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Abstract

To capture high-speed videos using a two-dimensional

detector, video snapshot compressive imaging (SCI) is a

promising system, where the video frames are coded by dif-

ferent masks and then compressed to a snapshot measure-

ment. Following this, efficient algorithms are desired to re-

construct the high-speed frames, where the state-of-the-art

results are achieved by deep learning networks. However,

these networks are usually trained for specific small-scale

masks and often have high demands of training time and

GPU memory, which are hence not flexible to i) a new mask

with the same size and ii) a larger-scale mask. We address

these challenges by developing a Meta Modulated Convo-

lutional Network for SCI reconstruction, dubbed MetaSCI.

MetaSCI is composed of a shared backbone for different

masks, and light-weight meta-modulation parameters to

evolve to different modulation parameters for each mask,

thus having the properties of fast adaptation to new masks

(or systems) and ready to scale to large data. Extensive sim-

ulation and real data results demonstrate the superior per-

formance of our proposed approach. Our code is available

at https://github.com/xyvirtualgroup/MetaSCI-

CVPR2021.

1. Introduction

High-speed video imaging system is desirable in our

daily life, which often faces challenges in capturing and

saving high-dimensional (HD) data, e.g., high memory,

bandwidth and power demand. Inspired by compressive

sensing (CS) [2, 5] techniques, video snapshot compres-

sive imaging (SCI) has attracted much attention, which en-

joys the advantages of low memory, low bandwidth, low

power and potentially low cost [40]. The video SCI sys-

tem constructs a pipeline of an optical hardware encoder

and a software decoder [39]. In one exposure time, the

optical encoder modulates the HD data via dynamic masks

and then compresses multiple high-speed frames into a two-

dimensional (2D) snapshot measurement. The decoder, on

the other hand, aims to recover or reconstruct the high-
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Figure 1: Illustration of the fast adaptation property of MetaSCI,

as training on 256 × 256 measurements and adapted to (a) a new

256× 256 measurement compressed by different masks, and (b) a

768× 1792 measurement compressed by large masks. The results

in (a) is evaluated on a benchmark data, Kobe [15]. Compared

with BIRNAT [4], a SOTA deep model, MetaSCI realizes much

faster adaptation. In (b), we decompose the large-scale SCI re-

construction task into 21 sub-tasks without overlap. MetaSCI is

trained on 4 sub-tasks, and then fast adapted to the others. After

the adaptation stage, MetaSCI can realize real-time reconstruction

using feed-forward mapping. By contrast, PnP [40] and GAP-TV

[38], the only two existing methods suitable for large-scale SCI,

need iterative optimization for every measurement.

speed video frames using advanced algorithms. This paper

focuses on video SCI reconstruction. More specifically, we

develop a fast adaptive decoder motivated by meta learn-

ing, which is flexible to different systems and ready to scale

to large data.
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In general, a desirable decoder should have good proper-

ties in i) high fidelity (often with PSNR≥30dB) and ii) fast

recovery. With more than a decade of development, more

and more optical encoders are constructed [9, 16, 26, 27,

28, 29, 30, 31, 32, 41, 42], which arouses more considera-

tions for a practical algorithm. As a new encoding system is

built, one may often wonder whether a well learned decoder

can be fast adapted to this new encoder. A relatively sim-

ple scenario is that the physical masks are changed but with

the same spatial size such as 256 × 256 pixels. Even more

challenging, the physical masks are scaled to higher spa-

tial dimension such as 512×512 or even up to 2048×2048
pixels when a high resolution system is built. Therefore, the

properties of iii) fast adaptation and iv) scalability are also

desired to make video SCI system being practical. How-

ever, existing SCI reconstruction networks often lack fast

adaptation, i.e., not flexible. As the mask changes, the net-

work has to be re-trained, which again needs a long time, as

shown in Fig. 1a.

Bearing all these four-aspect concerns in mind, we pro-

pose a meta modulated convolutional network for flexi-

ble SCI reconstruction, dubbed MetaSCI. With the follow-

ing contributions and appealing properties, MetaSCI will

pave the way of applying deep learning methods to large-

scale SCI in our daily life.

• We discuss the fast adaptation problem of video SCI in

real applications, which have not been studied before, es-

pecially for deep learning models.

• To realize fast adaptation, we propose a multi-encoding-

system training regime and build MetaSCI. MetaSCI con-

sists of a shared backbone for different systems, and

light-weight meta-modulation parameters that can evolve

to different modulation parameters for each individual

system.

• A hybrid learning algorithm is developed to train the net-

work, with standard gradient descend for the shared back-

bone and meta updates for meta parameters.

