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Abstract

We present MaX-DeepLab, the first end-to-end model for

panoptic segmentation. Our approach simplifies the cur-

rent pipeline that depends heavily on surrogate sub-tasks

and hand-designed components, such as box detection, non-

maximum suppression, thing-stuff merging, etc. Although

these sub-tasks are tackled by area experts, they fail to

comprehensively solve the target task. By contrast, our

MaX-DeepLab directly predicts class-labeled masks with a

mask transformer, and is trained with a panoptic quality in-

spired loss via bipartite matching. Our mask transformer

employs a dual-path architecture that introduces a global

memory path in addition to a CNN path, allowing direct

communication with any CNN layers. As a result, MaX-

DeepLab shows a significant 7.1% PQ gain in the box-free

regime on the challenging COCO dataset, closing the gap

between box-based and box-free methods for the first time.

A small variant of MaX-DeepLab improves 3.0% PQ over

DETR with similar parameters and M-Adds. Furthermore,

MaX-DeepLab, without test time augmentation, achieves

new state-of-the-art 51.3% PQ on COCO test-dev set.

1. Introduction

The goal of panoptic segmentation [48] is to predict a

set of non-overlapping masks along with their correspond-

ing class labels. Modern panoptic segmentation methods

address this mask prediction problem by approximating the

target task with multiple surrogate sub-tasks. For exam-

ple, Panoptic-FPN [47] adopts a ‘box-based pipeline’ with

three levels of surrogate sub-tasks, as demonstrated in a

tree structure in Fig. 1. Each level of this proxy tree in-

volves manually-designed modules, such as anchors [77],

box assignment rules [105], non-maximum suppression

(NMS) [7], thing-stuff merging [98], etc. Although there

are good solutions [77, 12, 33] to individual surrogate sub-

tasks and modules, undesired artifacts are introduced when

these sub-tasks fit into a pipeline for panoptic segmentation,

especially in the challenging conditions (Fig. 2).

∗Work done while an intern at Google.
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Figure 1. Our method predicts panoptic segmentation masks di-

rectly from images, while previous methods (Panoptic-FPN as an

example) rely on a tree of surrogate sub-tasks. Panoptic segmen-

tation masks are obtained by merging semantic and instance seg-

mentation results. Instance segmentation is further decomposed

into box detection and box-based segmentation, while box detec-

tion is achieved by anchor regression and anchor classification.

(a) Our MaX-DeepLab

51.1 PQ (box-free)

(b) Axial-DeepLab [89]

43.4 PQ (box-free)

(c) DetectoRS [76]

48.6 PQ (box-based)

Figure 2. A case study for our method and state-of-the-art box-free

and box-based methods. (a) Our end-to-end MaX-DeepLab cor-

rectly segments a dog sitting on a chair. (b) Axial-DeepLab [89]

relies on a surrogate sub-task of regressing object center off-

sets [21]. It fails because the centers of the dog and the chair are

close to each other. (c) DetectoRS [76] classifies object bounding

boxes, instead of masks, as a surrogate sub-task. It filters out the

chair mask because the chair bounding box has a low confidence.

Recent work on panoptic segmentation attempted to sim-

plify this box-based pipeline. For example, UPSNet [98]

proproses a parameter-free panoptic head, permitting back-

propagation to both semantic and instance segmentation

modules. Recently, DETR [10] presents an end-to-end ap-

proach for box detection, which is used to replace detectors
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Method
Anchor Center NMS Merge Box

-Free -Free -Free -Free -Free

Panoptic-FPN [47] 7 3 7 7 7

UPSNet [98] 7 3 7 3 7

DETR [10] 3 3 3 3 7

Axial-DeepLab [89] 3 7 7 7 3

MaX-DeepLab 3 3 3 3 3

Table 1. Our end-to-end MaX-DeepLab dispenses with these com-

mon hand-designed components necessary for existing methods.

in panoptic segmentation, but the whole training process of

DETR still relies heavily on the box detection task.

Another line of work made efforts to completely remove

boxes from the pipeline, which aligns better with the mask-

based definition of panoptic segmentation. The state-of-the-

art method in this regime, Axial-DeepLab [89], along with

other box-free methods [100, 21, 11], predicts pixel-wise

offsets to pre-defined instance centers. But this center-based

surrogate sub-task makes it challenging to deal with highly

deformable objects, or near-by objects with close centers.

As a result, box-free methods do not perform as well as

box-based methods on the challenging COCO dataset [60].

In this paper, we streamline the panoptic segmenta-

tion pipeline with an end-to-end approach. Inspired by

DETR [10], our model directly predicts a set of non-

overlapping masks and their corresponding semantic labels

with a mask transformer. The output masks and classes

are optimized with a panoptic quality (PQ) style objective.

Specifically, inspired by the definition of PQ [48], we define

a similarity metric between two class-labeled masks as the

multiplication of their mask similarity and their class sim-

ilarity. Our model is trained by maximizing this similarity

between ground truth masks and predicted masks via one-

to-one bipartite matching [51, 82, 10]. This direct modeling

of panoptic segmentation enables end-to-end training and

inference, removing those hand-coded priors that are nec-

essary in existing box-based and box-free methods (Tab. 1).

