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Abstract

Existing deep deraining models are mainly learned via

directly minimizing the statistical differences between rainy

images and rain-free ground truths. They emphasize learn-

ing a mapping from rainy images to rain-free images with

supervision. Despite the demonstrated success, these meth-

ods do not perform well on restoring the fine-grained local

details or removing blurry rainy traces. In this work, we

aim to exploit the intrinsic priors of rainy images and de-

velop intrinsic loss functions to facilitate training derain-

ing networks, which decompose a rainy image into a rain-

free background layer and a rainy layer containing intact

rain streaks. To this end, we introduce the quasi-sparsity

prior to train network so as to generate two sparse lay-

ers with intact textures of different objects. Then we ex-

plore the low-value prior to compensate sparsity, forcing

all rain streaks to enter into one layer while non-rain con-

tents into another layer to restore image details. We in-

troduce a multi-decoding structure to specially supervise

the generation of multi-type deraining features. This helps

to learn the most contributory features to deraining in re-

spective spaces. Moreover, our model stabilizes the feature

values from multi-spaces via information sharing to allevi-

ate potential artifacts, which also accelerates the running

speed. Extensive experiments show that the proposed de-

raining method outperforms the state-of-the-art approaches

in terms of effectiveness and efficiency.

1. Introduction

The rainy artifacts on images usually include visible rain

streaks and the haze-like veiling effect. This work focuses

on rain streaks removal as it is still an unsolved challenging

task. Conventional methods usually remove rain via learn-

ing an over-complete dictionary [26, 1, 10]. The rain-free

image is reconstructed by the non-rain dictionary atoms,

which are identified from all the learned dictionary atoms

*C. Ma and B. Zeng are corresponding authors.

by means of the heuristic appearance characteristics of rain.

These methods do not perform well when the patterns of

rain streaks are complex, e.g., rain streaks overlap and in-

terweave. Without using high-level features, complex rain

streaks cannot be identified, causing heavy performance

bottleneck.

Recently, deep learning based methods explore high-

level features of rainy images through pretrained CNN mod-

els. They achieve the state-of-the-art deraining performance

in not only restoration quality but also the running speed

[27, 19, 8, 31, 15, 5, 4, 30, 35, 17, 25]. However, the

limitation appears when rain streaks are wide or blurry.

Fig. 1 shows an example that, when the middle parts of

rain streaks become brighter, while the edges are blurry, ex-

isting deep learning based methods only remove the bright

parts, but the blurry edges still remain. The reason lies in

that these CNN models are trained by means of minimiz-

ing the statistical differences between deraining results and

ground truth images, as formulated by the MSE [35, 5, 30]

or MAE [14] loss functions. MSE and MAE converge at

the arithmetic mean and median of the observations respec-

tively, which correlate poorly with image details restoration

[12, 37]. Therefore, exploring losses beyond the traditional

formulation is urged for further performance improvement.

In this paper, we introduce the intrinsic priors to con-

struct loss functions. We first study the sparsity of rainy

images to achieve sparse image decomposition, i.e., mak-

ing each sparse layer contain as intact (not split) textures of

objects as possible [13, 3, 20]. Based on such property, rain

streaks will not be split during deraining, as well as other

image contents. Note that the concept of sparsity here is

an intrinsic property of images, which is different from the

one indicating the majority of elements in a matrix are zero

or close to zero [29]. However, existing sparse stochastic

distributions lead to too complex derivation of maximum

likelihood (ML) to train CNNs [13].

To obtain tractable loss functions via ML, we relax the

sparsity degree and develop quasi-sparsity prior to approx-

imate the sincere sparsity. Quasi-sparsity with simpler for-

mula keeps the property of sparsity and can be used to train
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(a) (b) (c) (d) (e)
Figure 1. (a) Input rainy image. (b) Deraining result with quasi-sparsity. (c) Rain layer with quasi-sparsity. (d) Deraining result without

quasi-sparsity. (e) Rain layer without quasi-sparsity. Without quasi-sparsity, a few traces of rain streaks remain in the deraining result.

