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Figure 1: Our proposed approach aims at providing accurate pose initialization which facilitates the subsequent optimization-

based registration. We show here ground-truth clothed meshes [30], input point clouds, under-cloth SMPL meshes registered

by IPNet [6], and under-cloth SMPL meshes registered with our model.

Abstract

Registering point clouds of dressed humans to paramet-

ric human models is a challenging task in computer vi-

sion. Traditional approaches often rely on heavily engi-

neered pipelines that require accurate manual initializa-

tion of human poses and tedious post-processing. More

recently, learning-based methods are proposed in hope to

automate this process. We observe that pose initialization

is key to accurate registration but existing methods often

fail to provide accurate pose initialization. One major ob-

stacle is that, despite recent effort on rotation representa-

tion learning in neural networks, regressing joint rotations

from point clouds or images of humans is still very chal-

lenging. To this end, we propose novel piecewise trans-

formation fields (PTF), a set of functions that learn 3D

translation vectors to map any query point in posed space

to its correspond position in rest-pose space. We com-

bine PTF with multi-class occupancy networks, obtaining

a novel learning-based framework that learns to simultane-

ously predict shape and per-point correspondences between

the posed space and the canonical space for clothed hu-

man. Our key insight is that the translation vector for each

query point can be effectively estimated using the point-

aligned local features; consequently, rigid per bone trans-

formations and joint rotations can be obtained efficiently

via a least-square fitting given the estimated point corre-

spondences, circumventing the challenging task of directly
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regressing joint rotations from neural networks. Further-

more, the proposed PTF facilitate canonicalized occupancy

estimation, which greatly improves generalization capabil-

ity and results in more accurate surface reconstruction with

only half of the parameters compared with the state-of-the-

art. Both qualitative and quantitative studies show that fit-

ting parametric models with poses initialized by our net-

work results in much better registration quality, especially

for extreme poses.

1. Introduction

Human pose and shape registration from sensor inputs is

a long-standing problem in computer vision. While unstruc-

tured 3D point clouds are becoming increasingly available,

accurately registering these point clouds to parametric hu-

man shape models [4, 18, 21, 28, 37, 57] still remains chal-

lenging, especially when considering clothed human with

arbitrary poses. Traditional approaches often assume access

to either temporal sequences of dense scans [10, 40, 59]

or manually enforced constraints [3, 4, 9, 10, 18, 39, 41].

These requirements limit the applicability of traditional ap-

proaches to static, arbitrarily obtained point clouds.

With the advent of neural implicit functions [12, 31, 32,

36], learning-based methods that reconstruct human shapes

from point clouds are becoming increasingly accurate [13].

However, most existing neural implicit models treat recon-

structed human shapes as static objects and do not provide

a way to register such reconstructions to parametric body

models. Note that in the context of this paper, we refer to

reconstruction as implicit surface reconstruction from point

clouds, while registration refers to finding the shape and

poses of a parametric model which best explains the in-

put point cloud or the reconstructed surface. Some works

distinguish registration (registering a point cloud to a tem-

plate) [3, 4, 9, 17, 18, 55] and model-fitting (estimating pa-

rameters of a parametric model) [6, 7, 62]. In this context,

our approach falls into the model-fitting category. However

the definitions of registration and model-fitting are not con-

sistent across papers, and for the ease of understanding we

follow the convention of our major baseline [6] and use reg-

istration and model-fitting interchangeably.

More recently, IPNet [6] has been proposed for auto-

matic point cloud registration of clothed humans. It predicts

two sets of implicit surfaces, one for the clothed human and

one for the human body under-cloth. IPNet then exploits

optimization-based registration to fit a parametric model to

the implicit surfaces from a fixed initial pose for all the sub-

jects, with additional information about body part labels for

each point in space. However, such semantic information

is still very coarse and registration may fail when the target

pose deviates too much from the initial pose (Fig. 1).

We observe that, although the local point cloud fea-

tures [13] lead to reliable surface reconstruction, which

facilitates the registration of parametric human models

(e.g. SMPL [28]), an accurate pose initialization is still key

to reliable registration, as the underlying optimization prob-

lem is non-convex, thus reliable estimates are only obtained

when initialized close to the solution. However, it is diffi-

cult to estimate parametric poses from point clouds directly,

because regressing pose parameters from neural networks

is hard and unintuitive (as investigated in [6], as well as

demonstrated in our experiments in Sec. 5.3).