• Besides achieving competing performance and fast adap-

tation on widely used small-scale video benchmarks, us-

ing the attractive property of fast adaptation, MetaSCI

is the first deep model to perform real-time large-scale

video reconstruction as shown in Fig. 1b.

2. Related Work

Existing SCI reconstruction models can be divided into

two categories, optimization based ones and deep learning

based ones.

The optimization based methods consider the ill-posed

SCI reconstruction task as a regularized optimization prob-

lem, and usually solve it via iterative algorithms. Among

traditional methods [1, 15, 35, 36, 38, 37], DeSCI in [15]

achieves the state-of-the-art (SOTA) reconstruction perfor-

mance. Yet, it takes more than one hour to recover a

Table 1: Property of typical SCI reconstruction algorithms.

Algorithm Fidelity Inference speed Fast adaptation Scalability

DeSCI [15] High Low Middle Low

PnP [40] High Middle Middle High

BIRNAT [4] High High Low Low

MetaSCI High High High High

256×256×8 video, which precludes DeSCI to be applied to

a higher-dimensional scenario. To accelerate the optimiza-

tion speed, Yuan et al. [40, 44] develop a plug-and-play

(PnP) framework. By plugging a pre-trained denoising net-

work into every iteration of the optimization, PnP achieves

comparable PSNR scores and much faster inference speed.

Generally, the major drawback of optimization based mod-

els is that one needs to perform iterative optimization for ev-

ery new-coming snapshot measurement (sometimes needs

to fine-tune the parameters), making it time-consuming as

processing large amounts of snapshots, as shown in Fig. 1b.

Compared with optimization based methods, the most

attractive property of deep learning based ones is the real-

time test speed. In [3, 4, 11, 12, 18, 19, 20, 21, 28], various

end-to-end networks are proposed, whose input is the mea-

surement (and optionally masks) and the output is the recov-

ered video, optimized by reconstruction loss such as mean

square error (MSE) and adversarial loss [7]. Among them,

the BIRNAT in [4] achieves comparable or even superior

PSNR than DeSCI. Even though, based on the bidirectional

RNN structure, BIRNAT needs a significant amount of GPU

memories, scarcely possible for large-scale SCI. More im-

portantly, as the mask changes, the network has to be re-

trained, as shown in Fig. 1a. Unfortunately, the training

time is on the order of days or weeks.

To make more evident comparisons, Table 1 summa-

rizes the property of some typical SCI reconstruction algo-

rithms1, highlighting our motivations to propose a scalable

and adaptive reconstruction model for video SCI.

3. Problem Statement

We first provide the mathematical model of video SCI,

and then discuss the importance of fast adaptation in SCI.

3.1. Mathematical Model of Video SCI

We assume that a scene with B high-speed frames

{Xb}
B
b=1 ∈ R

dx×dy is modulated by the coding patterns

(masks) {Cb}
B
b=1 ∈ R

dx×dy . As shown in Fig. 2, a mea-

surement Y ∈ R
dx×dy is then obtained by

Y =
∑B

b=1 Xb ⊙Cb + Z, (1)

where ⊙ and Z ∈ R
dx×dy denote the matrix element-wise

product and noise, respectively. Denoting the vectorization

operation on a matrix as Vec(·), (1) can be re-written as

1Note that though DeSCI and PnP can easily adapt to new systems, one

usually needs to fine-tune the parameters to achieve good results. There-

fore, we dub their adaptation to ‘middle’.
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Figure 2: Pipelines of video SCI (optical encoder) and our proposed MetaSCI (software decoder) for reconstruction. A

video scene, represented by a sequence of images, is coded (⊙) by binary masks and then integrated (
∑

) over time on a

camera, forming a single-frame compressed measurement. At the training stage, by minimizing MSE between recovered

and original videos, we use M masks (tasks) to train our proposed network including shared base parameters and meta

parameters, where meta parameters evolve to modulation parameters, modulating (see Fig. 3 for details) the shared base

parameters for respective tasks. After training, we get well-learned base and meta parameters. During testing, we have a new

mask, fixing the base parameters, we only need to run a few iterations to update well-learned meta parameters to fit our new

mask, realizing fast adaptation.

y = Hx+ z, (2)

where y = Vec(Y) ∈ R
dxdy and z = Vec(Z) ∈ R

dxdy .

Correspondingly, the video x is expressed as

x =
[
Vec(X1)

T , · · · ,Vec(XB)
T
]T
∈ R

dxdyB . (3)

Unlike traditional CS methods [5, 24] using a dense sens-

ing matrix, in SCI, the sensing matrix H ∈ R
dxdy×dxdyB

is sparse and can be represented as a concatenation of

B diagonal matrices as H = [D1, · · · ,DB ], where{
Db = diag (Vec(Cb)) ∈ R

dxdy×dxdy

}B

b=1
. Therefore, the

compression ratio of SCI is B, and the theoretical analysis

have been studies in [13].