CNN to decompose images sparsely, meaning that the tex-

tures belonging to one object will not appear in different

layers. Moreover, an auxiliary decoder loss and a low-value

prior loss are proposed to force rain streaks to enter into the

rainy layer during deraining. Fig. 1 compares our networks

with and without quasi-sparsity. We observe that quasi-

sparsity produces clearer deraining result and removes rain

more thoroughly.

Deep features from different spaces have not be fully

studied before [35, 30]. We introduce novel auxiliary de-

coders to respectively decode deep features in multi-spaces.

Auxiliary decoders play roles in two aspects: 1) they gener-

ate rain-free images from multi-spaces respectively, which

helps to compare the effectiveness of different types of deep

features; 2) they boost encoder to generate optimal features

via respectively imposing supervision in each space. Fea-

tures from different spaces usually possess large numerical

gap that may cause undesired artifact [31]. We propose to

implement information sharing among multi-type features

before feeding them into the main decoder. Ablation studies

illustrate that information sharing alleviate the undesired ar-

tifact by stabilizing the feature values from different spaces.

In summary, the main contributions are listed below:

• We explore the intrinsic properties of rainy images,

i.e., quasi-sparsity and low-value priors, for deraining.

• We introduce a multi-decoding structure that enables

each feature space to generate optimal deraining fea-

tures by respectively imposing supervision. We intro-

duce information sharing to stabilize feature values of

multi-spaces to alleviate artifact.

• We conduct extensive experiments in comparison with

the state of the arts. We push forward the state-of-the-

art detaining performance by large margins in terms of

both effectiveness and efficiency.

2. Related Work

Dictionary learning [18] is first used to remove rain

streaks from a single image by decomposing the image con-

tent into multiple different layers [10, 1, 26, 24]. Recently,

deep learning improves the deraining performance substan-

tially. Based on the rain model, existing deep learning based

deraining methods typically fall into three categories: direct

learning methods, residual model methods and scattering

model methods. Direct learning methods learn to output a

rain-free image directly from the input rainy image. In [23],

Wang et al. first build a dataset with temporal priors and

human supervision, and train a SPANet to remove random

rain streaks in a local-to-global way.

Residual methods decompose the rainy image into a

rainy layer and a rain-free layer. In [4], a DerainNet is

trained in the high-frequency domain to restore image de-

tails, so that the interference from the background can be re-

duced. A deep network based on ResNet [6] is also trained

with high-pass to reduce the mapping range from input to

output for training efficiency [5]. In [30, 31], a new rain

model is introduced to model the apparent rain streaks and

the veiling effect. But the atmospheric light and transmis-

sion of the veiling effect are not explicitly predicted. The

rainy image is finally decomposed into a rain layer and the

background layer by their JORDER network. Moreover,

a binary map is learnt to locate rain streaks to guide the

JORDER training. In [35], the density of rain streaks is

evaluated by a multi-stream densely connected DID-MDN

structure, which characterizes the rain streaks with various

shape and size. Li et al. decompose rain streaks in sin-

gle images into a number of rain layers. Then a recurrent

neural network RESCAN is trained to remove rain streaks

state-wisely [17]. Hu et al. study the relationship between

the visual effect of rain and scene depth, based on which

fog that contains depth information is introduced to model

the formation of rainy images and to guide the end-to-end

training of their network [8]. In [19], Ren et al. rethink the

network structure, input and output, and the loss functions,

and propose a simpler deraining baseline.

For the scattering model methods [15], Li et al. render

the ground truth for atmospheric light, rain streaks and the

transmission of vapor to remove rain streaks as well as the

vapor effect. In [32], self-supervision is introduced to re-

move rain streaks across scales. Due to the correlation of

deraining to textures, this work creates a fractal band learn-
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Figure 2. (a) Rainy image. (b) Log-histogram after (a) is filtered. (c) Non-sparse rainy image. (d) Log-histogram after (c) is filtered. (e)

Log-probability of some stochastic distributions. According to [13], Gaussian distribution is non-sparse as it is above the straight line.