In this paper, we introduce a novel approach to estimat-

ing the SMPL [28] pose parameters, based on implicit rep-

resentations and local point cloud features. Instead of re-

gressing pose parameters directly from global features, we

introduce a set of transformation functions, which take a

query point and a local point cloud feature as input, and

transform the query point to the rest-pose space (Fig. 2).

We assign one such transformation function per body-part,

and name these functions Piecewise Transformation Fields

(PTF). The general idea of PTF is inspired by the obser-

vation that the rigid bone-transformations in SMPL can be

calculated if we know point correspondences between the

posed space and the unposed space. Another motivation for

PTF is that by transforming query points into a canonical

space before the occupancy query, we make the occupancy

learning/inference task easier [14, 19]. With PTF, our novel

occupancy networks can estimate for each point: 1) its

double-layer occupancy value (i.e. inside body, in-between

body and cloth, outside cloth) like IPNet does, 2) which

body-part it belongs to, and 3) its corresponding position in

rest-pose space. With this information, we can then extract

a mesh-surface of human body, along with the semantic part

label and the corresponding position in the rest-pose for

each surface vertex. As a side-benefit, rigid transformations

for each body-part can be estimated directly via least-square

fitting. In terms of registering implicit surfaces to paramet-

ric models, our approach also employs optimization-based

registration as IPNet. But unlike IPNet, our approach ex-

ploits point correspondences which allow us to more accu-

rately initialize the pose parameters. This makes the regis-

tration process much more stable and accurate, especially

for extreme poses; this will be evidenced in Section 5.

In summary, the contribution of this work is three-fold:

(1) We propose Piecewise Transformation Fields (PTF)

that learn to transform arbitrary points from posed space

to rest-pose space. (2) We combine our PTF modules

with occupancy networks, and achieve state-of-the-art re-

sults on clothed human reconstruction from point clouds on

the CAPE dataset [30] while reducing the number of pa-

rameters by half. (3) We propose an alternative learning-

based method for estimating joint rotations of the para-

metric SMPL model from point clouds. Our learning-

based method takes advantage of local point-aligned fea-
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tures and produces more accurate and robust estimations

than direct regression from global features. When fitting

parametric models to implicit reconstructions using our

estimated poses as initialization, we achieve 18% reduc-

tion in registration error on average. Code is available at

https://taconite.github.io/PTF/website/PTF.html.

The remainder of this paper is structured as follows: in

Section 2 we give an overview of existing works that are

related to our approach. In Section 3 we review the funda-

mentals, SMPL [28] and NASA [14], upon which we build

our proposed approach. In Section 4 we introduce our pro-

posed PTF and its application to fast joint rotation estima-

tion. In Section 5 we benchmark our PTF model, showing

its advantages for registration and reconstruction. In Sec-

tion 6 we conclude and discuss possible future works.

2. Related Works

Optimization-based Registration: Optimization-based

methods are most commonly used in traditional registra-

tion pipelines [3, 4, 18, 39, 40]. Traditional approaches

rely on use of physical markers [3, 39], manually selected

landmark-correspondences [4, 18] or colored patterns on

skin [9, 10, 41], and are thus not practical for automatic reg-

istration of arbitrary point clouds. Most recently proposed

automatic registration algorithms aim at fitting a parametric

model to sparse keypoints detected from images [8, 37, 50],

they usually require the design of a complicated non-linear,

non-convex loss function, optimize this loss wrt. the body

parameters (body shapes, rotations, global translation, etc.),

and are often prone to local optima. There are also ap-

proaches that conduct optimization-based registration using

dynamic 3D inputs, e.g. [10, 40, 59], to name a few. Since

we focus on static point cloud registration here, a complete

review on this aspect is beyond the scope of this paper.

Learning-based Registration: Learning-based methods

have been proposed to enable automatic registration of

clothed humans from sparse point clouds [6] or images [1,

2, 27, 54]. Earlier works focus on one-shot estimation

of parametric models from images [15, 22–26, 35, 44,

46, 56, 58] using feed-forward neural networks. How-

ever, estimates from these methods are often noisy and

most of them do not handle clothing. Recently, learning-

based methods have been used to initialize important vari-

ables for optimization-based registration of clothed hu-

mans from point clouds [6] or images [1, 2, 54]. Our

approach also uses a learning-based method to initialize

optimization-based registration from sparse point clouds.