Our method is dubbed MaX-DeepLab for extending Axial-

DeepLab with a Mask Xformer.

In companion with direct training and inference, we

equip our mask transformer with a novel architecture. In-

stead of stacking a traditional transformer [87, 10] on top of

a Convolutional Neural Network (CNN) [52], we propose

a dual-path framework for combining CNNs with trans-

formers. Specifically, we enable any CNN layer to read

and write a global memory, using our dual-path transformer

block. This block supports all types of attention between

the CNN-path and the memory-path, including memory-

path self-attention (M2M), pixel-path axial self-attention

(P2P), memory-to-pixel attention (M2P), and finally pixel-

to-memory attention (P2M). The transformer block can be

inserted anywhere in a CNN, enabling communication with

the global memory at any layer. Besides this commu-

nication module, our MaX-DeepLab employs a stacked-

hourglass-style decoder [78, 71, 19]. The decoder aggre-

gates multi-scale features into a high resolution output,

which is then multiplied with the global memory feature,

to form our mask set prediction. The classes for the masks

are predicted with another branch of the mask transformer.

We evaluate MaX-DeepLab on one of the most challeng-

ing panoptic segmentation datasets, COCO [60], against the

state-of-the-art box-free method, Axial-DeepLab [89], and

state-of-the-art box-based method, DetectoRS [93] (Fig. 2).

Our MaX-DeepLab, without test time augmentation (TTA),

achieves the state-of-the-art result of 51.3% PQ on the test-

dev set. This result surpasses Axial-DeepLab (with TTA)

by 7.1% PQ in the box-free regime, and outperforms De-

tectoRS (with TTA) by 1.7% PQ, bridging the gap between

box-based and box-free methods for the first time. For a fair

comparison with DETR [10], we also evaluate a lightweight

model, MaX-DeepLab-S, that matches the number of pa-

rameters and M-Adds of DETR. We observe that MaX-

DeepLab-S outperforms DETR by 3.3% PQ on the val set

and 3.0% PQ on the test-dev set. In addition, we perform

extensive ablation studies and analyses on our end-to-end

formulation, model scaling, dual-path architectures, and our

loss functions. We also notice that the extra-long training

schedule of DETR [10] is not necessary for MaX-DeepLab.

To summarize, our contributions are four-fold:

• MaX-DeepLab is the first end-to-end model for panop-

tic segmentation, inferring masks and classes directly

without hand-coded priors like object centers or boxes.

• We propose a training objective that optimizes a PQ-

style loss function via a PQ-style bipartite matching

between predicted masks and ground truth masks.

• Our dual-path transformer enables CNNs to read and

write a global memory at any layer, providing a new

way of combining transformers with CNNs.

• MaX-DeepLab closes the gap between box-based and

box-free methods and sets a new state-of-the-art on

COCO, even without using test time augmentation.

2. Related Work

Transformers. Transformers [87], first introduced for neu-

ral machine translation, have advanced the state-of-the-art

in many natural language processing tasks [27, 79, 26]. At-

tention [2], as the core component of Transformers, was

developed to capture both correspondence of tokens across

modalities [2] and long-range interactions in a single con-

text (self-attention) [22, 87]. Later, the complexity of trans-

former attention has been reduced [49, 90], by introducing

local [68] or sparse attention [23], together with a global

memory [6, 103, 31, 1]. The global memory, which inspires

our dual-path transformer, recovers long-range context by

propagating information globally.
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Transformer and attention have been applied to computer

vision as well, by combining non-local modules [91, 9]

with CNNs or by applying self-attention only [72, 37, 89].

Both classes of methods have boosted various vision tasks

such as image classification [18, 5, 72, 37, 57, 89, 28], ob-

ject detection [91, 80, 72, 36, 10, 108], semantic segmenta-

tion [15, 106, 39, 29, 109, 107], video recognition [91, 18],

image generation [73, 35], and panoptic segmentation [89].

It is worth mentioning that DETR [10] stacked a trans-

former on top of a CNN for end-to-end object detection.

Box-based panoptic segmentation. Most panoptic seg-

mentation models, such as Panoptic FPN [47], follow a box-

based approach that detects object bounding boxes and pre-

dicts a mask for each box, usually with a Mask R-CNN [33]

and FPN [58]. Then, the instance segments (‘thing’) and

semantic segments (‘stuff’) [13] are fused by merging mod-

ules [54, 56, 74, 67, 101] to generate panoptic segmenta-

tion. For example, UPSNet [98] developed a parameter-free

panoptic head, which facilitates unified training and infer-

ence [55]. Recently, DETR [10] extended box-based meth-

ods with its transformer-based end-to-end detector. And

DetectoRS [76] advanced the state-of-the-art with recursive

feature pyramid and switchable atrous convolution.