Laplace distribution results in the straight line, which is the demarcation line of sparsity and non-sparsity.

ing (FBL) network to capture discriminative features for de-

raining. Besides, cross-scale self-supervision is introduced

to improve the generalization of FBL. Based on the previ-

ous studies of deraining and dehazing, Yang et al. imple-

ment comprehensive experiments to verify how low-level

image enhancement tasks contribute to the high-level visual

recognition [33]. In [34], an UMRL network is proposed to

predict the rain content at different scales with uncertainty.

Such rain content is used to estimate the final deraining re-

sults. Different from existing approaches, we pay attention

to the intrinsic priors of rainy images and design novel cost

functions to facilitate deraining.

3. Quasi-Sparsity Prior

Sparsity keeps intact object textures during image de-

composition, i.e., textures belong to one object will appear

in one image layer [13]. Therefore, sparsity has great po-

tential to separate rain and non-rain textures during derain-

ing. However, not all images possess sparsity, e.g., blurry

images. Hence we first determine the sparsity of rainy im-

ages to ensure the generalization of our algorithm. Exist-

ing stochastic distributions fitting sparsity are too complex

to derive an effective maximum likelihood to train CNNs

[13, 21], which hinders the applications of sparsity in com-

puter vision tasks. We develop a quasi-sparse distribution

to approximate sparsity to obtain a feasible loss function.

3.1. Sparsity of Rainy Images

In [13], Levin and Weiss show a property that the log-

histograms of filtered natural images are below the straight

line connecting the minimal and maximal values, and name

this property as sparsity prior. We collect 1000 real rainy

images and 9000 synthetic rainy images and compute their

log-histogram after filtering. We find that 93.7% of these

images maintain sparsity prior, as an example shown in Fig.

2(a) and (b). An example of the remaining non-sparse part

is displayed in Fig. 2(c) and (d). We experimentally find

that these minority of non-sparse images are of low contrast.

Ruling out such small part, sparsity prior is applicable to

rainy images from the statistical perspective.

3.2. Quasi­Sparsity Formulation

According to the definition of sparsity [13], single Gaus-

sian and Laplace distributions are non-sparse as shown in

Fig. 2(e). Single Gaussian distribution is above the straight

line, hence infinite Gaussian distributions with different pa-

rameters are added together to fit the sparsity [21]. This

yields complex derivation process during the ML estima-

tion. Single Laplace distribution results in the straight line.

Levin and Weiss [13] fit the sparsity prior by combining two

different Laplace distributions as follows:

P (x) =
π1

2s1
e−|x|/s1 +

π2

2s2
e−|x|/s2 , (1)

where π1, π2, s1 and s2 are parameters. The complexity

decreases substantially in comparison to the combination

of infinite Gaussian distributions, but it is still intractable

when used to train a network through maximum likelihood

estimation based on Eq. (1). Because Eq. (1) is an addition

of two exponential functions, it introduces the hybrid oper-

ation of exponential and logarithmic functions during ML

estimation, which is time-consuming especially applied to

the whole images.

To train a CNN via sparsity, we relax the sparsity by set-

ting s1 = s2 = s and π1 = π2 = π in Eq. (1):

Pq(x) =
π

s
e−|x|/s, (2)

i.e., we apply single Laplace distribution to approximate the

sincere sparsity defined in [13]. As shown in Fig. 2(e), sin-

gle Laplace distribution is located at the demarcation line of

sparsity and non-sparsity. We define single Laplace distri-

bution as quasi-sparsity distribution, as it is not true spar-

sity according to [13]. When quasi-sparsity distribution in

Eq. (2) is used to approximate the true sparsity, the quasi-

sparsity distribution of a whole rainy image I could be for-

mulated as:

Pq(I) =
∏

i,k

Pq(ωi,k ∗ I) (3)

where ωi,k is the kth filter centered at the ith pixel. ∗ is

the convolution operation. The filters with horizontal and

vertical gradients and the first and the second derivatives
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Figure 3. Pipeline of our method. A stack of 12 ShuffleNet units constitute the backbone of our network. An multi-decoding structure

(auxiliary decoder) is introduced to decode deraining results from different scale spaces. The intrinsic quasi-sparsity loss, detail loss,

auxiliary decoder loss and content loss work complementarily to train our network.