3.2. Why Is Fast Adaptation Important?

Recently, deep-learning based SCI reconstruction mod-

els have achieved promising results in both fidelity and in-

ference speed [4, 23]. To be concrete, given the mask ma-

trices {Cb}
B
b=1 and a training dataset Q containing N data

pairs {Y,X}, a deep reconstruction network fΘ is learned

by optimizing

minΘ
∑

{Y,X}∈Q d
(
X, fΘ(Y, {Cb}

B
b=1)

)
, (4)

where d(·) is a distance metric such as MSE, and Θ denotes

all trainable parameters. For every testing measurement,

unlike optimization based methods performing iterative in-

ferences, deep-learning methods [4, 23, 28] directly use the

well-learned model fΘ to perform real-time reconstruction.

However, as the system changes, i.e., masks {Cb}
B
b=1

become {C
′

b}
B
b=1, the network fΘ trained on {Cb}

B
b=1 does

not work on the new system, as shown in Fig. 1a. Yet,

in real applications, the mask can be changed due to dif-

ferent practical reasons, such as mask drifting or illumina-

tion change [16]. If C
′

b has the same size as Cb, one still

has the opportunity to re-train the model, at the expense of

time. Whereas, if C
′

b has larger spatial size than Cb, di-

rectly re-training the network often faces enormous chal-

lenges in both GPU memory and training time.

For some video SCI systems, e.g., CACTI system [16],

the measurement, mask and signal are spatially decoupled.

This provides a potential solution to the large-scale video

reconstruction problem, i.e., decomposing the video into

multiple blocks and reconstructing them separately and in

parallel. For example, as shown in Fig. 1b, one can de-

compose a video with 768× 1792 pixels into 21 256× 256
non-overlapping blocks2. However, with limited compu-

tational resources, for existing deep learning based meth-

ods, the training time for these 21 models is on the order of

months or even years. Therefore, if we build a model with

the fast adaptation property, we can also apply it to realize

large-scale video reconstruction via spatial decomposition.

That is to say, we train the model only on a small number

of sub-masks and then perform fast adaptation to all sub-

masks, which will be discussed specifically in Sec. 4.5. In

this manner, our model would be more flexible in real ap-

plications.

2The number of blocks increases with the video spatial size.
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4. MetaSCI

MetaSCI considers data from multiple encoding systems

as training. During testing, with fast adaptation, the model

is flexible to different systems (with different masks) and

ready to scale to large data. Toward this end, we start by

presenting the task definition of MetaSCI. Based on it, we

construct a CNN backbone and introduce meta parameters

into the network architecture. Then, a hybrid learning algo-

rithm is developed to train the network.

4.1. Task Definition of MetaSCI

Since the optical encoder in SCI can typically be mod-

eled accurately, it is widely used to train the reconstruction

network on simulated data and test on real data [4]. In order

to consider the adaptive capability into the network learn-

ing, we simulate a multi-system training scenario, which

can be realized in multiple ways. For example, we can ran-

domly generate M sets of masks or crop sub-masks from

large-scale masks. Each set of masks corresponds to an en-

coding system. Without loss of generality, we denote the

masks of these M encoding systems as {Cm
b }

B,M
b=1,m=1, all

of which have the same spatial size. Correspondingly, for

a ground-truth video X, its snapshot measurement in the

m-th encoding system is denoted as Ym.

For a specific task m, the reconstruction network aims

to output a recovered video X̂m given the inputs Ym and

{Cm
b }

B
b=1. Jointly considering all these M tasks, our goal

is to learn a reconstruction network, whose parameters can

be fast adapted to a specific/new task via a few numbers of

updates on this task.

4.2. Fully Convolutional Network Backbone

We start by considering the network structure for a single

task. Here we take the m-th task as an example.

To enhance the motion information in the measurement

and achieve better fusion between the measurement and

masks, an energy normalization method [4] is applied, with

the normalized measurement Y
m

derived by

Y
m

= Ym ⊘
(∑B

b=1 C
m
b

)
, (5)

where ⊘ represents the matrix element-wise division. Con-

sidering the fact that {Y
m
⊙ Cm

b }
B
b=1 can be used to ap-

proximate the real modulated frames {Xk ⊙ Cm
b }

B
b=1 [4],

we fuse all current visual information by

Om =
[
Y

m
,Y

m
⊙Cm

1 , ...,Y
m
⊙Cm

B

]
3
, (6)

where Om ∈ R
dx×dy×(B+1), and [·]3 denotes concatena-

tion along the third dimension. Then, we consider Om as

the input of our proposed fully CNN backbone FΘ1
(·) and

achieve reconstruction by

X̂m = FΘ1
(Om) ∈ R

dx×dy×B , m = 1, · · · ,M, (7)

where Θ1 denotes the network parameters. As shown in

Fig. 3a, the network has three Res-blocks [8] for better in-

formation transmission, each of which has six convolutional

layers and one residual connection. Detailed network struc-

ture is given in the supplementary material (SM). Different

from BIRNAT [4] that builds a type of CNN only to re-

construct the first frame and employs a time- and memory-

consuming RNN to sequentially reconstruct the rest frames,

our proposed fully CNN is able to generate all frames

quickly in a memory efficient way.