Box-free panoptic segmentation. Contrary to box-based

approaches, box-free methods typically start with seman-

tic segments [12, 14, 16]. Then, instance segments are

obtained by grouping ‘thing’ pixels with various methods,

such as instance center regression [44, 86, 70, 100, 20],

Watershed transform [88, 3, 8], Hough-voting [4, 53, 8],

or pixel affinity [45, 66, 81, 30, 8]. Recently, Axial-

DeepLab [89] advanced the state-of-the-art by equipping

Panoptic-DeepLab [21] with a fully axial-attention [35]

backbone. In this work, we extend Axial-DeepLab with a

mask transformer for end-to-end panoptic segmentation.

3. Method

In this section, we describe how MaX-DeepLab directly

predicts class-labeled masks for panoptic segmentation, fol-

lowed by the PQ-style loss used to train the model. Then,

we introduce our dual-path transformer architecture as well

as the auxiliary losses that are helpful in training.

3.1. MaX-DeepLab formulation

The goal of panoptic segmentation is to segment the im-

age I 2 R
H×W×3 into a set of class-labeled masks:

{yi}
K
i=1 = {(mi, ci)}

K
i=1 . (1)

The K ground truth masks mi 2 {0, 1}
H×W

do not overlap

with each other, i.e.,
PK

i=1 mi  1H×W , and ci denotes the

ground truth class label of mask mi.

Our MaX-DeepLab directly predicts outputs in the exact

same form as the ground truth. MaX-DeepLab segments the

image I into a fixed-size set of class-labeled masks:

{ŷi}
N
i=1 = {(m̂i, p̂i(c))}

N
i=1 . (2)

The constant size N of the set is much larger than the typi-

cal number of masks in an image [10]. The predicted masks

m̂i 2 [0, 1]
H×W

are softly exclusive to each other, i.e.,
PN

i=1 m̂i = 1H×W , and p̂i(c) denotes the probability of as-

signing class c to mask m̂i. Possible classes C 3 c include

thing classes, stuff classes, and a ∅ class (no object). In this

way, MaX-DeepLab deals with thing and stuff classes in a

unified manner, removing the need for merging operators.

Simple inference. End-to-end inference of MaX-DeepLab

is enabled by adopting the same formulation for both

ground truth definition and model prediction. As a re-

sult, the final panoptic segmentation prediction is obtained

by simply performing argmax twice. Specifically, the first

argmax predicts a class label for each mask:

ĉi = argmax
c

p̂i(c) . (3)

And the other argmax assigns a mask-ID ẑh,w to each pixel:

ẑh,w = argmax
i

m̂i,h,w ,

8h 2 {1, 2, . . . , H}, 8w 2 {1, 2, . . . ,W} .
(4)

In practice, we filter each argmax with a confidence thresh-

old – Masks or pixels with a low confidence are removed

as described in Sec. 4. In this way, MaX-DeepLab infers

panoptic segmentation directly, dispensing with common

manually-designed post-processing, e.g., NMS and thing-

stuff merging in almost all previous methods [47, 98]. Be-

sides, MaX-DeepLab does not rely on hand-crafted priors

such as anchors, object boxes, or instance mass centers, etc.

3.2. PQ-style loss

In addition to simple inference, MaX-DeepLab enables

end-to-end training as well. In this section, we introduce

how we train MaX-DeepLab with our PQ-style loss, which

draws inspiration from the definition of panoptic quality

(PQ) [48]. This evaluation metric of panoptic segmentation,

PQ, is defined as the multiplication of a recognition quality

(RQ) term and a segmentation quality (SQ) term:

PQ = RQ × SQ . (5)

Based on this decomposition of PQ, we design our objec-

tive in the same manner: First, we define a PQ-style simi-

larity metric between a class-labeled ground truth mask and

a predicted mask. Next, we show how we match a predicted

mask to each ground truth mask with this metric, and finally

how to optimize our model with the same metric.

Mask similarity metric. Our mask similarity metric

sim(·, ·) between a class-labeled ground truth mask yi =
(mi, ci) and a prediction ŷj = (m̂j , p̂j(c)) is defined as

sim(yi, ŷj) = p̂j(ci)
| {z }

≈ RQ

⇥Dice(mi, m̂j)
| {z }

≈ SQ

, (6)
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where p̂j(ci) 2 [0, 1] is the probability of predicting the cor-

rect class (recognition quality) and Dice(mi, m̂j) 2 [0, 1]
is the Dice coefficient between a predicted mask m̂j and a

ground truth mi (segmentation quality). The two terms are

multiplied together, analogous to the decomposition of PQ.

This mask similarity metric has a lower bound of 0,

which means either the class prediction is incorrect, OR

the two masks do not overlap with each other. The upper

bound, 1, however, is only achieved when the class predic-

tion is correct AND the mask is perfect. The AND gating

enables this metric to serve as a good optimization objective

for both model training and mask matching.

Mask matching. In order to assign a predicted mask to

each ground truth, we solve a one-to-one bipartite matching

problem between the prediction set {ŷi}
N
i=1 and the ground

truth set {yi}
K
i=1. Formally, we search for a permutation of

N elements σ 2 SN that best assigns the predictions to

achieve the maximum total similarity to the ground truth:

σ̂ = argmax
σ∈SN

KX

i=1

sim(yi, ŷσ(i)) . (7)

The optimal assignment is computed efficiently with the

Hungarian algorithm [51], following prior work [10, 82].