Compared to the most recent learning-based registration ap-

proach for point clouds [6], our approach differs critically

in that we extract additional point correspondence infor-

mation, which produces more accurate pose initialization

and thus improves subsequent optimization as evidenced

by our experiments. Note that our approach directly es-

timates pose/joint-rotations as initialization, which is or-

thogonal to landmark-constrained optimization presented

in [4, 18, 54]. In a concurrent work [7], the authors also pro-

pose to conduct R3 to R
3 correspondence prediction using

neural networks. Our approach differs from theirs in several

aspects: (1) [7] predicts correspondence from posed-space

to unposed-unshaped-space and leaves pose estimation en-

tirely to non-linear optimization, while our approach pre-

dicts correspondence from posed-space to unposed-shaped-

space, enabling us to directly estimate joint rotations via fast

linear optimization. (2) [7] does not handle surface recon-

struction. (3) [7] devises a self-supervised training scheme,

which, with moderate modifications, should be applicable

to our framework as well, however we will leave such im-

provements for future studies.

Implicit Representations: With the introduction of neu-

ral implicit functions [12, 31, 32, 36], a number of im-

plicit function-based methods have been proposed to re-

construct human bodies from either images [19, 47, 48] or

point clouds [13]. However, all aforementioned methods

treat human body as a rigid object and do not handle regis-

tration. [20, 34] model the human body as a non-rigid, de-

formable occupancy field and are able to transform human

shape representations across poses via neural ordinary dif-

ferential equations (ODEs) [11]. Our approach is partially

inspired by [34] as both our approach and [34] learn a R
3

to R
3 transformation. However, our approach aims to trans-

form points from posed space to rest-pose space and uses a

traditional neural network to do that, while [20, 34] learn

transformations from one posed-space to another posed-

space. Furthermore, our approach utilizes local point cloud

features to learn the transformation while [20, 34] are based

on global features.

Correspondence Prediction for Model Fitting: Dense

correspondence prediction has been employed for human

pose estimation [42, 43, 53], hand pose tracking [52], non-

rigid object alignment [5, 61] and undressed human mesh

registration [17]. [42, 43, 53] regresses 3D correspondences

from the input to a single canonical model after which they

infer the human pose via non-linear optimization. [61] fo-

cuses on non-rigid object reconstruction and tracking and

is not able to produce controllable models. [5] optimizes

over a sparse set of points for general non-rigid object align-

ment but does not handle model-fitting of parametric mod-

els. [17] focuses on the registration of undressed people and

does not handle dressed people registration or under-cloth

body registration. Contrary to all these works, our approach

addresses registrations of dressed humans and their under-

cloth bodies, as well as SMPL parameter estimation simul-

taneously using a single neural-network.
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3. Fundamentals

We start by briefly reviewing the fundamentals upon

which we derive our approach: the classical SMPL

model [28] and a recently proposed neural implicit approx-

imation of the SMPL model, NASA [14].

3.1. SMPL Body Model

SMPL is a classical parametric human body model. In

SMPL, shapes are controlled by a low-dimensional vector

β ∈ R
10 which weights a set of different vertex-offsets that

correspond to the principal components of PCA on train-

ing scans; poses for 24 joints (23 body-joints plus pelvis

as root) are denoted as θ ∈ R
72, where the pose for each

joint is defined as the rotation (in axis-angle format) rela-

tive to its parent in the kinematic tree. To build a posed

and shaped mesh of the human body, SMPL starts with

an artist created mean-shape template T̄ ∈ R
3×6890 with

blend skinning weights W ∈ R
6890×24. SMPL first applies

a blend-shape function BS(β) : R
|β| 7→ R

3×6890 which

maps β to a set of additive per-vertex displacements that

describes the person’s body shape (shape-blend-shapes).