Figure 4. Architecture of the auxiliary and main decoders. Differ-

ent convolution groups exchange information in the single auxil-

iary decoder, as well as the features from different scale spaces.

are used here to constitute the quasi-sparsity prior of rainy

images [13].

Quasi-sparsity contains one exponential function, which

substantially simplifies the derivative process of the loga-

rithm maximum likelihood estimation to obtain a concise

sparse loss function. This loss function helps to conve-

niently apply sparsity for training a CNN. More impor-

tantly, quasi-sparsity preserves the property of the sincere

sparsity, which helps our network better separate different

objects during image decomposition.

4. Proposed Method

Under the constraints of several intrinsic properties of

rainy images, we train the CNN network to decompose the

rainy image I into a sparse rain layer R and rain-free back-

ground layer B as follows:

R = S(I) (4)

B = I− S(I), (5)

where S(·) denotes the network inference. Because our

multi-decoding network can generate sparse rain and non-

rain decomposition via quasi-sparsity prior, we call our

network Quasi-Sparse Multi-Decoding deraining network

(QSMD).

4.1. Network Structure

We show the pipeline of our network structure in Fig. 3.

A stack of 12 ShuffleNet units constitute the backbone of

our QSMD, which is called Information Shuffling Encoder.

ShuffleNet units have been verified to have a fast feature

extraction speed [36]. Besides, the lightweight group con-

volution and deep separable convolution in ShuffleNet units

reduce the parameters of our QSMD. Following [30], we

also use a parallel connection of à-trous convolutions [2] to

generate multi-type features from different scale spaces, by

which the obtained features keep the same size as original

rainy image, avoiding the down-sampling and up-sampling

operations when using spatial pyramid pooling [7]. More-

over, point-wise convolution acts as a shortcut path to pre-

serve the original feature map.

The decoding module consists of the auxiliary decoders

and the main decoder. Each auxiliary decoder decodes out

a rain-free image from the corresponding scale space. The

generated rain-free images are concatenated together as the

input of the main decoder as shown in Figs. 3 and 4. Di-

rect concatenation of deep features from multi-spaces might

cause artifacts, for example the black artifacts in the result

of [31]. Inspired by [36], we let different feature spaces

share information by mutually exchanging feature maps be-

fore being fed into the main decoder. Both quantitative

and qualitative results demonstrate the effectiveness of our

method in alleviating the artifacts.

4.2. Training Loss

We present how our QSMD is trained via the proposed

quasi-sparsity prior based on a logarithmic ML estimation

which favors the separation of objects during the decom-

position of rainy images into rain and non-rain layers. A

low-value prior of rainy layer R and the auxiliary decoder
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(a) (b) (c) (d) (e) (f)
Figure 5. (a) Input rainy image. (b) Background image. (c) Rain streaks. (d)-(f) are first order horizontal gradient of (a)-(c).

Table 1. PSNR/SSIM comparisons on our testing datasets

Methods MSPFN[9] RESCAN[17] RCDNet[22] JORDER[31] PYM+GAN[15] SPANet[23] Ours

Test-I
32.50 27.21 31.69 27.44 17.93 28.47 33.15

0.913 0.835 0.866 0.885 0.677 0.858 0.923

Test-II
31.70 34.81 35.51 28.39 18.48 35.17 35.66

0.941 0.944 0.945 0.902 0.747 0.944 0.950

work together to force rain streaks enter into the rain layer

R, and non-rain contents into the background layer B.