Inspired by the success of meta learning in various fast

adaptation tasks [6, 34], we hope to use meta learning to

train our proposed backbone, so that it can realize adap-

tive reconstruction. A straight forward way is to consider

every parameter in Θ1 as a meta-parameter, which is then

optimized via a meta-learning algorithm [6]. During the

test, with the well-learned meta-parameters as initialization,

the backbone is adapted to a new system (or task) by a few

numbers of updates. Though effective, suppose we have M̃
new systems (tasks), the backbone would evolve as M̃ mod-

els, that means the volume of parameters would increase M̃
times. A specific example is discussed in Sec. 4.5. This is

undesired for the SCI application on edge devices.

To address this challenge, we develop meta-modulation

parameters based on our proposed fully CNN. Specifically,

the following methods are employed to balance the speed

and memory.

• We assume the backbone is shared by all (training and

testing) tasks, and introduce task-specific parameters,

whose volume is much smaller than the backbone, as

shown in Fig. 3b.

• We propose the rank-one convolutional kernel modula-

tion to save the memory during training and also for fast

adaptation, with details as follows.

4.3. Rankone Kernel Modulation

The basic operation of the backbone in (7) is the convolu-

tion written as Q = G∗W+E, where G ∈ R
Ix×Iy×Cin is

the input feature map, Q ∈ R
Ix×Iy×Cout is the output fea-

ture map, W ∈ R
kx×ky×Cin×Cout is the convolutional ker-

nel, ∗ denotes the convolutional operation, and E ∈ R
Cout

is the bias. For multiple-task purpose, hereby, instead of

learning different kernels for different tasks, we utilize a

task-specific matrix Γm ∈ R
Cin×Cout to modulate the con-

volutional kernel W. This is

Q = G ∗ (W ⊙ Γm) +E, m = 1, · · · ,M, (8)

where ⊙ denotes element-wise product with appropriate

broadcasting. Furthermore, to decrease the volume of the

task-specific parameters, we assume Γm is a rank-1 matrix,

denoted by

Γm = αT
mβm, αm ∈ R

1×Cin , βm ∈ R
1×Cout . (9)

Compared with Γm having Cin×Cout parameters, αm and

βm only have (Cin + Cout) parameters3.

3For our proposed fully CNN backbone with B = 8, the total number

of meta-modulation parameters is 8.7k with our developed rank-1 kernel

modulation, while it will be 537.8k with full-matrix modulation.
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Figure 3: (a) The brief structure of our proposed fully CNN

backbone for SCI reconstruction, where the numbers denote

the number of kernels at each layer. (b) Illustration of our

proposed rank-1 convolutional kernel modulation, which is

applied to every convolutional layer in (a).

To perform fast adaptation from training to testing

tasks, rather than learning αm and βm directly, we con-

struct meta-modulation parameters α̃ ∈ R
1×Cin and β̃ ∈

R
1×Cout correspondingly, such that α̃ and β̃ can evolve to

{αm}
M
m=1 and {βm}

M
m=1, respectively, via a few number

of updates.

Denoting all meta-modulation parameters as Θ2, all

learnable parameters of MetaSCI are Θ = {Θ1,Θ2}.
Next, we introduce how to train MetaSCI and then perform

fast adaptation.

4.4. Training and Fast Adaptation

Training: Supposing that each task (corresponding to

one set of masks) has N measurements denoted by T ={
Ym

n , {Xm
n,b,C

m
b }

B
b=1

}N,M

n=1,m=1
for M tasks. The train-

ing objective is to minimize the MSE loss between real and

recovered videos:

L(Θ; T ) =
∑M,N,B

m=1,n=1,b=1

∥∥∥Xm
n,b − X̂m

n,b

∥∥∥
2
. (10)

Different from general network parameters, Θ contains

both shared base parameters Θ1 and meta-modulation pa-

rameters Θ2. Therefore, the adaptation of Θ2 to task-

specific parameters should be considered into the learning

algorithm. Specifically, in each iteration, we sample a mini-

batch data Tpre,m for the m-th task, and run U (often small,

set to 3 in our experiments) iterations of standard gradient

descend to obtain task-specific parameters Θ′
2,m. Then,

based on another mini-batch data Tobj,m and parameters

{Θ1,Θ
′
2,m}, we use Adam [14] to update both Θ1 and Θ2.