Then, SMPL applies a pose-dependent blend shape func-

tion BP (θ) : R
|θ| 7→ R

3×6890 which maps θ to another set

of additive per-vertex displacements that accounts for dy-

namic soft-tissue deformations caused by the pose deviation

from the rest-pose (pose-blend-shapes). Adding the afore-

mentioned displacements to the mean template results in a

rest-pose mesh TP (β,θ) = T̄ + BS(β) + BP (θ), which

includes the body shape of a person as well as dynamic soft-

tissue deformations. Simultaneously, SMPL also regresses

joint locations at the rest-pose from shape parameters via a

linear joint regressor J(β) : R|β| 7→ R
72. A set of 4 × 4

rigid bone transformations {Bb} = {B1, · · · ,B24} can be

constructed from rest-pose joint locations and relative joint

rotations θ. SMPL applies a standard linear-blend-skinning

(LBS) function W (·) with bone transformations {Bb} and

skinning weights W , transforming TP (β,θ) into the posed

and shaped mesh. Finally, global translation t ∈ R
3 is

added to the posed and shaped mesh. In summary, SMPL

models a functionM(β,θ, t) that takes β, θ and t as inputs

and outputs a human mesh:

M(β,θ, t) =W (T̄+BS(β) +BP (θ);W, {Bb}) + t

(1)

We denote the 3 × 3 rotation matrix representation of joint

b’s rotation as Rb(θ), with Rb(0) = I, ∀b ∈ {1, · · · , 24}.

Let tb ∈ R
3 be the location of rest-pose joint b obtained via

J (β). Let A(b) denote the ordered set of b and its ancestors

on the kinematic tree. Let b̄ denote the parent of joint b. The

bone-transformations {Bb} are defined as:

Bb = Gb(β,θ)Gb(β,0)
−1 (2)

Gb(β,θ) =
∏

b′∈A(b)

[

Rb′(θ) tb′ − tb̄′

0 1

]

(3)

{tb} = J (β) (4)

Note that adding the global translation t to the translation

parts of {Bb} does not change the results of M(β,θ, t).
Thus in the remainder of the paper we re-define {Bb} by

adding t to its translation parts.

Registration: The SMPL model in Eq. (1) is end-to-end

differentiable wrt. to β,θ, t, thus given a point cloud, it

is straightforward to construct an energy function on the

distances between the point cloud and the SMPL mesh

and minimize it wrt. β,θ, t. However this optimization is

non-convex and non-linear and thus prone to local minima.

Therefore, manual initialization of pose and manual post-

processing to fix erroneous fits are usually required.

IPNet [6] proposes to reconstruct an inner surface (for

under-cloth body) and an outer surface from point cloud of

dressed humans. For registration, it first fits a SMPL mesh

M(β,θ, t) to the inner surface, then it fits a SMPL+D [1,

27] mesh M ′(β,θ, t,D) to the outer surface, where D rep-

resents per-vertex displacements that capture clothing de-

formations in rest-pose space. Formally, [6] aims at mini-

mizing the following energy:

E(θ,β, t,D) = wdataEdata + wpartEpart + wregEreg (5)

in which Edata measures the distances between recon-

structed surfaces and the SMPL/SMPL+D meshes. Epart en-

force part correspondences. Ereg is the regularization term,

which includes a Laplacian regularization term for clothed

surface, a pose prior from [40] and a shape prior that en-

courages β to be small. The Epart term makes the optimiza-

tion more stable and thus [6] leads to improved registra-

tions. However, the part correspondences are very coarse

and the registration may fail for extreme poses as illustrated

in Fig. 1.

In the next subsection we will review NASA [14], a re-

cent work that relates neural implicit functions to Eq. (1).

3.2. Neural Articulated Shape Approximation

NASA [14] proposes to learn an implicit version of

Eq (1). Towards this goal, NASA learns a set of occupancy

functions parameterized by ω, {Ōb
ω} = {Ō1

ω, · · · , Ō
24
ω },

producing one occupancy value for each bone, given a

3D query point x ∈ R
3 and β, θ, t1. The key idea of

1With some abuse of notation, we also use x to denote query points in

homogeneous representation in R
4 when applicable.
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NASA is to learn the occupancy functions in the local-

coordinate space of each bone with shape-blend-shapes

and pose-blend-shapes. However these local-coordinates

are piecewise discontinuous. We extend NASA’s idea by

learning occupancy functions in the continuous rest-pose

space as this facilitates the correspondence learning that

will be presented in Section 4. We refer readers to the

Supp. Mat. for an elaboration on the difference between

our modified NASA the original NASA [14]. For our

modified NASA, {Ōb
ω} is an implicit approximation to the

T̄+BS(β)+BP (θ) term in Eq. (1). The occupancy value

of an arbitrary point x in posed-space can be queried as:

O(x|{Bb}, t1) = max
b

{Ōb
ω

(

B−1
b x,Πb

ω[{B
−1
b t1}]

)

} (6)

Where t1 ∈ R
4 is the root-joint location in homogeneous

representation. {B−1
b t1} = {B−1

1 t1, · · · ,B
−1
24 t1} ∈ R

72

is a compact representation of pose. Πb
ω ∈ R

72×4 is a

learned matrix that applies a sub-space linear projection on

{B−1
b t1}, one per b ∈ {1, 2, · · · , 24}. Since {Bb} depends

on β, θ and t (Eq. (2)-(4)), the term Πb
ω[{B

−1
b t1}] serves

to provide shape-blend-shapes and pose-blend-shapes infor-

mation to the occupancy functions {Ōb
ω}.

Essentially, Eq. (6) canonicalizes the query point x be-

fore doing the occupancy query. Thus the neural networks

{Ōb
ω} are learning occupancy in rest-pose, which reduces

the difficulty for training occupancy functions compared to

a posed representation. As we will show in Section 5, al-

though NASA does not handle reconstruction, the general

argument that canonicalizing query points helps occupancy

learning still holds for our reconstruction networks.

4. Piecewise Transformation Fields

It is important to remark that NASA requires ground-

truth SMPL paramaters β, θ, t as inputs and does not

solve the sensor-input-to-shape inference problem. In other

words, NASA is a neural approximation to the SMPL

model. In contrast, in this work, we assume θ, β, t and con-

sequently {Bb} unknown and propose to learn a set of 3D

point transformations from input space to canonical space.

We parameterize these transformation functions by ψ, and

formally define them as {T̄ b
ψ (x, cx)} : (R3,R|cx|) →

R
3×24. These functions approximate the effect of bone

transformations on the query points instead of bone trans-

formations themselves, i.e. T̄ b
ψ (x, cx) ≈ B−1

b x, ∀b ∈
{1, 2, · · · , 24}, where cx is a point-aligned feature taken

from a convolutional feature map [13, 38] at the location

of x. This is advantageous in that bone transformations are

local for each bone, thus local features should be more suit-

able for predicting local bone transformations. This will be

experimentally demonstrated in Section 5.3. Since we have

one transformation field per bone, we formally name the

set of transformation functions {T̄ b
ψ (·, ·)} Piecewise Trans-

formation Fields (PTF). With our PTF, the occupancy func-

tions are now only dependent on point cloud features cx and

thus we can handle reconstruction from point cloud. Also,

with the learned feature cx, we found that our networks gen-

eralize well even without the projection matrix Πb
ω , thus we

discard Πb
ω in our models.

With PTF, we can rewrite Eq. (6) as follows:

O(x|cx) = max
b

{Ōb
ω

(

T̄ b
ψ (x, cx), cx

)

} (7)

Note that this model differs critically from IPNet [6] in

that our approach canonicalizes query points via PTF and

performs occupancy queries in rest-pose space, while IP-

Net does occupancy queries in posed-space. We denote the

model defined in Eq. (7) as PTF-Piecewise as it is fully

piecewise, i.e. the individual modules are independent of

each other. We use fewer channels (80) per function as com-

pared to IPNet (256), which, combined with the piecewise

design, reduces the total number of parameters from 2.2M

to 1.2M. As we will show in Section 5, although using fewer

parameters, our PTF-Piecewise model retains a comparable

reconstruction accuracy.

Loss functions: To define loss functions to Eq. (7), we first

define the outputs from Eq. (7). We employ the multi-class

occupancy outputs in IPNet which enable the occupancy

networks to predict occupancy of dressed humans and their

under-cloth bodies simultaneously, thus the set of outputs

from {Ōb
ω} can be denoted as {ôb} ∈ [0, 1]3×24. We fur-

ther denote the outputs from {T̄ b
ψ} as {x̂b} ∈ R

3×24. Thus

for each query point x we will predict 24 sets of occu-

pancy value and correspondence. To obtain the final occu-

pancy value O(x|cx) = ô ∈ [0, 1]3 and the correspondence

T (x|cx) = x̂ ∈ R
3, we also need to define a probability

simplex p̂ ∈ [0, 1]24, s.t.
∑24
b=1 p̂b = 1 which describes part

probabilities for the query point x. This p̂ can be predicted

via p̂b = maxσb∑
b′

maxσ
b′

where σb ∈ R
3 is the pre-activation

occupancy logits of ôb. Note that we drop the dependencies

of {ôb}, {σb}, ô and p̂ on x for notation simplicity.