Quasi-sparsity loss. We assume that the rain layer R and

the background layer B are independent to simplify our al-

gorithm. By substituting Eq. (2) into Eq. (3), the quasi-

sparsity prior of I in Eq. (3) could be rewritten as:

Pq(I) = Pq(R)Pq(B) =
∏

i,k

π

s
e−(|ωi,k∗R|+|ωi,k∗B|)/s.

(6)

By applying logarithm, Eq. (6) becomes:

log(Pq(I)) = −1

s

∑

i,k

(|ωi,k ∗R|+ |ωi,k ∗B|) + β. (7)

β is a constant produced during calculating logarithm. s

is also constant. Hence, maximizing Eq. (7) is equal to

minimizing the following loss function:

Lq =
∑

i,k

|ωi,k ∗R|+ |ωi,k ∗B|. (8)

For all images {It}Nt=1 in our training dataset {(It,Bt)}Nt=1,

Lq is rewritten as:

LQ =

N∑

t=1

∑

i,k

|ωi,k ∗ S(It)|+ |ωi,k ∗ [It − S(It)]|. (9)

Similar formulation of Eq. (8) used in traditional opti-

mizations [20] belongs to our quasi-sparsity according to

the strict definition of sparsity [13]. The maximum like-

lihood estimation based on our quasi-sparsity generates a

concise loss function which could be conveniently utilized

to train a CNN. If we utilize the true sparsity in Eq. (1),

the derivative process, i.e., Eqs. (6), (7), (8) and (9), will

become very complex and the obtained loss function is also

time-consuming. Moreover, though our quasi-sparsity loss

function is formulated with L1 norm, it is no longer the

commonly used losses which measure the differences of de-

raining results and ground truth. Behind our loss function

is the intrinsic sparsity prior of rainy images.

Content loss. We utilize MAE to measure the difference

between the deraining results from the main decoder and

ground truth to restore image contents:

LC =

N∑

t=1

|It − S(It)−Bt|. (10)

Detail loss. As shown in Fig. 5(c), the non-rain areas have

very low values in R, which is formulated as our low-value

prior of rainy images to restore image details as follows:

LD = |(1− L) ◦R|, (11)

where L is the location map of rain streaks obtained by [25]

to filter out the high values at the rain location in R. 1 is

all-one matrix. ◦ is element-wise multiplication.

Auxiliary decoder loss. Each feature space could generate

optimal deraining features by imposing supervision on the

auxiliary decoders. Let {Ai(·)}5i=1 denote the inference of

the five auxiliary decoders. Our auxiliary decoder loss is

defined as follows:

LA =
1

5

5∑

i=1

N∑

t=1

‖It −Ai(Ft,i)−Bt‖2F , (12)

where Ft,i is the feature map of It and an input of Ai(·).
Our whole loss function is:

L = λQLQ + λCLC + λALA + λDLD (13)

5. Experiments

To evaluate the performance, PSNR and SSIM [28] are

selected as quantitative metrics. Six state-of-the-art meth-

ods [9, 17, 22, 31, 15, 23] are used for comparisons.
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Table 2. Average running time comparisons. The image size is 512× 512

Methods MSPFN[9] RESCAN[17] RCDNet[22] JORDER[31] PYM+GAN[15] SPANet[23] w/o Sharing Ours

Time 11.4s 0.47s 0.99s 1.39s 0.45s 0.66s 0.007s 0.005s

(a) Input (b) [9] (c) [17] (d) [22] (e) [31] (f) [15] (g) [23] (h) Ours (i) GT

Figure 6. Qualitative comparisons on synthetic rainy images. (a) Input rainy images. (b)-(h) Deraining results of MSPFN [9], RES-

CAN [17], RCDNet [22], JORDER [31], PYM+GAN [15], SPANet [23] and our method. (i) Ground Truth.

