch size

of PriorNet and MergeNet are 24 and 4, respectively.

Figure 8: An overview of the fine-grained part dataset.

Training and testing data. To facilitate quantitative eval-

uation, we build a challenging dataset of 3D shapes with

highly fine-grained parts. These shapes were collected from

the ShapeNet [3] and the PartNet [14] datasets. We choose

10 commonly seen shape categories, including 7 indoor cat-

egories and 3 outdoor ones. The topological structure of the

shapes within each category is quite diverse. The second

row of Table 1 reports the average number of parts per cat-

egory. Note that no part labels is available in our dataset.

Timings. The training of PriorNet and MergeNet takes

17 and 5.6 hours for 100 epochs on a NVIDIA TITIAN

X GPU, respectively. The testing time for each 3D point

cloud is 6 seconds for PriorNet and 4 seconds for MergeNet.

The segment graph construction takes about 10 seconds per

shape. The total computational time is about 20 seconds per

shape.

Quantitative and qualitative results. We train and test

our model on our dataset, with a training/testing split of 8:2.

In our method, we train one PriorNet for all categories and

one MergeNet per categoery. The performance is measured

by average Intersection of Union (avg. IoU) same as [19].
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Table 1: Accuracy of segmentation (average Intersection of Union, in percentage) on our dataset. Row 1: The average

number of fine-grained parts for each category. Row 2: Training / testing split (number of models) of our dataset. Row 3-4:

Average IoU of PriorNet in different settings. Row 5-8: Average IoU of SGPN [21], GSPN [26], baseline, our method(all

parts) and our method (small parts).

Rows Bed Chair Clock Door Lamp Table Cabinet Vehicle Bicycle Plane

1. Avg. #Parts 55.2 19.1 21.4 14.8 25.3 31.4 22.0 573.1 497.2 149.6

2. #Train / #Test 96/24 96/24 96/24 96/24 96/24 96/24 96/24 48/12 48/12 48/12

3. PriorNet (w/o low rank loss) 55.6 68.3 72.4 72.9 75.6 65.9 78.0 35.1 42.3 64.6

4. PriorNet 64.1 73.8 73.0 73.8 73.3 71.9 83.1 39.3 49.9 67.4

5. SGPN [21] 19.1 39.8 23.8 34.0 33.4 40.7 18.3 4.4 6.1 11.4

6. GSPN [26] 30.9 45.6 20.9 36.5 33.6 47.4 25.3 5.8 11.4 26.5

7. Ours (PriorNet+BL) 30.7 42.4 38.7 38.7 35.1 44.9 20.5 12.9 15.8 20.6

8. Ours (PriorNet+MergeNet) 35.3 48.9 41.5 40.3 35.7 49.6 27.6 14.6 19.3 28.6

9. Ours (Small part) 19.4 37.9 24.1 36.5 34.1 46.3 24.6 12.5 14.6 26.8

Figure 9: Some results of fine-grained segmentation.

The results are reported in row 8 of Table 1. Meanwhile,

in order to verify the effectiveness of our method for small

part segmentation, We also have independent statistics for

these small parts. The experimental results are reported in

the loast row of table 1. Note that in this paper, we can-

not calculate the IOU directly since there is no part label.

Therefore, we design a simple strategy to calculate the IoU.

For each segmented fine-grained part, we first an IoU for

each part of the GT segmentation. The maximum IoU is

then taken as the part IoU. Finally, we take the average IoU

over all segmented parts. This is a well-practiced scheme

for estimating IoUs in segmentation without part tags (e.g.

[22]). In Figure 9, we show visually the fine-grained seg-

mentation results. We also test our method on real scan data

(see Figure 10).

Comparison with the state of the arts. We compare our

approach with SGPN [21] and GSPN [26] , both of which

are state-of-the-arts instance segmentation methods for 3D

point clouds. Their tasks are per-point labeling for segmen-

tation. To make a fair comparison, we made a simple mod-

ification to SGPN [21] to fit our task, which was to remove

the semantic loss from the similarity matrix optimization.

Figure 10: Segmentation results on real point cloud data by

our method.

For GSPN [26], since our dataset does not contain semantic

labels, we removed the semantic features from the feature

backbone of R-PointNet and classification branch from the

training tasks.