We refer to the K matched predictions as positive masks

which will be optimized to predict the corresponding

ground truth masks and classes. The (N � K) masks left

are negatives, which should predict the ∅ class (no object).

Our one-to-one matching is similar to DETR [10], but

with a different purpose: DETR allows only one positive

match in order to remove duplicated boxes in the absence

of NMS, while in our case, duplicated or overlapping masks

are precluded by design. But in our case, assigning multi-

ple predicted masks to one ground truth mask is problematic

too, because multiple masks cannot possibly be optimized

to fit a single ground truth mask at the same time. In addi-

tion, our one-to-one matching is consistent with the PQ met-

ric, where only one predicted mask can theoretically match

(i.e., have an IoU over 0.5) with each ground truth mask.

PQ-style loss. Given our mask similarity metric and the

mask matching process based on this metric, it is straight

forward to optimize model parameters θ by maximizing this

same similarity metric over matched (i.e., positive) masks:

max
θ

KX

i=1

sim(yi, ŷσ̂(i)) , max
θ,σ∈SN

KX

i=1

sim(yi, ŷσ(i)) . (8)

Substituting the similarity metric (Equ. (6)) gives our PQ-

style objective Opos
PQ to be maximized for positive masks:

max
θ

Opos
PQ =

KX

i=1

p̂σ̂(i)(ci)
| {z }

≈ RQ

⇥Dice(mi, m̂σ̂(i))
| {z }

≈ SQ

. (9)

In practice, we rewrite Opos
PQ into two common loss terms

by applying the product rule of gradient and then changing

a probability p̂ to a log probability log p̂. The change from

p̂ to log p̂ aligns with the common cross-entropy loss and

scales gradients better in practice for optimization:

Lpos
PQ =

KX

i=1

p̂σ̂(i)(ci)
| {z }

weight

·
⇥
�Dice(mi, m̂σ̂(i))

⇤

| {z }

Dice loss

+
KX

i=1

Dice(mi, m̂σ̂(i))
| {z }

weight

·
⇥
� log p̂σ̂(i)(ci)

⇤

| {z }

Cross-entropy loss

,

(10)

where the loss weights are constants (i.e., no gradient

is passed to them). This reformulation provides insights

by bridging our objective with common loss functions:

Our PQ-style loss is equivalent to optimizing a dice loss

weighted by the class correctness and optimizing a cross-

entropy loss weighted by the mask correctness. The logic

behind this loss is intuitive: we want both of the mask and

class to be correct at the same time. For example, if a mask

is far off the target, it is a false negative anyway, so we disre-

gard its class. This intuition aligns with the down-weighting

of class losses for wrong masks, and vice versa.

Apart from the Lpos
PQ for positive masks, we define a

cross-entropy term Lneg
PQ for negative (unmatched) masks:

Lneg
PQ =

NX

i=K+1

⇥
� log p̂σ̂(i)(∅)

⇤
. (11)

This term trains the model to predict ∅ for negative masks.

We balance the two terms by α, as a common practice to

weight positive and negative samples [59]:

LPQ = αLpos
PQ + (1� α)Lneg

PQ , (12)

where LPQ denotes our final PQ-style loss.

3.3. MaX-DeepLab Architecture

As shown in Fig. 3, MaX-DeepLab architecture includes

a dual-path transformer, a stacked decoder, and output

heads that predict the masks and classes.

Dual-path transformer. Instead of stacking a transformer

on top of a CNN [10], we integrate the transformer and

the CNN in a dual-path fashion, with bidirectional com-

munication between the two paths. Specifically, we aug-

ment a 2D pixel-based CNN with a 1D global memory of

size N (i.e., the total number of predictions) and propose

a transformer block as a drop-in replacement for any CNN

block or an add-on for a pretrained CNN block. Our trans-

former block enables all four possible types of communica-

tion between the 2D pixel-path CNN and the 1D memory-

path: (1) the traditional memory-to-pixel (M2P) attention,

(2) memory-to-memory (M2M) self-attention, (3) pixel-to-

memory (P2M) feedback attention that allows pixels to
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(a) Overview of MaX-DeepLab (b) Dual-path transformer block

Figure 3. (a) An image and a global memory are fed into a dual-

path transformer, which directly predicts a set of masks and classes

(residual connections omitted). (b) A dual-path transformer block

is equipped with all 4 types of attention between the two paths.

read from the memory, and (4) pixel-to-pixel (P2P) self-

attention, implemented as axial-attention blocks [39, 35,

89]. We select axial-attention [89] rather than global 2D at-

tention [10, 91, 5] for efficiency on high resolution feature

maps. One could optionally approximate the pixel-to-pixel

self-attention with a convolutional block that only allows lo-

cal communication. This transformer design with a memory

path besides the main CNN path is termed dual-path trans-

former. Unlike previous work [10], it allows transformer

blocks to be inserted anywhere in the backbone at any reso-

lution. In addition, the P2M feedback attention enables the

pixel-path CNN to refine its feature given the memory-path

features that encode mask information.