Note that, the task-specified parameters Θ′
2,m evolved from

Θ2 is actually a function w.r.t. Θ2. Thus, rather than updat-

ing {Θ1, {Θ
′
2,m}

M
m=1}, we update {Θ1,Θ2} during train-

ing. The entire training process is exhibited in Algorithm 1.

Algorithm 1 Training algorithm of MetaSCI

Require: Step size β, number of inner-loop U .

1: Randomly initialize Θ = {Θ1,Θ2}.
2: while not done do

3: for all training tasks m = 1, · · · ,M do

4: Sample a mini-batch of data

Tpre,m = {Ym
n , {Xm

n,b,C
m
b }

B
b=1}

N1

n=1.

5: Initialize Θ′
2,m ← Θ2

6: for u = 1 to U do

7: L1 = L({Θ1,Θ
′
2,m}; Tpre,m);

8: Θ′
2,m ← Θ′

2,m − β∇Θ′

2,m
L1.

9: end for

10: Sample another mini-batch of data Tobj,m.

11: end for

12: Obtain loss: L2 =
∑

m L({Θ1,Θ
′
2,m}; Tobj,m).

13: Update all parameters Θ = {Θ1,Θ2} via

Θ← Θ−Adam[L2].
14: end while

Fast adaptation: After training, we obtain the well-

learned base parameters Θ1 and meta-modulation param-

eters Θ2. During testing, aiming for fast adaptation, we fix

Θ1 and only update Θ2 for a new task (with new masks).

Given M̃ new tasks, for task m̃ = 1, . . . , M̃ , the model

parameters is represented by {Θ1,Θ2,m̃}. Θ2,m̃ is firstly

initialized by Θ2. In every iteration, after sampling a mini-

batch data Tad,m̃, we use Adam to update Θ2,m̃. Algorithm

2 exhibits how to perform fast adaptation.

Algorithm 2 Fast adaptation of MetaSCI

Require: Θ = {Θ1,Θ2}: the well-learned base and meta-

modulation parameters from Algorithm 1.

1: Initialize Θ2,m̃ = Θ2, m̃ = 1, · · · , M̃ .

2: while not done do

3: for all testing tasks m̃ = 1, · · · , M̃ do

4: Sample a mini-batch of data

Tad,m̃ = {Ym̃
n , {Xm̃

n,b,C
m̃
b }

B
b=1}

N2

n=1.

5: end for

6: Obtain loss:
∑

m̃ L({Θ1,Θ
′
2,m̃}; Tad,m̃)

7: Update {Θ2,m̃}
M̃
m̃=1 via Adam in parallel.

8: end while

Hereby, we describe the difference between our pro-

posed algorithm (Algorithms 1 and 2) and [6]. In [6],

all parameters are regraded as meta parameters, while our

propped model exploits a small number of meta parameters

to modulate the base backbone. As a result, as shown in
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Fig. 2 and Algorithm 2, when performing fast adaptation, all

M̃ tasks share a large fixed (thus no need to update) back-

bone Θ1 but with a small number of task-specific parame-

ters {Θ2,m̃}
M̃
m̃=1 that need to be updated from meta param-

eters Θ2. Considering the application of MetaSCI for large-

scale SCI reconstruction by fast adaptation discussed in the

following Sec. 4.5, this distinct property makes MetaSCI

memory efficient and can be performed in parallel for mul-

tiple new tasks.

4.5. Efficient Reconstruction for Largescale SCI
Using MetaSCI

Existing deep models, such as BIRNAT [4], are difficult

to handle large-scale videos due to limited GPU memory.

Interestingly, besides adapting the model for new masks

quickly, fast adaptation makes MetaSCI feasible for large-

scale SCI reconstruction. Without loss of generality, in this

section, we take videos of size 2048×2048×B as an exam-

ple to illustrate the efficient reconstruction using MetaSCI.

Basically, we can spatially decompose a 2048×2048×B
video into 64 non-overlapping 256× 256×B sub-videos4,

corresponding to 64 small tasks. At training stage, we only

randomly choose M (M ≪ 64) sub-videos as training tasks

and construct a training set to learn parameters Θ by Al-

gorithm 1. And then, we use Algorithm 2 to perform fast

adaptation for the other M̃ (M̃ +M = 64) sub-videos. Fi-

nally, after aggregating all M̃ + M sub-videos, we realize

large-scale video SCI recovery in an end-to-end manner.