We report per-category IoU percentage on our dataset,

see Row 5 and 6 of Table 1. The results demonstrate the

significant advantage of our method with more accurate seg-

mentation. There are two main reasons. First, since the

number of fine-grained parts per model can be very large,

a holistic segmentation network must adopt a highly pow-

erful backbone network to extract robust and discriminant

per-point feature targeting a large number of labels. Our

approach adopts a divide-and-conquer scheme to overcome

this difficulty. In our method, each block is segmented into

a much smaller number of segments, which greatly reduces

the difficulty in discriminant feature extraction. Second, the

part count varies a lot and no part label is available in our

dataset, making it difficult to compute segmentation directly

from the predicted similarity matrix [21] or semantic pro-

posals [26]. Our method achieves a robust segmentation

prediction by optimizing the low rank loss.
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Figure 11: Segmentation accuracy (average IoU) over vol-

umetric partition resolution (left) and the number of layers

in the MergeNet (right).

Comparison with edge classification. To verify the ef-

fectiveness of our MergeNet, we design a baseline network

which classifies an edge of the segment graph to determine

whether the involved two adjacent segments belong to the

same part. Taking a pair of adjacent segments as input, the

network is trained to predict a score indicating whether the

two segments belong to the same part. We then employ

a hierarchical aggregation algorithm to generate the final

segmentation based on the predicted scores, similar to [23].

The results are shown in Table 1 (Row 7), which are inferior

to those of our method. The main reason is that the message

passing process in the GCN aggregates global contextual in-

formation in the segment merging process, in contrast to the

local prediction in the baseline method.

Effect of low rank loss. To evaluate the effectiveness of

our low rank loss, we experiment an ablated version of Pri-

orNet which disables the low rank loss while keeping all

other parameters unchanged. The experimental results are

reported in Row 3 of Table 1. For all categories, our full

method with low rank loss works better. This is because the

similarity matrix is usually noisy, the low rank constraint

can be used to remove the noise effectively, thus improving

the quality of segmentation.

Volumetric partition strategy. We evaluate the effect of

the resolution of volumetric partition on segmentation qual-

ity. We experiment with the resolutions of 53, 73, 103, 203

and 303, while keeping all other parameters the same. In

Figure 11 (left), we plot the segmentation performance (Av-

erage IoU) over different resolution settings. The results are

obtained by testing on all categories and taking the average.

The plot shows that best result is obtained at 73.

Effect of layer count. To verify the design choice of the

MergeNet, we experiment with different number of network

layers. Figure 11 (middle) shows the plot of average IoU

over the number of layers. The results are obtained by

testing on all categories and taking the average. The per-

formance gradually improves as the number of layers in-

creases, and then begins to oscillate. We attribute this oscil-

lation to overfitting. We found that the best performance is

obtained at L = 3.

Figure 12: Failure cases caused by setting a too large max-

rank.

Table 2: Comparison of AP between our method and

two state-of-the-art fine-grained segmentation methods, i.e.

PartNet [28] and SGPN [21].

Category Aero Bike Chair Helicopter Sofa Table

PartNet 88.4 97.6 84.2 69.4 55.8 63.2

SGPN 56.7 63.7 54.6 38.9 29.5 38.4

Ours 85.1 87.5 80.3 73.6 58.7 71.6

5. Conclusion

We have presented a deep-clustering-based approach to

the fine-grained segmentation of 3D point clouds. The key

idea is to learn geometric part priors which describe what

constitutes a fine-grained part, from a dataset with fine-

grained segmentation but no part semantic tags. To han-

dle large-scale point clouds, we adopt a divide-and-conquer

scheme and split the input point cloud into a set of blocks.

We train a deep neural network, PriorNet, to segment each

block and then merge the segments into complete fine-

grained parts using a graph neural network, MergeNet.

Our method has a few limitations: First, our method re-

quires to set the parameter of maximum rank in low-rank

approximation module. However, a too large rank would

cause noisy decomposition of the similarity matrix. Fig-

ure 12 shows two examples of the typical failure case could

be inferior segmentation results caused by setting a too large

max-rank. Second, our method is not designed to be end-to-

end trainable due to the adoption of the divide-and-conquer

scheme. Third, the construction of segment graphs is time

consuming. In future, besides improving over the above

limitations, we would like to consider extending our method

to handle 3D scene point clouds, exploiting the advantage of

our method in segmenting objects with significantly varying

scales.
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