Formally, given a 2D input feature xp 2 R
Ĥ×Ŵ×din

with height Ĥ , width Ŵ , channels din, and a 1D global

memory feature xm 2 R
N×din with length N (i.e., the size

of the prediction set). We compute pixel-path queries qp,

keys kp, and values vp, by learnable linear projections of the

pixel-path feature map xp at each pixel. Similarly, qm, km,

vm are computed from xm with another set of projection

matrices. The query (key) and value channels are dq and

dv , for both paths. Then, the output of feedback attention

(P2M), ypa 2 R
dout , at pixel position a, is computed as

ypa =

NX

n=1

softmaxn (q
p
a · kmn ) vmn , (13)

where the softmaxn denotes a softmax function applied

to the whole memory of length N . Similarly, the output

of memory-to-pixel (M2P) and memory-to-memory (M2M)

attention ymb 2 R
dout , at memory position b, is

ymb =

ĤŴ+NX

n=1

softmaxn (q
m
b · kpmn ) vpmn ,

kpm =


kp

km

�

, vpm =


vp

vm

�

,

(14)

where a single softmax is performed over the concatenated

dimension of size (ĤŴ ,+N), inspired by ETC [1].

Stacked decoder. Unlike previous work [21, 89] that uses

a light-weight decoder, we explore stronger hourglass-style

stacked decoders [78, 71, 19]. As shown in Fig. 3, our de-

coder is stacked L times, traversing output strides (4, 8, and

16 [16, 61]) multiple times. At each decoding resolution,

features are fused by simple summation after bilinear resiz-

ing. Then, convolutional blocks or transformer blocks are

applied, before the decoder feature is sent to the next res-

olution. This stacked decoder is similar to feature pyramid

networks [58, 63, 84, 76] designed for pyramidal anchor

predictions [64], but our purpose here is only to aggregate

multi-scale features, i.e., intermediate pyramidal features

are not directly used for prediction.

Output heads. From the memory feature of length N ,

we predict mask classes p̂(c) 2 R
N×|C| with two fully-

connected layers (2FC) and a softmax. Another 2FC head

predicts mask feature f 2 R
N×D. Similarly, we employ

two convolutions (2Conv) to produce a normalized feature

g 2 R
D×

H

4
×

W

4 from the decoder output at stride 4. Then,

our mask prediction m̂ is simply the multiplication of trans-

former feature f and decoder feature g:

m̂ = softmaxN (f · g) 2 R
N×

H

4
×

W

4 . (15)

In practice, we use batch norm [41] on f and (f ·g) to avoid

deliberate initialization, and we bilinear upsample the mask

prediction m̂ to the original image resolution. Finally, the

combination {(m̂i, p̂i(c))}
N
i=1 is our mask transformer out-

put to generate panoptic results as introduced in Sec. 3.1.

Our mask prediction head is inspired by CondInst [85]

and SOLOv2 [92], which extend dynamic convolution [43,

99] to instance segmentation. However, unlike our end-to-

end method, these methods require hand-designed object

centers and assignment rules for instance segmentation, and

a thing-stuff merging module for panoptic segmentation.

3.4. Auxiliary losses

In addition to the PQ-style loss (Sec. 3.2), we find it ben-

eficial to incorporate auxiliary losses in training. Specifi-

cally, we propose a pixel-wise instance discrimination loss

that helps cluster decoder features into instances. We also

use a per-pixel mask-ID cross-entropy loss that classifies

each pixel into N masks, and a semantic segmentation loss.
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Our total loss function thus consists of the PQ-style loss

LPQ and these three auxiliary losses.

Instance discrimination. We use a per-pixel instance dis-

crimination loss to help the learning of the feature map

g 2 R
D×

H

4
×

W

4 . Given a downsampled ground truth mask

mi 2 {0, 1}
H

4
×

W

4 , we first compute a normalized feature

embedding ti,: 2 R
D for each annotated mask by averaging

the feature vectors g:,h,w inside the mask mi:

ti,: =

P

h,w mi,h,w · g:,h,w

||
P

h,w mi,h,w · g:,h,w||
, i = 1, 2, . . . ,K . (16)

This gives us K instance embeddings {ti,:}
K
i=1 represent-

ing K ground truth masks. Then, we let each pixel feature

g:,h,w perform an instance discrimination task, i.e., each

pixel should correctly identify which mask embedding (out

of K) it belongs to, as annotated by the ground truth masks.

The contrastive loss at a pixel (h,w) is written as:

LInstDis
h,w = � log

PK

i=1 mi,h,w exp (ti,: · g:,h,w/τ)
PK

i=1 exp (ti,: · g:,h,w/τ)
, (17)

where τ denotes the temperature, and note that mi,h,w is

non-zero only when pixel (h,w) belongs to the ground truth

mask mi. In practice, this per-pixel loss is applied to all in-

stance pixels in an image, encouraging features from the

same instance to be similar and features from different in-

stances to be distinct, in a contrastive fashion, which is ex-

actly the property required for instance segmentation.