In our experiments, to accelerate the training process, we

find M = 4 is enough to achieve a good Θ. As a result,

when adapting it to other M̃ masks, since all tasks share

a large fixed backbone with a small number of learnable

task-specific modulation parameters, it is efficient to per-

form parallel fast adaptation on all M̃ masks with a much

smaller model5; please refer to Fig. 1 for an example.

5. Experiments

We evaluate the proposed MetaSCI on both simulated

data [4, 15, 18] and real data captured by the SCI cameras

[28, 31]. Considering that most existing methods can only

work on small-scale datasets (benchmarks), for comprehen-

sive comparison, we first evaluate MetaSCI on the simu-

lated benchmark datasets, discussing the reconstruction per-

formance and the adaptation speed to different masks. Fur-

ther, we show the appealing results of MetaSCI on large-

scale simulated and real datasets, while most existing meth-

ods fail because of the limitations of memory or speed.

4Actually, in SM, we discuss the effect of overlapping size in recov-

ering large-scale videos, showing that appropriate overlapping will bring

better reconstruction, especially at boundaries.
5If we regard all parameters as meta parameters as [6], it needs at least

(without overlapping) 213.18M parameters to recover videos with size of

2048× 2048× 8. Our proposed MetaSCI only needs 3.89M parameters.

5.1. Implementation Details of MetaSCI

The high-speed training videos are acquired using the

code provided by [4], containing about 26,000 videos of

size 256 × 256 × B cropped from the DAVIS2017 dataset

[25] with data augmentation. To simulate a multi-task sce-

nario, we randomly generate four different sets of binary

masks of size 256× 256, i.e., M = 4. This means that each

task has about 26,000 training samples. For Algorithm 1,

the number of training epochs is set as 100; the number of

inner-loop U is set as 3; step size β = 10−5; we use the

default Adam setting [14]. During the adaptation by Algo-

rithm 2, we only need 4 epochs to achieve good results. For

MetaSCI in reconstructing the large-scale video, we decom-

pose the videos into overlapping 256× 256×B sub-videos

using a spatial interval of 128 pixels.

5.2. Counterparts and Evaluation Metrics

We compare our method with three representative

optimization-based ones, including GAP-TV [38], DeSCI

[15], and PnP-FFDNet [40], and two deep-learning based

ones, including U-net [28] and BIRNAT [4]. Among them,

DeSCI and BIRNAT have achieved the SOTA performance.

Both peak-signal-to-noise ratio (PSNR) and structural

similarity (SSIM) [33] are employed to evaluate the perfor-

mance. The adaptation and inference speed are assessed by

adaptation time and test time, respectively. The scalability

is evaluated on large-scale scenes.

5.3. Results on Simulated Smallscale Benchmarks

The widely used six videos [18], including Kobe, Traf-

fic, Runner, Drop, Vehicle, and Aerial, are considered, with

spatial size 256 × 256. We follow the simulation setup in

[4, 15, 40], compressing B=8 frames into a snapshot mea-

surement. Besides the standard testing (training and testing

have the same set of masks) as usual, we also conduct ex-

periments to evaluate the performance of adaptation to a

new set of masks during the test.

Training and testing have the same masks. The quan-

titative results on the standard testing are listed in Ta-

ble 2 (the upper half). In general, compared with opti-

mization based ones (in group 1) that need iterative infer-

ences, end-to-end deep learning based methods (in group 2)

have much (≥150×) faster testing speed. Though BIRNAT

have achieved the SOTA fidelity performance, the recurrent

structure (a sequential forward and then backward frame-

by-frame reconstruction) limits its testing speed. MetaSCI

achieves comparable PSNR and SSIM scores with BIRNAT

and a superior (≥6× shorter) testing speed. Some recon-

structed frames are shown in the left of Fig. 4. It can be

seen that MetaSCI is able to recover fine details and have

little artifacts.

Training and testing have different masks. As men-

tioned in Sec. 3.2 and shown in Fig. 1a, deep-learning based

SCI reconstruction models are sensitive to masks. When
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Table 2: The results of PSNR in dB (left entry in each cell), SSIM (right entry in each cell), and running time per measurement

in seconds on 256×256×8 simulation benchmarks. The results above double lines denote the testing mask appears at training

stage while the results under double lines denote the test mask does NOT appear at the training stage. ‘FT’ and ‘AD’ represent

‘fine-tuning’ and ‘adaptation’, respectively. The AD time is determined when training is converged. Note that, with the same

AD time as MetaSCI, BIRNAT only achieves about 27dB in average.