(a) Input (b) [9] (c) [17] (d) [22] (e) [31] (f) [15] (g) [23] (h) Ours

Figure 7. Qualitative comparisons on real-world rainy images. (a) Input rainy images. (b)-(h) Deraining results of MSPFN [9], RES-

CAN [17], RCDNet [22], JORDER [31], PYM+GAN [15], SPANet [23] and our method.

(a) Input (b) V1 (c) V2 (d) V3 (e) V4

Figure 8. Visual results of ablation studies. (a) Input rainy image. (b)-(e) Results of V1, V2, V3 and V4. The second line is the rain layers.

5.1. Implementation Details

The training pairs are randomly cropped from our train-

ing dataset with fixed size of 256 × 256. Adam [11] is

utilized as our optimizer. The learning rate is set to 0.001
initially and decays by multiplying 0.1 when the loss does

not update. Our code is implemented on a NVIDIA 1080Ti

GPU based on Pytorch. The parameters λQ, λC , λA and

λD in Eq. (13) are 10−3, 1, 0.01 and 10−4 respectively.

5.2. Dataset Constructions

We follow [16] to prepare our training dataset which con-

tains 20800 pairs. The synthetic rainy images are synthe-

sized with rendered rainy layer and the ground truth by us-

ing the screen blend mode. In order to cover more base-
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(a) Input (b) C1 (c) C2 (d) C3 (e) C4 (f) C5 (g) All scales
Figure 9. Deraining results of respective feature spaces. (a) Input image. (b)-(g) Deraining results of C1, C2, C3, C4, C5 and all scales.

Table 3. PSNR/SSIM of the different variants of our method

Variants V1 V2 V3 V4

LC
√ √ √ √

LQ w/o
√ √ √

LD w/o w/o
√ √

LA w/o w/o w/o
√

Test-I
29.94 31.70 32.03 33.15

0.858 0.898 0.908 0.923

Test-II
34.15 34.50 34.85 35.66

0.826 0.873 0.891 0.950

Table 4. PSNR/SSIM of respective feature spaces

Scales C1 C2 C3 C4 C5 All scales

Test-I
31.68 32.14 32.18 30.75 30.69 33.15

0.902 0.907 0.902 0.862 0.870 0.923

Test-II
33.86 34.85 34.91 33.96 32.66 35.66

0.868 0.901 0.914 0.887 0.869 0.950

line testing datasets to compare the generalization of differ-

ent methods, we follow [27] and randomly select 100 pairs

from the testing datasets of [35, 17, 5] respectively to con-

stitute our Test-I. We follow the real-world dataset [23] as

our second testing dataset named as Test-II.

5.3. Evaluations with State­of­the­arts

We compare our method with existing deraining methods

on our testing datasets. The comparisons are classified as

numerical and visual evaluations. The details are reported

in the following:

Quantitative Evaluation. Table 1 shows the comparisons

to the state-of-the-art deraining methods under the PSNR

and SSIM metrics. Our method achieves more favorable

results. Running time comparison is shown in Table 2. Our

method achieves the fastest running speed and is two order

of magnitude faster than the second fastest method [15].

Qualitative Evaluation. We show the visual comparison

from the aspects of synthetic and real-world data. Fig. 6

Table 5. PSNR/SSIM of our QSMD w/o or w/ information sharing

Datasets Test-I Test-II

w/o Sharing 31.91/0.897 34.51/0.920

QSMD 33.15/0.923 35.66/0.950

shows two synthetic cases where our method is able to re-

store effectively, especially for the second heavy condition.

Besides the synthetic case, comparisons on the real-

world rainy images are shown in Fig. 7. Light rain streaks

can be handled well by existing methods, as shown in the

first line of Fig. 7. But, some image details may be mis-

treated as rain and removed, such as the results of RES-

CAN [17], JORDER [31] and PYM+GAN [15]. When

rain is heavy, some apparent rainy streaks still remain in

the results of PYM+GAN [15], MSPFN [9], RCDNet [22]

and SPANet [23], such as the second rainy image. The

works [17, 31, 23] performs well on the bright grain-like

rain streaks, but our method achieves clearer result.