With the aforementioned notations, we can rewrite the

outputs of Eq. (7) as:

ô =

24
∑

b=1

p̂bôb, x̂ =

24
∑

b=1

p̂bx̂b (8)

Similar to IPNet, we can also add an additional part clas-

sifier to predict p̂ directly from cx. This results in slightly

more parameters than PTF-Piecewise but also slightly more

accurate reconstruction than PTF-Piecewise. To keep the

memory usage roughly the same as IPNet, we reduces the

number of channels in the occupancy classifier from 256 to

128, and use 128 channels as well for the PTF. This reduces

the total number of parameters in the decoder from 2.2M to

1.4M. For a fair comparison, we follow IPNet and use 14
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Figure 2: Overview of the proposed method. The key idea is to utilize the learned PTF module to transform query points

x1,x2 in posed space into corresponding points x̂1, x̂2 in unposed-space, and conduct occupancy classification in the

unposed-space. This construction makes occupancy learning easier, while also providing dense R
3 to R

3 correspondences,

which enables us to estimate joint-rotations via efficient linear optimization.

parts, i.e. we use 14 piecewise occupancy functions for the

occupancy classifier. But the part classifier outputs 24 parts

probabilities. This is necessary because SMPL defines 24

parts and in order to compute SMPL-compatible joint rota-

tions, the labels for query points has to be consistent with

SMPL. We merge the 24 parts probabilities into 14 parts in

order to make Eq. (8) possible. We denote this model as the

PTF-FC model. Please refer to the Supp. Mat. for detailed

network architectures of PTF-Piecewise and PTF-FC.

To train our PTF models, we define three loss terms: an

occupancy loss Locc, a classification loss Lcls and a corre-

spondence loss Lcorr.

Locc = CE(ô,ox) (9)

Lcls = CE(p̂,px) (10)

Lcorr =
∥

∥x̂−W−1(x;W, {Bb})
∥

∥

2
(11)

where CE stands for multi-class cross-entropy loss. ox is

the ground-truth occupancy value for query point x, sim-

ilarly px is the one-hot vector of the ground-truth part-

label. W−1(x;W, {Bb}) : R3 7→ R
3 is the inverse LBS

function that maps an arbitrary point from the posed-space

to the rest-pose using ground-truth bone-transformations

{Bb} and skinning weights W . To obtain the ground-truth

labels px and for calculating W−1(x;W, {Bb}) we need

to associate the query point x to one of the 6890 SMPL ver-

tices; this is done by assigning x its the nearest vertex on

the SMPL mesh. Finally, we weight Lcls and Lcorr with

w1 and w2, the total loss is then:

L = Locc + w1Lcls + w2Lcorr (12)

we set w1 = 0.1 and w2 = 1.0 throughout our experiments.

Model Fitting with PTF: An advantage of our model is

that it allows for efficient and accurate prediction of joint

rotations. Let X = {x(1),x(2), · · · ,x(D)} be a set of

D points that lie on a human-mesh surface, and let l ∈
{1, 2, · · · , 24}D be the vector of semantic labels for these

D points. We estimate bone transformation B∗
b for b by:

B∗
b = argmin

Bb

D
∑

i=1

[l(i) = b]‖x(i) −BbT̄
b
ψ (x

(i), cx(i))‖
2

(13)

l(i) = argmax
b

{Ōb
ω

(

T̄ b
ψ (x

(i), cx(i)), cx(i)

)

} (14)

where [·] is an indicator function. Eq. (13) can be solved

efficiently for each part via least-square fitting [51]. Joint

rotation estimations θ∗ can then be factorized from B∗
b via

Eq. (2)-(4). To make the estimation more robust to out-

liers, in practice we use least-square fitting Eq. (13) within

RANSAC [16]. With the estimated θ∗ as initialization, we

then fit SMPL/SMPL+D meshes to our reconstructed body

and cloth surfaces according to Eq. (5) using exactly the

same weights and learning rate schedules as in IPNet [6].