Our instance discrimination loss is inspired by previous

works [96, 94, 40, 17, 32, 46]. However, they discriminate

instances either unsupervisedly or with image classes [46],

whereas we perform a pixel-wise instance discrimination

task, as annotated by panoptic segmentation ground truth.

Mask-ID cross-entropy. In Equ. (4), we describe how we

infer the mask-ID map given our mask prediction. In fact,

we can train this per-pixel classification task by applying a

cross-entropy loss on it. This is consistent with the litera-

ture [42, 83, 10] that uses a cross-entropy loss together with

a dice loss [69] to learn better segmentation masks.

Semantic segmentation. We also use an auxiliary seman-

tic segmentation loss to help capture per pixel semantic fea-

ture. Specifically, we apply a semantic head [21] on top of

the backbone if no stacked decoder is used (i.e., L = 0).

Otherwise, we connect the semantic head to the first de-

coder output at stride 4, because we find it helpful to sepa-

rate the final mask feature g with semantic segmentation.

4. Experiments

We report our main results on COCO, comparing with

state-of-the-art methods. Then, we provide a detailed abla-

tion study on the architecture variants and losses. Finally,

we analyze how MaX-DeepLab works with visualizations.

Technical details. Most of our default settings follow

Axial-DeepLab [89]. Specifically, we train our models with

32 TPU cores for 100k (400k for main results) iterations

(54 epochs), a batch size of 64, Radam [62] Lookahead

[104], a ‘poly’ schedule learning rate of 10−3 (3 ⇥ 10−4

for MaX-DeepLab-L), a backbone learning rate multiplier

of 0.1, a weight decay of 10−4, and a drop path rate [38] of

0.2. We resize and pad images to 641 ⇥ 641 [21, 89] (1025

⇥ 1025 for main results) for inference and M-Adds calcula-

tion. During inference, we set masks with class confidence

below 0.7 to void and filter pixels with mask-ID confidence

below 0.4. Finally, following previous work [98, 21, 89],

we filter stuff masks with an area limit of 4096 pixels, and

instance masks with a limit of 256 pixels. In training, we

set our PQ-style loss weight (Equ. (12), normalized by N )

to 3.0, with α = 0.75. Our instance discrimination uses

τ = 0.3, and a weight of 1.0. We set the mask-ID cross-

entropy weight to 0.3, and semantic segmentation weight to

1.0. We use an output size N = 128 and D = 128 channels.

We fill the initial memory with learnable weights [10].

4.1. Main results

We present our main results on COCO val set and test-

dev set [60], with a small model, MaX-DeepLab-S, and a

large model, MaX-DeepLab-L.

MaX-DeepLab-S augments ResNet-50 [34] with axial-

attention blocks [89] in the last two stages. After pretaining,

we replace the last stage with dual-path transformer blocks

and use an L = 0 (not stacked) decoder. We match parame-

ters and M-Adds to DETR-R101 [10], for fair comparison.

MaX-DeepLab-L stacks an L = 2 decoder on top of

Wide-ResNet-41 [102, 95, 11]. And we replace all stride

16 residual blocks by our dual-path transformer blocks with

wide axial-attention blocks [89]. This large variant is meant

to be compared with state-of-the-art results.

Val set. In Tab. 2, we report our validation set results and

compare with both box-based and box-free panoptic seg-

mentation methods. As shown in the table, our single-scale

MaX-DeepLab-S already outperforms all other box-free

methods by a large margin of more than 4.5 % PQ, no mat-

ter whether other methods use test time augmentation (TTA,

usually flipping and multi-scale) or not. Specifically, it

surpasses single-scale Panoptic-DeepLab by 8.7% PQ, and

single-scale Axial-DeepLab by 5.0% PQ with similar M-

Adds. We also compare MaX-DeepLab-S with DETR [10],

which is based on an end-to-end detector, in a controlled

environment of similar number of parameters and M-Adds.

Our MaX-DeepLab-S outperforms DETR [10] by 3.3% PQ

in this fair comparison. Next, we scale up MaX-DeepLab

to a wider variant with stacked decoder, MaX-DeepLab-L.

This scaling further improves the single-scale performance

to 51.1% PQ, outperforming multi-scale Axial-DeepLab

[89] by 7.2% PQ with similar inference M-Adds.
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Method Backbone TTA Params M-Adds PQ PQTh PQSt