Algorithm Kobe Traffic Runner Drop Aerial Vehicle Average AD Time Test Time

GAP-TV 26.45, 0.845 20.89, 0.715 28.81, 0.909 34.74, 0.970 25.05, 0.828 24.82, 0.838 26.79, 0.858 0 4.2

DeSCI 33.25, 0.952 28.72, 0.925 38.76, 0.969 43.22, 0.993 25.33, 0.860 27.04, 0.909 32.72, 0.935 0 6180

PnP-FFDNet 30.50, 0.926 24.18, 0.828 32.15, 0.933 40.70, 0.989 25.27, 0.829 25.42, 0.849 29.70, 0.892 0 3.0

U-net 29.79, 0.807 24.62, 0.840 34.12, 0.947 36.56, 0.949 27.18, 0.869 26.43, 0.882 29.45, 0.882 0 0.0312

BIRNAT 32.71, 0.950 29.33, 0.942 38.70, 0.976 42.28, 0.992 28.99, 0.927 27.84, 0.927 33.31, 0.951 0 0.16

MetaSCI 30.12, 0.907 26.95, 0.888 37.02, 0.967 40.61, 0.985 28.31, 0.904 27.33, 0.906 31.72, 0.926 0 0.025

U-net-w/o-FT 20.13, 0.221 16.63, 0.165 23.15, 0.765 23.02, 0.502 22.85, 0.527 20.94, 0.486 21.12, 0.443 0 0.0312

U-net-w-FT 29.81, 0.811 24.70, 0.843 34.31, 0.951 36.51, 0.950 26.98, 0.860 26.54, 0.890 29.81, 0.884 2013 0.0312

BIRNAT-w/o-FT 21.45, 0.243 18.55, 0.186 26.67, 0.796 26.12, 0.539 24.22, 0.559 22.29, 0.509 23.22, 0.387 0 0.16

BIRNAT-w-FT 32.73, 0.952 29.30, 0.941 38.83, 0.975 42.16, 0.989 28.93, 0.923 27.48, 0.907 33.23, 0.948 20376 0.16

MetaSCI 30.10, 0.905 27.01, 0.891 37.01, 0.969 40.52, 0.982 28.35, 0.904 27.22, 0.901 31.70, 0.925 1004 0.025

Table 3: PSNR, SSIM and running time per measurement in seconds on large-scale simulation data with B=8. Note that

BIRNAT fails in these large-scale datasets due to high demanding of GPU memory, as well as other deep learning methods.

Size Algorithm Beauty Bosphorus HoneyBee Jockey ShakeNDry Average Test Time

512× 512
GAP-TV 32.13, 0.857 29.18, 0.934 31.40, 0.887 31.01, 0.940 32.52, 0.882 31.25, 0.900 44.67

PnP-FFDNet 30.70, 0.855 35.36, 0.952 31.94, 0.872 34.88, 0.955 30.72, 0.875 32.72, 0.902 14.22

MetaSCI 35.10, 0.901 38.37, 0.950 34.27, 0.913 36.45, 0.962 33.16, 0.901 35.47, 0.925 0.12

Size Algorithm Beauty Jockey ShakeNDry ReadyGo YachtRide Average Test Time

1024× 1024
GAP-TV 33.59, 0.852 33.27, 0.971 33.86, 0.913 27.49, 0.948 24.39, 0.937 30.52, 0.924 178.11

PnP-FFDNet 32.36, 0.857 35.25, 0.976 32.21, 0.902 31.87, 0.965 30.77, 0.967 32.49, 0.933 52.47

MetaSCI 35.23, 0.929 37.15, 0.978 36.06, 0.939 33.34, 0.973 32.68, 0.955 34.89, 0.955 0.59

Size Algorithm City Kids Lips Night RiverBank Average Test Time

2048× 2048
GAP-TV 21.27, 0.902 26.05, 0.956 26.46, 0.890 26.81, 0.875 27.74, 0.848 25.67, 0.894 764.75

PnP-FFDNet 29.31, 0.926 30.01, 0.966 27.99, 0.902 31.18, 0.891 30.38, 0.888 29.77, 0.915 205.62

MetaSCI 32.63, 0.930 32.31, 0.965 30.90, 0.895 33.86, 0.893 32.77, 0.902 32.49, 0.917 2.38

the masks change, directly employing the network trained

on the original masks to perform testing often results in

poor recovery (see U-net-w/o-FT and BIRNAT-w/o-FT in

Tab. 2). Although one can fine-tune the model of U-net or

BIRNAT on the testing masks, it is time-consuming. With

half adaptation time, MetaSCI achieves superior fidelity

performance than U-net-w-FT. Using about 1/20 adaptation

time, MetaSCI achieves comparable fidelity performance

with BIRNAT-w-FT.

5.4. Results on Simulated Largescale Data

Since limited researches provide large-scale data for

SCI, we create a large-scale benchmark, including 512 ×
512 × 8, 1024 × 1024 × 8, and 2048 × 2048 × 8 videos

cropped from the Ultra Video Group (UVG) dataset [22].