5. Experiments

Since IPNet [6] is the only existing automatic point cloud

registration work for clothed humans, we primarily com-

pare our approach against IPNet in terms of both registra-

tion quality and reconstruction quality. Furthermore, we

provide ablation studies on encoder choices and the neces-

sity of using our PTF architecture. We also compare joint

rotation estimation of our approach to a naive baseline that

regresses rotation matrices from global point cloud features.

Datasets: Because the official model of IPNet was trained

on private data which is not publicly available, we instead

use the CAPE dataset [30] to train and test IPNet and our

models for a fair comparison. The CAPE dataset consists

of 148584 pairs of registered clothed/minimally-clothed

meshes of 15 subjects with different genders, the registered

meshes all have SMPL topology and thus are compatible

with SMPL. We use 12 subjects for training and 3 subjects

for testing. We also subsample the recordings by a factor of

5. The final training set consists of 26004 frames while the
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Method Outer Err. Inner Err.

IPNet [6] 28.2 mm 28.3 mm

PTF-Piecewise 23.9 mm 23.6 mm

PTF-FC-w/o-pose 27.5 mm 27.7 mm

PTF-FC 23.1 mm 23.1 mm

Table 1: Registration error on the full CAPE valida-

tion set (3965 frames). PTF-FC-w/o-pose indicates fitting

SMPL/SMPL+D to our PTF-FC outputs without our pose

initialization.

validation set consists of 3965 frames. We generate input

point clouds by sampling 5K points on the surfaces of the

clohted meshes with Gaussian noise of zero mean and 1mm

standard-deviation. The sampling strategy of query points

is as follows: we sample 2K points uniformly in the point

cloud’s bounding box, 4K points near clothed-meshes’ sur-

face and 4K points near the minimally-clothed-meshes’ sur-

face.

Training Details: We train all IPNet models and our mod-

els using the Adam optimizer with a learning rate of 1e− 4.

The batch size is set to 12. We run 200K iterations for train-

ing, using a recently proposed convolutional point cloud en-

coder [38]. The training takes roughly two days on a single

NVIDIA-V100 GPU.

Evaluations: In the remainder of this section, we will eval-

uate our approach along three dimensions. In Sec. 5.1

we evaluate results on registrations from point clouds to

SMPL/SMPL+D meshes. In Sec. 5.2 we show how de-

coders with our PTF modules improve reconstruction qual-

ity while using less parameters than the IPNet decoder does.

Lastly, in Sec. 5.3 we demonstrate the superiority of our

local-feature-based pose estimation framework, which re-

duces error by a factor of two, compared to a baseline that

regresses poses directly from global point cloud features.

5.1. Evaluation of Registration2

We follow the registration routine described in [6] to reg-

ister from point clouds to SMPL and SMPL+D models for

under-cloth bodies (inner) and clothed bodies (outer), re-

spectively. For our PTF models, θ is initialized by solv-

ing Eq. (13) and factorizing out the rotation part of the re-

sults. Registration error is measured as average per-vertex

euclidean distance from registered SMPL/SMPL+D mesh

to the ground-truth SMPL/SMPL+D mesh. Errors are for-

mally reported in Table 1.

As we can see in Table 1, on the entire CAPE validation

set, our PTF achieve 18% improvements on registration er-

ror compared to [6].

2For more results, please see the Supp. Mat.

Encoder VRAM mIoU Outer CD Inner CD

IFNet [13] 1.75G 86.7% 0.0191 0.0196

ConvONet [38] 1.25G 87.8% 0.0156 0.0162

ConvONet [38]+aug 1.25G 88.6% 0.0151 0.0157

Table 2: We fix the decoder to be the IPNet baseline and

ablate on different encoders. VRAM indicates per-sample

GPU memory usage during training. ConvONet achieves

higher reconstruction quality with less memory usage.

5.2. Evaluation of Reconstruction

For evaluating reconstruction quality on the validation

set, we report average intersection over union (mIoU ↑)

of 100K random query points (50K sampled uniformly,

25K sampled near the clothed mesh, 25K sampled near the

minimally-clothed mesh) and L1 Chamfer distance (CD)

for both clothed surfaces (outer CD ↓) and under-cloth sur-

faces (inner CD ↓).