Box-based panoptic segmentation methods

Panoptic-FPN [47] RN-101 40.3 47.5 29.5

UPSNet [98] RN-50 42.5 48.5 33.4

Detectron2 [93] RN-101 43.0 - -

UPSNet [98] RN-50 3 43.2 49.1 34.1

DETR [10] RN-101 61.8M 314B1 45.1 50.5 37.0

Box-free panoptic segmentation methods

Panoptic-DeepLab [21] X-71 [24] 46.7M 274B 39.7 43.9 33.2

Panoptic-DeepLab [21] X-71 [24] 3 46.7M 3081B 41.2 44.9 35.7

Axial-DeepLab-L [89] AX-L [89] 44.9M 344B 43.4 48.5 35.6

Axial-DeepLab-L [89] AX-L [89] 3 44.9M 3868B 43.9 48.6 36.8

MaX-DeepLab-S MaX-S 61.9M 324B 48.4 53.0 41.5

MaX-DeepLab-L MaX-L 451M 3692B 51.1 57.0 42.2

Table 2. COCO val set. TTA: Test-time augmentation

Method Backbone TTA PQ PQTh PQSt

Box-based panoptic segmentation methods

Panoptic-FPN [47] RN-101 40.9 48.3 29.7

DETR [10] RN-101 46.0 - -

UPSNet [98] DCN-101 [25] 3 46.6 53.2 36.7

DetectoRS [76] RX-101 [97] 3 49.6 57.8 37.1

Box-free panoptic segmentation methods

Panoptic-DeepLab [21] X-71 [24, 75] 3 41.4 45.1 35.9

Axial-DeepLab-L [89] AX-L [89] 43.6 48.9 35.6

Axial-DeepLab-L [89] AX-L [89] 3 44.2 49.2 36.8

MaX-DeepLab-S MaX-S 49.0 54.0 41.6

MaX-DeepLab-L MaX-L 51.3 57.2 42.4

Table 3. COCO test-dev set. TTA: Test-time augmentation

Test-dev set. Our improvements on the val set transfers

well to the test-dev set, as shown in Tab. 3. On the test-dev

set, we are able to compare with more competitive meth-

ods and stronger backbones equipped with group convo-

lution [50, 97], deformable convolution [25], or recursive

backbone [65, 76], while we do not use these improve-

ments in our model. In the regime of no TTA, our MaX-

DeepLab-S outperforms Axial-DeepLab [89] by 5.4% PQ,

and DETR [10] by 3.0% PQ. Our MaX-DeepLab-L without

TTA further attains 51.3% PQ, surpassing Axial-DeepLab

with TTA by 7.1% PQ. This result also outperforms the best

box-based method DetectoRS [76] with TTA by 1.7% PQ,

closing the large gap between box-based and box-free meth-

ods on COCO for the first time. Our MaX-DeepLab sets a

new state-of-the-art on COCO, even without using TTA.

4.2. Ablation study

In this subsection, we provide more insights by teasing

apart the effects of MaX-DeepLab components on the val

set. We first define a default baseline setting and then vary

each component of it: We augment Wide-ResNet-41 [102,

1https://github.com/facebookresearch/detr

Res Axial L Iter Params M-Adds PQ PQTh PQSt

641 7 0 100k 196M 746B 45.7 49.8 39.4

641 3 0 100k 277M 881B 47.8 51.9 41.5

1025 7 0 100k 196M 1885B 46.1 50.7 39.1

1025 3 0 100k 277M 2235B 49.4 54.5 41.8

641 7 1 100k 271M 1085B 47.1 51.6 40.3

641 7 2 100k 347M 1425B 47.5 52.3 40.2

641 7 0 200k 196M 746B 46.9 51.5 40.0

641 7 0 400k 196M 746B 47.7 52.5 40.4

Table 4. Scaling MaX-DeepLab by using a larger input Resolution,

replacing convolutional blocks with Axial-attention blocks, stack-

ing decoder L times, and training with more Iterations.

P2M M2M Stride Params M-Adds PQ PQTh PQSt

3 3 16 196M 746B 45.7 49.8 39.4

3 16 188M 732B 45.0 48.9 39.2

3 16 196M 746B 45.1 49.3 38.9

16 186M 731B 44.7 48.5 39.0

3 3 16 & 8 220M 768B 46.7 51.3 39.7

3 3 16 & 8 & 4 234M 787B 46.3 51.1 39.0

Table 5. Varying transformer P2M feedback attention, M2M self-

attention, and the Stride where we apply the transformer.

95, 11] by applying dual-path transformer to all blocks at

stride 16, enabling all four types of attention. For faster

wall-clock training, we use an L = 0 (not stacked) decoder

and approximate P2P attention with convolutional blocks.

Scaling. We first study the scaling of MaX-DeepLab in

Tab. 4. We notice that replacing convolutional blocks with

axial-attention blocks gives the most improvement. Further

changing the input resolution to 1025⇥ 1025 improves the

performance to 49.4% PQ, with a short 100k schedule (54

epochs). Stacking the decoder L = 1 time improves 1.4%

PQ, but further scaling to L = 2 starts to saturate. Training

with more iterations helps convergence, but we find it not

as necessary as DETR which is trained for 500 epochs.