Each scale have five different videos, and the compression

ratio is B = 8. Details are provided in the SM.

As the increase of spatial size, existing deep-learning

based models often face challenges in both GPU memory

and time expense. Among all existing works, only GAP-

TV, PnP-FFDNet, and our proposed MetaSCI can be ap-

plied to large-scale SCI reconstruction. The quantitative

comparisons are provided in Tab. 3. Obviously, MetaSCI

demonstrates the superior PSNR and SSIM scores, and also

testing speed. Specifically, MetaSCI outperforms GAP-TV

5.13dB in average, and outperforms PnP-FFDNet 2.62dB in

average. Further, MetaSCI accelerates the test speed over

100× than GAP-TV and PnP-FFDNet. As selected recon-

structed frames shown in the right of Fig. 4, MetaSCI pro-

vides sharper boundaries than GAP-TV and less artifacts

than PnP-FFDNet. See recovered videos in the SM.

5.5. Results on Real Data

We now apply the proposed MetaSCI to real data. Differ-

ent from simulation, real measurements always have noise

inside and thus make the reconstruction more challenging.

In addition to this, the mask is not ideal due to nonuniform

illumination and other reasons. To handle large scale prob-

lems, as mentioned before, for the sake of fast reconstruc-

tion, deep learning models need a huge amount of training

data and time plus GPU memory. Our proposed MetaSCI,

on the other hand, provides a solution to train the model

on small-scale and efficiently scale to large data as shown

in Fig. 1b. We use the real data captured by SCI cameras

[28, 31], with the mask controlled by a digital micromirror

device. The real data Domino and Water Balloon are snap-

shot measurements of size 512 × 512, encoding B = 10
frames. The UCF snapshot measurement has 850 × 1100
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Ground truth MetaSCI GAP-TV PnP-FFDNet

512 × 512

Ground truth MetaSCI GAP-TV PnP-FFDNet

MetaSCI GAP-TV PnP-FFDNet

1024 × 1024

2048 × 2048

Traffic #16Kobe #8 Runner #4 Drop #8 Aerial #3 Vehicle #12

Ground truth

GAP-TV

DeSCI

PnP-FFDNet

U-net

BIRNAT

MetaSCI

256 × 256

Ground truth

Figure 4: Reconstructed frames on multi-scale simulation benchmarks.

GAP-TV

DeSCI

PnP-FFDNet

U-net

BIRNAT

MetaSCI

#5 #8 #3 #8

Measurement PnP-FFDNetGAP-TV

(512 × 512)Domino (512 × 512)

UCF (850 × 1100)

DeSCIMetaSCI

Water Balloon
MeasurementMeasurement

Figure 5: Reconstructed frames on real data, Domino, Water

Balloon, and UCF. The test time on the challenging UCF

is: 0.51s (MetaSCI), 300.84s (GAP-TV), 15045s (DeSCI),

12.52s (PnP-FFDNet).

pixels [31], which is also a compression of 10 frames.

The results compared with other algorithms are shown

in Fig. 5, where we can see that the recovered frames of

MetaSCI show sharper borders and finer details (recov-

ered videos are in SM). Meanwhile, on the large scale

(850 × 1100) UCF data, the time cost of MetaSCI is the

least after adaptation. It is worth noting that, in this scale

data, BIRNAT fails due to the large memory requirement

and we thus only compare with GAP-TV, DeSCI and PnP-

FFDnet. DeSCI takes more than 4 hours while MetaSCI

only needs 0.51 seconds.

6. Conclusions and Future Work

Fast and high quality reconstruction plays a pivot role

in inverse problems. This paper takes one step further to

devise flexible reconstruction networks considering the ap-

plication of video snapshot compressive imaging, where

masks can be different for different systems and thus it is

desirable to have fast, accurate and flexible reconstruction

algorithms. To this end, we have developed a meta modu-

lated convolutional network for SCI reconstruction, dubbed

MetaSCI, containing a shared fully CNN as the backbone

but being modulated by a small number of meta parameters

for different tasks (masks). In this manner, MetaSCI has ac-

complished fast adaptation using our proposed algorithms.

MetaSCI is the first end-to-end deep model to realize high-

quality and efficient large-scale SCI recovery and thus paves

the way of real applications for SCI [17].

The proposed MetaSCI is actually a backbone-free

framework, in which different deep models can be used.

Furthermore, how to realize fast adaptation among differ-

ent compression ratios is also a practical problem, which

would be considered in the future.

In addition to the video SCI considered in this paper,

our proposed MetaSCI can also be used in the spectral

SCI reconstruction where large-scale real data are avail-

able [20, 21, 43] and different networks [10, 23, 45] have

been proposed for the inversion. MetaSCI is able to speed

up the training process and reduce the model size.
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