5.2.1 Ablation on Encoders

IPNet uses IFNet [13] as encoder that takes a voxel grid of

size 1283 as input, which we find very memory hungry and

slow to run. With the aforementioned dataset setups, we

can only use a batch size of 4. Given the number of itera-

tions required, it would take weeks to train IPNet with 1283

voxel inputs on the CAPE dataset. Reducing the voxel input

to 643 helps with the training time, but it still takes about a

week to train on CAPE. Instead, we choose to use a recently

proposed convolutional feature encoder [38] with 3-plane-

features, which we denote as ConvONet, as a more efficient

and more accurate alternative to IFNet 643. A brief com-

parison of IFNet and ConvONet can be found in Table 2.

Clearly, ConvONet is more practical on the CAPE dataset.

We further apply data-augmentation that rotates the input

point clouds randomly, which gives another boost in accu-

racy (ConvONet+aug in Table 2). We will thus use Con-

vONet as encoder and apply the random rotation to inputs

during training throughout all remaining experiments.

5.2.2 Ablation on Decoders

We report reconstruction accuracy of IPNet and our PTF

models in Table 3. PTF-Piecewise achieves comparable ac-

curacy to IPNet while using only 54% parameters of IPNet.

PTF-FC uses 64% parameters of IPNet, but achieves a no-

ticeable improvement in clothed surface reconstruction.

We also ablate on different strategies of predicting point

correspondences to demonstrate the necessity of using our

PTF module. We first construct IPNet-Corr, which extends

the final layer of IPNet’s occupancy classifier to also predict

the point correspondences x̂ directly. This variant applies
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(a) Raw scan (b) IPNet SMPL (c) IPNet SMPL+D (d) Ours SMPL (e) Ours SMPL+D (f) Ours re-posed

Figure 3: Although our model is trained on point clouds sampled from registered meshes, it generalizes well to raw scans.

We show qualitative results on the BUFF dataset [59]. Please see the Supp. Mat. for more results.

Method #params mIoU Outer CD Inner CD

IPNet [6] 2.2M 88.6% 0.0151 0.0157

PTF-Piecewise 1.2M 89.4% 0.0152 0.0162

PTF-FC 1.4M 89.7% 0.0148 0.0158

Ablation on Point Correspondence Prediction

Method #params mIoU Outer CD Inner CD

IPNet+Corr 2.3M 88.9% 0.0153 0.0159

TF-FC 7.3M 88.1% 0.0154 0.0161

Table 3: Ablation study on decoder architectures. Our PTF

models achieve comparable or better reconstruction quality

while using less parameters than the baseline.

Method Per-vetex error

Baseline 74.4 mm

PTF-Piecewise 34.8 mm

PTF-FC 34.1 mm

Table 4: Comparison of our pose estimation approach

against the baseline that regresses a continuous 6D repre-

sentation [60] of rotation matrices directly from global point

cloud features.

occupancy inference in the posed-space. IPNet+Corr gives

slightly better mIoU but worse Chamfer distance than the

IPNet baseline.

Next, we construct a variant, TF-FC. TF-FC replaces the

PTF module with a 4-layer MLP with 128 × 14 channels.

This simplification results in degraded performance.

5.3. Evaluation of Rotation Estimation

In this experiment, we demonstrate superiority of our

local-feature-based pose estimation pipeline versus a direct

regression baseline. The baseline takes 5K points as in-

put, encodes the point cloud with PointNet [45], and then

regresses rotation matrices in 6D continuous representa-

tion [60]. We evaluate the per-vertex error on the SMPL

mesh, assuming ground-truth shape and global-translation

are known. For our method, θ∗ is obtained by solving

Eq. (13)-(14) without optimizing Eq. (5). Results are shown

in Table 4. We reduce the per-vertex error significantly,

from 74.4mm to 34.1mm.

6. Conclusion

In this paper, we introduce Piecewise Transformation

Fields (PTFs), a set of piecewise transformation fields

that learns to canonicalize query points. Combining PTFs

and occupancy networks results in more parameter-efficient

models that not only improve point cloud reconstruction

quality, but also enable us to estimate joint rotations ac-

curately through efficient optimization. With better re-

constructed surfaces and accurately initialized poses, we

achieve state-of-the-art results on automatic point cloud

registration of dressed people. In the future, we plan to

extend the proposed PTFs to the image domain, as well

as combine it with other neural-representations for human

bodies [29, 33, 49] that require poses as inputs.
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