Dual-path transformer. Next, we vary attention types of

our dual-path transformer and the stages (strides) where we

apply transformer blocks. Note that we always apply M2P

attention that attaches the transformer to the CNN. And P2P

attention is already ablated above. As shown in Tab. 5, re-

moving our P2M feedback attention causes a drop of 0.7%

PQ. On the other hand, we find MaX-DeepLab robust (-

0.6% PQ) to the removal of M2M self-attention. We at-

tribute this robustness to our non-overlapping mask formu-

lation. Note that DETR [10] relies on M2M self-attention to

remove duplicated boxes. In addition, it is helpful (+1.0%

PQ) to apply transformer blocks to stride 8 also, which is

impossible for DETR without our dual-path design. Push-

ing it further to stride 4 does not show more improvements.
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(a) Validation PQ (b) Matched class confidence (c) Matched mask dice (d) Instance discrimination (e) Mask-ID prediction

Figure 4. Training curves for (a) validation PQ, (b) average class confidence, p̂
σ̂(i)(ci), of matched masks, (c) average mask dice,

Dice(mi, m̂σ̂(i)), of matched masks, (d) per-pixel instance discrimination accuracy, and (e) per-pixel mask-ID prediction accuray.

sim InstDis Mask Sem PQ PQTh PQSt SQ RQ

RQ ⇥ SQ 3 3 3 45.7 49.8 39.4 80.9 55.3

RQ + SQ 3 3 3 44.9 48.6 39.3 80.2 54.5

RQ ⇥ SQ 3 3 45.1 50.1 37.6 80.6 54.5

RQ ⇥ SQ 3 43.3 46.4 38.6 80.1 52.6

RQ ⇥ SQ 3 42.6 48.1 34.1 80.0 52.0

RQ ⇥ SQ 39.5 41.8 36.1 78.9 49.0

Table 6. Varying the similarity metric sim and whether to ap-

ply the auxiliary Instance Discrimination loss, Mask-ID cross-

entropy loss or the Semantic segmentation loss.

Loss ablation. Finally, we ablate our PQ-style loss and

auxiliary losses in Tab. 6. We first switch our PQ-style sim-

ilarity in Equ. (6) from RQ ⇥ SQ to RQ + SQ, which dif-

fers in the hungarian matching (Equ. (7)) and removes dy-

namic loss weights in Equ. (10). We observe that RQ + SQ

works reasonably well, but RQ ⇥ SQ improves 0.8% PQ

on top of it, confirming the effect of our PQ-style loss in

practice, besides its conceptual soundness. Next, we vary

auxiliary losses applied to MaX-DeepLab, without tuning

loss weights for remaining losses. Our PQ-style loss alone

achieves a reasonable performance of 39.5% PQ. Adding

instance discrimination significantly improves PQTh, show-

ing the importance of a clustered feature embedding. Mask-

ID prediction shares the same target with the Dice term in

Equ. (10), but helps focus on large masks when the Dice

term is overwhelmed by small objects. Combining both of

the auxiliary losses leads to a large 5.6% PQ gain. Further

multi-tasking with semantic segmentation improves 0.6%

PQ, because its class-level supervision helps stuff classes

but not instance-level discrimination for thing classes.

4.3. Analysis

We provide more insights of MaX-DeepLab by plotting

our training curves and visualizing the mask output head.

Training curves. We first report the validation PQ curve in

Fig. 4(a), with our default ablation model. MaX-DeepLab

converges quickly to around 46% PQ within 100k iterations

(54 epochs), 1/10 of DETR [10]. In Fig. 4(b) and Fig. 4(c),

we plot the characteristics of all matched masks in an image.

The matched masks tend to have a better class correctness

(a) Original image (b) Decoder feature g

… …

Dog (thing)

Chair (thing)

Dining-table (thing)

Cake (thing)

Wall (stuff)

No object

(c) Transformer output

Figure 5. (b) Pixels of the same instance have similar colors (fea-

tures), while pixels of different instances have distinct colors.

(c) The transformer predicts mask colors (features) and classes.

than mask correctness. Besides, we report per-pixel accu-

racies for instance discrimination (Fig. 4(d)) and mask-ID

prediction (Fig. 4(e)). We see that most pixels learn quickly

to find their own instances (out of K) and predict their own

mask-IDs (out of N ). Only 10% of all pixels predict wrong

mask-IDs, but they contribute to most of the PQ error.

Visualization. In order to intuitively understand the nor-

malized decoder output g, the transformer mask feature f ,

and how they are multiplied to generate our mask output m̂,

we train a MaX-DeepLab with D = 3 and directly visualize

the normalized features as RGB colors. As shown in Fig. 5,

the decoder feature g assigns similar colors (or feature vec-

tors) to pixels of the same mask, no matter the mask is a

thing or stuff, while different masks are colored differently.

Such effective instance discrimination (as colorization) fa-

cilitates our simple mask extraction with an inner product.

5. Conclusion

In this work, we have shown for the first time that panop-

tic segmentation can be trained end-to-end. Our MaX-

DeepLab directly predicts masks and classes with a mask

transformer, removing the needs for many hand-designed

priors such as object bounding boxes, thing-stuff merging,

etc. Equipped with a PQ-style loss and a dual-path trans-

former, MaX-DeepLab achieves the state-of-the-art result

on the challenging COCO dataset, closing the gap between

box-based and box-free methods for the first time.
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