5.4. Ablation Studies

The training of our network consists of intrinsic quasi-

sparsity prior, low-value prior, a decoding loss indicating

the auxiliary decoders and a content loss for the main de-

coder. We show how these loss functions work together to

gradually improve image restoration results. Our four con-

figurations to train our QSMD are: 1) only the content loss

LC is used and named as V1; 2) LC+LQ is used and named

as V2; 3) LC + LQ + LD is used and named as V3; 4) the

whole loss LC +LQ +LD +LA is used and named as V4.

Fig. 8 and Table 3 show the qualitative and quantitative

results. We observe that rain streaks become less and less

after the loss functions are introduced one-by-one. In com-

parison, image details decrease step-wisely and rain streaks

increase accordingly in the rainy layer. The quantitative in-

dexes indicate the same laws, where the decoding loss im-

prove the performance more apparently.
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(a) (b) (c) (d) (e) (f)

Figure 10. Sparsity of rainy image, the deraining result and the decomposed rainy layer.

(a) (b) (c) (d) (e) (f)
Figure 11. (a)(d) Input rainy images. (b)(e) Deraining results without information sharing. (c)(f) Deraining results with information sharing.

5.5. Discussions

Our method involves decoding in multi-spaces, informa-

tion sharing and quasi-sparsity prior to improve network

performance. We discuss their merits in the following:

Decoding in multi-spaces. We first symbolize multi-spaces

as: C1 denotes the space spanned by the convolution with

1× 1 kernel. Similarly, C2, C3, C4, C5 are the spaces pro-

duced by à-trous convolutions with à-trous rate equalling to

1, 2, 4, 6 respectively. Auxiliary decoders decode deraining

images from each space, as visually shown in Fig. 9. We

observe that traces of wide streaks may remain in the results

decoded from small-scale feature spaces, e.g., Fig. 9(b), and

vice versa, e.g., Fig. 9(e). This shows specific convolution

captures rainy features with corresponding size. To remove

multi-type rain streaks, features from multi-spaces should

be combined and work together.

Table 4 shows the quantitative evaluation to the differ-

ent scales of features. We observe that C2 and C3 pro-

duce higher PSNR/SSIM values, indicating that deep fea-

tures from them contribute the most to the deraining perfor-

mance, which also indicates that the majority of rain streaks

possess the width of 3 or 5 pixels in common images.

Sparse decomposition of QSMD. Quasi-sparsity lets our

QSMD better separate objects during image decomposition,

so that each layer is sparse and contains intact textures of

objects. Fig. 10 shows the sparsity of rainy images, de-

composed rainy layers and backgrounds. We observe that

sparse rainy images are decomposed by our QSMD into

sparse background layer and sparse rainy layer.

Information Sharing. Direct concatenation of different-

type features may lead to undesired artifacts, for example

[31], which is also verified by our auxiliary decoders. This

is due to large numerical gap among features from multi-

spaces. We solve this problem via exchanging features from

different scale spaces. Table 5 and Fig. 11 show the perfor-

mance improvement. All the black artifacts disappear with

the use of information sharing. Table 2 also indicates that

the running speed improves by 0.002s.

6. Conclusions

Sparsity prior is an intrinsic property of images with

sharp textures and clear contrast. When acting as a con-

straint for image decomposition, it helps each image layer

contain intact textures of objects. In this paper, we deter-

mine the sparsity prior of rainy images from the perspective

of statistics. Allowing for complexity, we exploit quasi-

sparsity prior to approximate the true sparsity for training

the proposed QSMD network, so that our network can pro-

duce sparse image decomposition. Additionally, the low-

value prior and auxiliary decoders are introduced to en-

hance the separation of rain streaks and background con-

tents. Through our multi-decoding structure, we study the

deraining performance of different features and find the

most favorable deraining features. Quantitative and qualita-

tive evaluations illustrate the favorable performance of the

proposed method over the state of the arts.
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